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Abstract

Let S be a semigroup possibly with no identity and f : S → C. We consider the general superstability of
the exponential functional equation with a perturbation ψ of mixed variables

| f (x + y) − f (x) f (y)| ≤ ψ(x, y) for all x, y ∈ S .

In particular, if S is a uniquely 2-divisible semigroup with an identity, we obtain the general superstability
of Lobačevskiı̌’s functional equation with perturbation ψ∣∣∣∣∣ f ( x + y

2

)2
− f (x) f (y)

∣∣∣∣∣ ≤ ψ(x, y) for all x, y ∈ S .
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1. Introduction

Throughout this paper, S is a semigroup and X is a real normed space. As usual, R+ is
the set of nonnegative real numbers, C the set of complex numbers and δ ≥ 0.

A function m : S → C is called an exponential function if m(x + y) = m(x)m(y) for
all x, y ∈ S . The Ulam problem for functional equations goes back to 1940 when Ulam
proposed the following problem (later published in [9]): let f be a mapping from a
group G1 to a metric group G2 with metric d(· , ·) such that

d( f (xy), f (x) f (y)) ≤ δ.

Does there exist a group homomorphism h and θδ > 0 such that

d( f (x), h(x)) ≤ θδ

for all x ∈ G1?
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[2] The exponential and Lobačevskiı̌ functional equations 279

This problem was solved affirmatively by Hyers under the assumption that G2 is a
Banach space (see [5, 6]).

As a result of the Ulam problem for the exponential functional equation, it is well
known that if f : S → C satisfies

| f (x + y) − f (x) f (y)| ≤ δ

for all x, y ∈ S , then f is either a bounded function satisfying | f (x)| ≤ 1
2 (1 +

√
1 + 4δ)

for all x ∈ S , or an exponential function (see [1, 2]). Székelyhidi [8] generalised this
result to the case when the difference f (x + y) − f (x) f (y) is bounded for each fixed y
(or, equivalently, for each fixed x). In particular, if S is a group, it is proved in [3] that
if f : S → C satisfies

| f (x + y) − f (x) f (y)| ≤ φ(y) or φ(x)

for all x, y ∈ S and for some φ : S → [0,∞), then f is either an exponential function
or a bounded function satisfying | f (x)| ≤ 1

2 (1 +
√

1 + 4φ(x)) for all x ∈ S and either
1
2 (1 +

√
1 − 4φ(x)) ≤ | f (x)| ≤ 1

2 (1 +
√

1 + 4φ(x)) for all x ∈ S 0 := {x ∈ S : φ(x) < 1
4 }, or

| f (x)| ≤ 1
2 (1 −

√
1 − 4φ(x)) for all x ∈ S 0.

During the Thirty-first International Symposium on Functional Equations, Rassias
posed an open problem concerning the behaviour of solutions of the inequality

| f (x + y) − f (x) f (y)| ≤ θ(‖x‖p + ‖y‖p) (1.1)

for all x, y ∈ X and for some θ > 0, p > 0 (see [7, page 211] for more detail). To answer
this question, Gǎvrutǎ investigated the stability of (1.1). As a result, he proved the
following theorem in [4] (see also [7, Theorem 9.6]).

Theorem 1.1. Assume that f : X → C satisfies (1.1). Then either f satisfies

| f (x)| ≤ 1
2 (2p +

√
4p + 8θ)‖x‖p (1.2)

for all x ∈ X with ‖x‖ ≥ 1, or f is an exponential function.

A careful observation shows that the degree p of the upper bound function in (1.2)
can be refined to p/2. In this paper, using a new approach, we prove the refined
stability result for the exponential and Lobačevskiı̌ functional equations

| f (x + y) − f (x) f (y)| ≤ ψ(x, y), (1.3)∣∣∣∣∣ f ( x + y
2

)2
− f (x) f (y)

∣∣∣∣∣ ≤ ψ(x, y) (1.4)

for all x, y ∈ S . Since the left-hand sides of (1.3) and (1.4) are symmetric with respect
to x and y, without loss of generality we may assume that ψ(x, y) is symmetric. In
addition, we assume that ψ : S × S → R+ satisfies the following condition: there exist
positive constants a1, a2 such that

ψ(x + y, z) ≤ a1(ψ(x, z) + ψ(y, z)), (1.5)
ψ(x, y) ≤ a2(ψ(x, x) + ψ(y, y)) (1.6)

for all x, y, z ∈ S .
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Remark 1.2. It is easy to see that if ψ satisfies (1.5) and (1.6), then there exist positive
constants c1, c2, c3 such that

ψ(2x, z) ≤ c1ψ(x, x) + α(z), (1.7)
ψ(2x + y, z) ≤ c2ψ(x, x) + β(y, z), (1.8)

ψ(2x, 2x) ≤ c3ψ(x, x) (1.9)

for all x, y, z ∈ S , where α : S → R+, β : S × S → R+ are appropriately chosen
functions. We give examples of ψ satisfying (1.5) and (1.6) later (see Remark 2.3).

