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Macroscopic descriptions

of microscopic phenomena

Peter D. Finch

Some problems in the behavioural and physical sciences arise in

the context of an incomplete knowledge of the fine detail of

underlying practical situations. This paper presents a general

mathematical framework for the discussion of such problems.

This framework provides an algebraic language for the discussion

of ecological analysis in-the social sciences, aggregation in

economics and macroscopic descriptions in statistical physics.

Here, however, only the mathematical framework is presented;

detailed applications will be presented elsewhere.

1. Introduction

Let x,, x 2 x be sample values of n independent random

variables X., X-, ..., X which have a common but unknown distribution.

A standard problem of statistical inference concerns the description of

that unknown distribution on the basis of the information provided by the

sample values. Here we consider the more general problem which arises when

one wants to describe the unknown distribution on the basis of the

information provided by the value £(2:., x , ..., x ) of some function of

sample values rather than by the whole sample itself. In the language of

the title of this paper the whole sample (x., x^, ..., x ) constitutes

the microscopic data whereas the value £(x.,, x^ x ) constitutes the

macroscopic or ecological summary of those data. Practical situations
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392 Peter D. Finch

involving such summaries arise in a number of contexts and two simple

examples will suffice to motivate the development of the general

mathematical framework.

Our f irst example goes back to Robinson [3] , an early but important

paper in the development of ecological analysis. Robinson considered the

extent to which correlation between colour and literacy in the United

States was affected by grouping the data into regional zones. For our

purposes the mathematical aspects of immediate interest can be formulated

in the following way. Let £2 be a finite population of people which is

divided into disjoint geographical regions A , A , . . . , A, . For each

person u in fi let X(w) = [AM , L(u) , i?(w)) where A(u>) is the

region to which he belongs, L(w) is 0 or 1 according as he is or is

not l i terate and R(o)) is 0 or 1 according as he is White or Negro.

Let A = {A , A , . . . , A-,} , 2 = {0, l} and write X for the cartesian

product A x 2_ x 2_ . Let £2 be the n-fold cartesian product of £2 with

i t se l f and for each j = 1, 2, . . . , n define X. : £2 •+ X by the
3 ?t

equations

Suppose that one takes an ordered random sample of size n with

replacement from the population fl . Under such a sampling procedure

X , X , . . . , X are independent random variables with the same

distribution, namely the relative frequency distribution of X over £2 .

If x-., Xp, . . . , x are the respective sample values then one can seek to

make inferences from them about the unknown distribution of X , that is

the joint relative frequency distribution of A, L and R . Suppose,

however, that, either in principle or for reasons of economy, the whole

sample is not available but one knows only that summary of i t which

gives, for each of the geographical regions in question, the number of

people in the sample who belong to that region together with the number of

those who are i l l i t e r a t e and the number who are Negro. In other words if

x . = [a ., I . , r .) in X , j = 1, 2, . . . , n , are the sample values then
0 3 0 3

t h e summary i n q u e s t i o n r e p l a c e s t h e n - t u p l e \ x \ > X2' •••> x
n) °*"

t r i p l e s by a k - t u p l e o f t r i p l e s , namely
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Microscopic phenomena 393

where, for each i = 1, 2 , . . . , k ,

n n n
I "S-(a. ) , [ 6 . ( a . ) Z . , I <*-K-)ri-

j=l J j=l J J j=l J J

and for each a in A , 6. (a) is 1 or 0 according as a is or i s not

A. . Our basic problem concerns the extent to which one can describe the

unknown distribution of X in terms of the information provided by the

summary £(x, , x^ x ) rather than in terms of that provided by the

whole sample (x , x , . . . , x ) .

Our second example concerns aggregation in economics as t reated, for

instance, by Thei I [4 ] . With each member w of a f in i te set £2 there are

associated real-valued microquantities B(ut) , A.(u), . . . , A
m(&) so that

one has m + 1 real valued functions B : Q •* R and -4̂  : ft •+ R ,

k - 1, 2, . . . , m . One's interest i s in the joint re la t ive frequency

distribution of S and A , A , . . . , X over ft , in part icular one is

interested in the way B depends on A , A , . . . , A . In economics B

is called the endogenous microvariable, A , A , . . . , A are called the

exogenous microvariables and i t is not unusual to represent the sought for

dependence by the microequations

m
B(w) = \ B,(u)i4, (u) + £/(to) , a) € Q. ,

where I/(u) is a disturbance term which characterises the departure from

linearity. However for our present purposes we may ignore this particular

type of functional dependence. Write

and le t X be the (m+l)-fold Cartesian product of R with i t s e l f so that

X : £2 -*• X . As in the las t example we can, by means of a suitable sampling

procedure, introduce independent random variables X , X, . . . , Xn each of

them having the distr ibution of X over fi . As before we can pose the
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394 Peter D. Finch

standard inference problem about the distribution of X over ft when one

knows the sample values x , x^, . . . , x but our present interest is in

that aspect of the aggregation problem in economics which concerns the

extent to which one can describe the distribution of X over ft , in other

words the Joint distribution of the microvariables, in terms of certain

aggregate values derived from the sample. Thus suppose that, for each

3 = 1, 2, . . . , « , x . = [p., a.., . . . , a . ) in X are the sample values
3 3 3 J***

and that the set (x^ x^r . . . , x^) consisting of the n sample (m+l)-

tuples is summarised by the single (m+l)-tuple

n n n

3=1 3 3=1 ° 3=1 ° .

Once again our basic problem concerns the extent to which one can describe

the distribution of X in terms of the information provided by the summary

£(x, , x_, . . . , x ) rather than in terms of that provided by the whole

sample [x^, x^,

We emphasise that the two examples are only introduced to provide

motivation; more detailed studies of these and related problems will be

published else¥v°re. I t i s , however, worthwhile pointing out that in

practice one is sometimes dealing with the whole population rather than

with a random sample and that even if one does have a sample i t may or may

not have been taken randomly and i t may well have been taken without

replacement rather than with replacement. Although i t is possible to deal

with such situations by arguments like those used below i t i s , for our

present purposes, more convenient to regard the mathematical framework as

providing a conceptual model in terms of which such situations may be

discussed. In terms of that model one asks how one would describe the

distribution of some vector-valued quantity X over the finite population

ft i f i t were the case that a l l one could know was a certain summary of a

random sample. With this model in mind, and to avoid inessential

mathematical complexity, we restrict our discussion to random variables

taking on only a finite number of values.

In the next section we introduce the concept of a summary function in

an abstract way and derive some results for later use.
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2. Summary functions

For any set T we write T for the n-fold Cartesian product of T

with itself and put

T, = U T .
n

n=l

Let X be a non-empty se t . A subset S of X̂  wi l l be said to be exact

when S = T^ for some non-empty subset T of X . Let M be a non-empty

se t . An M-valued summary function in X is defined to be a function

£ : X,, -»• M which has an exact domain. A summary function is said to be

universal when i t s domain is X̂  . I t i s necessary to distinguish between

a universal summary function £ and £,\S , the res t r i c t ion of £ to an

exact subset of X̂  . Of course £|£ i s a summary function which agrees

with £ on i t s domain, but i t s domain i s different from tha t of £ . If

n is a summary function and C is a universal summary function such that

£|domri is n we say that £ is a universal extension of n. ; even when

such an extension exists i t may not be uniquely determined by T) .

Let £ : X̂  •+ M be an M-valued summary function in X •, for each

positive integer n there i s an induced mapping from X to M ; namely

£ : X -+ M where £ = £|X is the res t r i c t ion of £ to X . Thus a

summary function is a compact way of talking about a part icular algebraic

structure on X , for C can be thought of as an M-valued pa r t i a l n-ary

operation in X , there being one such operation for each positive a r i ty .

If E, i s universal then these operations are everywhere defined on X and

if, in addition, M = X the universal summary function determines a

particular kind of universal algebra carried by the set X . Indeed with

the algebraic interpretat ion in mind we often write ^n
x-\xo '' ' Xn i n s t e a d

o f ?„(*;,_> * 2 ' ••• ' X J o r ^ x l ' X 2 Xr) w h e n e v e r

[x. , x_ x ) is in the domain of C • Conversely if, for each
1 1 d n' n

positive integer n , E. i s an Af-valued pa r t i a l n-ary operation in X

we can define £ : X,, •+ M by decreeing that £|X = £ and if £ so

defined does have an exact domain i t is a summary function in the sense

defined above. Indeed summary functions often ar ise in th i s way in
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practice.

With the algebraic interpretation in mind we define a character of the

//-valued summary function £ to be a complex-valued function X on M

such that

(2.1) codomC c domx S. M

and

(2.2) ^ K X X X 2 ••• X J = X U

for each positive integer n and each [x , x , . . . , x) in the domain of

£ . Characters always exis t , thus x(">) = 0 on M and x(w) = 1 on M

are instances of characters, the former of these is called the t r iv ia l

character and the l a t t e r is called the unit character. If £ is universal

than (2.2) holds for any x , x , . . . , x in X . If n, is a universal

summary function, A is a character of n. and 5 is exact then £ = njs

is a summary function and A|codom£ is a character of £ , but a general

character X of £ is not necessarily the restr ict ion of a character of

n because i t is only required that (2.2) hold for [x, x , . . . , x ) in

the domain of £ and not for a l l [x , 1 1 ) in - ^ .

If £ is an M-valued summary function and <t> : M -*• M has a domain

which contains the codomain of £ then (j> ° £ is also an //-valued

summary function. Moreover if <i> is a bijection on i t s domain then the

characters of <f ° £ are of the form x ° <t> where X is a character of

£ •

Let £ be an M-valued summary function in -X and le t K be a non-

empty f ini te subset of X such that K^ is contained in the domain of

£ . Let x b e a character of £ and write

(2.3) K = I xtey"0 •
X xeK

A non-negative character x i-s s a id "to be normed on K when K = 1 . If
X

X is normed on K then

I x(C(x*)) = 1 ,
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moreover t h i s equat ion holds for a l l n i l only i f X i s normed.

For each x^ in X^ l e t nix^) denote the n for which

x,, = (x. , x , . . . , x J belongs t o X . We say t h a t £ i s s e p a r a t i v e on

Kt when

for all x*, y t in K^ . When this is so we can attach to each m in the

codomain of C|-K< the common arity of the x,, in K^ such that

£(x;() = m ; let this common arity be denoted by v(m) so that

Suppose that £ is separative on K^ and let X be a non-trivial non-

negative character of Cl-K* • Define x' • M ->• R with a domain which is

the codomain of £!#* by decreeing that x' i s given on i t s domain by the

equation

X'(m) = r v ( m )
X ( m ) .

Then one verifies easily that x' is a non-negative character of C|̂ <

which is normed on K . In the case X is i tself normed on K one has,

of course, that x' is the restriction of x to the codomain of £|^* ;

thus in the case of separative summary functions a l l the normed characters

can be obtained by this normalisation procedure.

Note that if £ : X̂  •+ M is not separative then i t may be replaced by

the separative summary function £' : X̂  -»• Z x M defined on i t s domain,

which is the same as that of £ , by the equations

£'(*«) = (*(**), £(**)) •

A particularly important special case occurs when £ is an X-valued

universal summary function with the properties

(i) £.x = x for each x in X , and

( i i ) for each integer n 2 2 and any x , x , . . . , xn in X ,

C X ^ X V ) = W V ^ ••• x n + l = C 2 ^ n X l ••• XnK+l "
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Then £2 is a semigroup operation on X , and writing i t multiplicatively

we find that

^ X 1 X 2 • • • X n = X l X 2 ••• x n '

where the expression on the right i s the semigroup product of

x , x2> . . . , x^ . The characters of £ are just the complex-valued

functions X o n ^ which have the property

for any x and y in X ; in other words they are characters of the

semigroup X .

3. Surrogate probabilities

Let X be a non-empty se t and l e t X be a random variable which

takes on only a f in i t e number of values in X with non-zero probabil i ty.

The probabili ty d is t r ibut ion of X i s a function P : X ->• R such that

D = [x : x € X & P(x) t 0}

is finite and

I P(x) = 1 .
X

More generally, for each positive integer n , l e t X , X , ..., X be a

f in i t e sequence of random variables each of which takes on only a f in i te

number of values in X with non-zero probabil i ty. The joint probability

dis t r ibut ion of X^ , X~, . . . , X is a function P = X •*• R such that1 2 n n n

is finite and

l W v •••• *„)=1 •
n

In what follows we wi l l suppose that for each n > 1 the random variables

X , X , ..., X are mutually independent and that each of them has the

dis t r ibut ion of X . Then D is the n-fold cartesian product of D and
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V ( x r x 2 , . . . . x j € D n : P ^ , x 2 , . . . . x j = T ^
J 1

Since we wish t o consider f i n i t e sequences [x., X , . . . , X ) for

a r b i t r a r y n i t i s convenient t o define P t • X,, •+ R by decree ing t h a t

P j X = P as defined above. Then
*' n n

D* = {x, : x,, € X* & P , ( x J # 0}

i s an exact subse t of X,, , for each n i l ,

and, because of independence,

w(x<)

Vx, € X, : P,(xJ = T T P(*,) •
3=1 °

A standard problem of statistical inference is that of "estimating"

the function P on the basis of particular sample values

x^ = (x > x , ..., x ) . As indicated in the introduction we are interes-

ted in the more general problem of "estimating" P on the basis of the

value Cix^) of some function £ of sample values rather than on the

basis of those sample values themselves. However the use of the term

"estimating" ra: ses controversial questions concerning "best" estimation

procedures which we wish to avoid. To do so we remark that the practical

problem is simply that we do not know the function P and so we are unable

to calculate the functions P , nil; in other words we do not know

the function PA . However in the absence of this knowledge we want to use

a surrogate for the function Pt so that, for each n i l , we can

calculate a surrogate probability of obtaining sample values

x , Xp, ..., x in a realisation of the n random variables

X, , X , •••, X . By use of the words "surrogate probability" rather than

"estimated probability" we wish to emphasise the deputizing role an

estimate of a probability distribution is required to play and, at this

stage of our investigation, to pay less attention to the more controversial

questions which arise when one asks the extent to which one surrogate is
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"better" than another in respect of the way it does play that role.

Motivated by the preceding considerations we define a surrogate

function for P* to be any function Q* : X^ •* R which has domain

and is such that

(3.1) *„ M* ~ «*(*,) = 0 ,

(3.2) toil: I Q,{x,) = 1 ,

and

(3.3) Vx, € X, : «,(*,) = TT «*(*•) .
0=1 3

where n{x^) is the n for which x^ = [x , x , . . . , x) is in X

We say that Q^(x^) is the surrogate probability for P^ix^) and

tha t , for each n S 1 , Q = Qt\X is the surrogate distribution for

P . Note that surrogate probabil i t ies, like the probabilities for which

they deputize, are non-negative quantities. The condition (3-l) ensures

that sample values x^ which occur with zero probability are assigned zero

surrogate probabili ty, whereas condition (3-2) ensures that Q like P ,

for which i t deputizes, sums to unity over D . Finally, condition (3.3)

asserts "surrogate independence", namely that the surrogate joint

probabil i t ies Q [x , x ? , . . . , a: ) are to be calculated from the

individual surrogate probabilit ies Q [x.), Q [x^], . . . , Q [x ) in

accordance with the assumed independence of the random variables

X , X , . . . , X . Note that i f Q : X -»• R is any probability dis tr ibut-

ion on X such that Q{x) = 0 for x not in D and we define Q = Q

and Q* by (3-3) then (3-1) and (3-2) are sat isf ied; conversely a l l

surrogates Q^ arise in this way. Thus our definition of a surrogate

requires no more than that a surrogate function Q^ arises in that way

from some such probability distribution Q on X .

Suppose now that we wish to determine surrogate functions Q* which

take into account the fact that a l l we know about any set of sample values
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X; is £(#*) where E, is some summary function in X . More precisely

let £ : X^ •+ M be an M-valued summary function in X whose domain

contains D^ and which is separative on Dt . To take account of the

summary function £ we observe that if x* and x* are two sets of

sample values in D^ for which C(a:<) = C^*) then there is no

experimental datum which provides grounds for distinguishing between x 4

and x't , and hence there are no grounds for distinguishing between Q^ix^)

and Qnix'*) ; it being implicit here that the summary function £

provides all of the available information. It seems plausible therefore to

require that

o.fc) v*,, *; « 0, : cu«) = ?u;) - «,(*,) = «,(*;) .

Surrogate functions 6* for which (3.1*) holds wil l be said to be C-based.

Suppose then that the surrogate function Q^ is C-based. I t follows

from (3-*0 that there is a function X : M •* R with domain

domX = codom(C|o*) ,

such tha t , for m in the domain of X ,

Mm) = Qjx*)

for any x^ in D^ such that 5(a?*) = m . In other words, for each

n S 1 and any x , xp , . . . , x in Z? one has

Qn{xx, x2, . . . . xn) = MCnxxx2 . . . x j .

S u b s t i t u t i o n i n t o (3-3) gives

for each (x , x , ..., x ) in DH , whereas (3-2) with n = 1 gives

In other words X must be a normed character of the summary function

and

For x^ not in DA , Q^ix^) is zero because of (3.1)- Recalling the

fact that £, is separative on D^ and the results of Section 2 we state
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PROPOSITION 3 .1 . Let £, bean M-valued summary function in X

which is separative on D* and let Q* be a E,-based surrogate function;

then

( 3 . 5 )

and D is
X

0 , otherwise,

where \ is a non-trivial non-negative character of ^ |

given by (2.3) with K replaced by D .

Since X i s a subset of X̂  we may subst i tute any x belonging to

X in place of x^ in (3-5) to give

(3 .6 )

where Q =

Q(x) =

D ,

is a

[0 , x If. D ,

C-based surrogate probability distribution which

deputizes for P . We say that Q is a macroscopic description of the

distribution P based on the summary function £ .

It should be noted that a summary function has, in general, more than

one non-trivial non-negative character so that there will be several

macroscopic descriptions based on the same summary function. This non-

uniqueness plays an important role. A macroscopic description is a

surrogate probability distribution of a particular functional form which

involves unknown parameters. Different values of these parameters

correspond to different characters and so determine different descriptions.

In conventional terminology the problem of the "best" choice of character

is the problem of the "best" estimate of the corresponding parameter

values.

In subsequent discussions we place the emphasis on the macroscopic

description Q rather than on the surrogate function Q* because the

latter is easily expressed in terms of the former. Indeed suppose that

( 3 . 7 ) D = {
2,

sj
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and for each £* = (x , x , ..., x^} in -^ and each j = 1, 2, ..., m

let xt (s .} be the number of times s. occurs in the sequence x^ . Then
e? ' 3

1*2 • • •*» ,Vx, 6 0 , : «„(*,) = 4.

w h e r e n. = xA [s .) a n d 4>- = Q[s .) .
d d d J

The simplest example of a macroscopic description is obtained by

taking the separative summary function C to be the identity map on ^ .

This is the standard case of s ta t i s t i ca l theory in which the whole sample

is available. The characters of C|0^ satisfy the equations

f o r any a^, x2> . . . , x^ in D . Thus if D is given by (3-7),

m t , (s .)
v f r r 3- 1 - T T Tvfs )1 <?

J=l J

I t follows that the non-tr ivial non-negative characters are determined in

terms of m non-negative parameters X-. ? Xp> •••> X̂  > namely,

X- = x(s •} » no* a l l of which are zero. The corresponding macroscopic
3 3

description is given by

«Is j) = Xjl [X1 + X2 + • • • + X̂ ,) . J = 1, 2, . . . , m

and the surrogate function Q* is given by

~TT 1 1 X * ^
Q*{£* i ~~ I I LX^/ IXn Xo • * * X^jj

for each x^ in D^ . There remains, of course, the problem of

"estimating" the parameters X-i » Xp» • • • J Xm when one does have a

part icular set of sample values y^ , say. In this par t icular case the

simple-minded and obvious thing to do is to take

X,- = S/*(s •] , 3 = 1, 2, . . . , n
d d

so that the corresponding macroscopic description is just the sample

distribution of the observation at hand.
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In pract ical problems one usually deals with universal summary

functions £ and although £ in (3.6) i s only required to be a non-

negative character of £|0* i t is convenient to r e s t r i c t our macroscopie

descriptions to those derived from the non-negative characters of £ and

we shal l adopt th i s r e s t r i c t i on in the discussion which follows.

4. Summary functions and sufficiency

I t is worthwhile noting the following connection between macroscopic

descriptions and the concept of sufficiency. In a sense made more precise

below a separative summary function is a sufficient s t a t i s t i c for any of

the macroscopic descriptions to which i t leads.

Let £ : XA -*• M be a universal A/-valued summary function which is

separative on DA . Let X >̂e a fixed non-tr ivial non-negative character

of £ and l e t the macroscopic description obtained from X by (3.6) be

denoted by Q('\x) s ° that

2*<*Jx) =

I 0 , ,

0*

In the discussion which follows X plays the role of the parameter in

text-book discussions of sufficiency.

Let m belong to the codomain of £|DH , then

is the surrogate probabili ty attaching to the set of sample values X*

which have summary m . Thus

QAC'-Mh) = ff(r1(«))x(»>)o;v('B) ,

where N[C (m)] i s the number of elements x^ such that £(3^) = m and

v(m) i s their common a r i t y . Replacing m by £(;»:,,) we obtain

This equation exhibits the sufficiency of the summary function in respect
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of the macroscopic descriptions derived from it since the second factor on

the right does not depend on the particular character x •

It is the sufficiency of the summary function in respect of the

distributional form of the macroscopic descriptions based on it that gives

meaning to the use of standard procedures for the estimation of the

parameters in question. A detailed discussion of the estimation problem

will be published elsewhere.

5. Macroscopic descriptions based on linear aggregation

Suppose that X is a commutative semigroup with identity, the

semigroup operation being denoted by + and the identity ty 0 . Let Z+

be the set of positive integers and let the universal summary function

C : X< + Z+ x X be defined by

(5 .1 ) C ( x 1 , x 2 , ..., x n ) = [n, x 1 + x 2 + . . . + x j .

We refer to the operations performed by this summary function as linear

aggregation, i t is clearly separative.

The characters of £ are the complex-valued functions X defined on

Z+ x X which have the property

( 5 . 2 ) X [ n , x 1 + x 2 + . . . + x n ) = x ( l » ^ M L * 2 ) ••• x ( l > \ ) »

for any positive integer n and any x., £„, ..., x in X . Now (5-2)

implies that

X(n, x) = [X(l, Q)]
n~\{\, x) , (n, x) € Z+ x X .

It is easily verified that if X i s non-trivial we must have x(l, 0) / 0

and so writing

X'(x) = x(l , * ) /x( l . 0) ,

we obtain

X(n, x) = an
X'(x) , (n, x) € Z+ x X ,

where a = xd> 0) # 0 and x' i-s a non-trivial character of the

= f>mis;roup X . Thus the macroscopic descriptions based on linear
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aggregation are given by

x(«)/ I x(y) , x i D ,

( 5 - 3 ) Q(x) =

P , x $ D ,

where X is a non-trivial non-negative character of the semigroup X .

In many practical applications X arises in the following way. For

each i = 1, 2, . . . , k , T. is a commutative semigroup with identity and

X is the cartesian product of T , T , . . . , T, with the natural semigroup

operation derived from those in the component semigroups. Thus if

x= [tx, t2, ..., tk) and x' = [t^, t^, ..., tjj are in X then

x+ x' = {t±+t[, t2+t^, ..., V ^ ) .

In such a case the characters x °f ^ can be shown to be of the form

x ( * ) = x 1 ( t 1 ) x 2 ( * 2 ) ••• x k [ t k ) ,

where x = [t-., t , . . . , t-A i s in X and, for each i- = 1, 2, ..., k ,

v. i s a character of the semigroup T. .

By way of i l l u s t r a t i o n l e t h- , i = 1, 2, ..., k , be positive
Is

numbers and suppose that

2\ = {rihi : n (. Z) ,

where the semigroup operation in each T. is real number addition. The

characters of T. are of the form

X^U) = fc| , t € 2\ ,

where b. is a real number. Thus the characters of X are given by the

expressions

for each x = [t , £„, . . . , t-A in X . The non-trivial non-negative
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charac te r s correspond t o the choice of p o s i t i v e b , &„, . . . , £>, and, with

such a choice , i f D i s given by ( 3 . 7 ) , where

(5A) s . = { s . ^ s . 2 , ..., s . k ) , j = 1 , 2 , ..., m ,

then the macroscopic descriptions are given by expressions of the form

-1

(5.5) «(«.) = V V ••• V y , 1.1, t2 ,
i=l 1 d k

6. Maximum entropy distributions

Jaynes, [J] and [2], has indicated a formal development of s ta t i s t ica l

mechanics based on an information-theoretic principle of entropy

maximisation. In a notation suitable for comparison with our results his

method may be formulated in the following way.

Let {s , s , . . . , s } be'a finite set and let g- ,

i = 1, 2, . . . , k , ~be k < m real-valued functions defined on that set.

Suppose that y. , i = 1, 2, . . . , k , are k given real numbers. Jaynes
Is

showed that the probability distribution p on the set {s , s , . . . , s }

which maximised the information-theoretic entropy

m
s j = " I P(sjlogp(s .) ,

J = l J °

subject to the constraints

m
L 9V I S TJPI s -d = ¥,• ' i = l , 2, . . . , !; ,

,7=1 % 3 0

i s given by

i - l
(6-1) pQ[e.) = \T1[\, V

where

m , k i
TT(X , X ., \ ) = I exp - I X 3 (s )

1 2 k j=l l i=l ° '
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and the A , A , . . . , A, are real numbers determined by the constraints,

namely,

Jaynes interpreted this result as providing a constructive criterion

for determining probability distributions on the basis of partial

knowledge. Noting that this criterion led to expressions formally

equivalent to those of statistical mechancis he argued that in the

resulting subjective stat is t ical mechanics the usual rules are justified

independently of experimental verification because, whether or not the

results agree with experiment, they represent the best estimate that could

have been made on the basis of the information available. For Jaynes the

partial knowledge, on the basis of which one is required to determine the

distribution p. , is provided by the available information. This is

supposed to be specified by the quantities Y- , i = 1, 2, . . . , & > which
Is

are interpreted as average values of the functions g. ,
Is

i = 1, 2, ..., k , respectively. Thus the problem considered by Jaynes is

essentially the determination of a probability distribution in terms of

certain known average values. This problem is similar to the one

considered in the last section where one determined the form of a

macroscopic description in terms of certain linear aggregates. To

highlight this similarity we recast (5-5) in the form (6.1).

Introduce functions g. : D •* T. defined by
l» If

9 1 ( s , - J = s A - I > i = l , 2 , . . . , k ; 3 = 1 , 2 , . . . , m ,

w h e r e t h e s .. a r e d e f i n e d b y ( 3 . 7 ) a n d ( 5 . 1 * ) . F o r e a c h i = 1 , 2 , . . . , k
3'-

write

A = -logb. ;

then (6 . l ) becomes (5-5) . Now the resul t of measurement i s given by (5.1)

and the right-hand side of tha t equation can be wri t ten, in the present

instance, as a vector whose i t h component i s
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m
G; = I gAs ,)**(« J . i = 1, 2, ..., k ,

where xA = [x., x , ..., x } is the observation in question. Thus

equation (6.2) is analagous to estimating the parameters b • by equating

the surrogate mean values

m

to the corresponding quantities n G. ; these quantities are, of course,

just averages over the observation at hand.

It follows from the formal similarity to the maximum entropy

distributions that one can develop statistical mechanics in a systematic

way through the concept of a macroscopic description. In such a

development statistical mechanics becomes explicitly a surrogate

statistical description of microscopic phenomena which is based on

macroscopic measurement. However it is not a subjective theory, on the

contrary it is empirically based in the following sense. Theory cannot

tell us which summary functions will lead to results in agreement with

experiment. Indeed one has to experiment to find out which summary

functions do provide useful macroscopic descriptions of microscopic

phenomena, useful in the sense that they do agree reasonably well with

the results of experimentation. The same empirical basis underlies the use

of macroscopic descriptionr in other fields of enquiry.
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