As a direct consequence of our main result, it is shown that the upper bound function
in (1.2) can be refined in the whole domain by

| f (x)| ≤ 1
2 (
√

2p +
√

2p + 8θ‖x‖p) (1.10)

for all x ∈ X. Note that for ‖x‖ ≥ 1,
1
2 (
√

2p +
√

2p + 8θ‖x‖p) <
√

2θ
√
‖x‖p +

√
2p < 1

2 (2p +
√

4p + 8θ)‖x‖p.

Thus, the upper bound function in (1.10) is much smaller than that in (1.2) in both
degree and coefficient. Further, the degree p/2 in (1.10) will be shown to be optimal.

2. Superstability of the exponential functional equation

In this section, we consider the superstability of the exponential functional equation
(1.3). Let S ∗ = {x ∈ S : ψ(x, x) , 0}. From (1.9), supx∈S ∗ ψ(2x, 2x)/ψ(x, x) <∞. From
now on, we set µ = max{1, supx∈S ∗ ψ(2x, 2x)/ψ(x, x)}.

Theorem 2.1. Assume that f : S → C satisfies (1.3). Then either f satisfies

| f (x)| ≤ 1
2 (
√
µ +

√
µ + 4ψ(x, x)) (2.1)

for all x ∈ S , or f is an exponential function.

Proof. Let L > 0 be an arbitrary real number and let φL(x) = max{1, Lψ(x, x)}. Then

sup
x∈S

φL(2x)
φL(x)

≤ µ (2.2)

for all L > 0. Also, it is easy to see that

min{1, L}φ1(x) ≤ φL(x) ≤ max{1, L}φ1(x) (2.3)

for all x ∈ S and L > 0. From (2.3),

sup
x∈S

| f (x)|√
φL(x)

:= ML <∞ (2.4)

for all L > 0, or

sup
x∈S

| f (x)|√
φL(x)

=∞ (2.5)

for all L > 0.
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First, we assume that (2.4) holds. Replacing y by x in (1.3) and using the triangle
inequality with the result,

| f (x)|2 ≤ | f (2x)| + ψ(x, x) ≤ | f (2x)| +
1
L
φL(x) (2.6)

for all x ∈ S . Dividing (2.6) by φL(x) and using (2.2) and (2.4),(
| f (x)|√
φL(x)

)2
≤
| f (2x)|
φL(x)

+
1
L
≤ ML

√
φL(2x)
φL(x)

+
1
L

≤ ML

√
φL(2x)
φL(x)

+
1
L
≤ ML

√
µ +

1
L
. (2.7)

Taking the supremum of the left-hand side of (2.7) yields

M2
L −
√
µML −

1
L
≤ 0. (2.8)

By solving the quadratic inequality (2.8),

ML ≤
1
2 (
√
µ +

√
µ + 4/L). (2.9)

From (2.4) and (2.9),

| f (x)| ≤ 1
2 (
√
µ +

√
µ + 4/L)

√
max{1, Lψ(x, x)} (2.10)

for all x ∈ S and L > 0. Fix x0 ∈ S . If ψ(x0, x0) > 0, then we can apply (2.10) with
L := 1/ψ(x0, x0) to get

| f (x)| ≤
1
2

(
√
µ +

√
µ + 4ψ(x0, x0))

√
max

{
1,

ψ(x, x)
ψ(x0, x0)

}
. (2.11)

Putting x = x0 in (2.11),

| f (x0)| ≤ 1
2 (
√
µ +

√
µ + 4ψ(x0, x0)). (2.12)

If ψ(x0, x0) = 0, then, from (2.10),

| f (x0)| ≤ 1
2 (
√
µ +

√
µ + 4/L) (2.13)

for all L > 0. Letting L→∞ in (2.13) yields

| f (x0)| ≤
√
µ = 1

2 (
√
µ +

√
µ + ψ(x0, x0)). (2.14)

Thus, from (2.12) and (2.14) we get (2.1).
Now we assume that (2.5) holds. Then we can choose xn ∈ S , n = 1, 2, . . . , such that√

ψ(xn, xn)
| f (xn)|

+
1

| f (xn)|
→ 0 as n→∞. (2.15)
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Replacing (x, y) by (x + y, z) in (1.3) gives

| f (x + y + z) − f (x + y) f (z)| ≤ ψ(x + y, z) (2.16)

for all x, y, z ∈ S and multiplying by | f (z)| on both sides of (1.3) gives

| f (x + y) f (z) − f (x) f (y) f (z)| ≤ ψ(x, y)| f (z)| (2.17)

for all x, y, z ∈ S . Using the triangle inequality with (2.16) and (2.17),

| f (x + y + z) − f (x) f (y) f (z)| ≤ ψ(x + y, z) + ψ(x, y)| f (z)| (2.18)

for all x, y, z ∈ S . Replacing both x and y by xn in (2.18), dividing the result by | f (xn)|2

and using (1.7), ∣∣∣∣∣ f (2xn + z)
f (xn)2 − f (z)

∣∣∣∣∣ ≤ ψ(2xn, z) + ψ(xn, xn)| f (z)|
| f (xn)|2

≤
(c1 + | f (z)|)ψ(xn, xn) + α(z)

| f (xn)|2
. (2.19)

Letting n→∞ in (2.19) and using (2.15),

f (z) = lim
n→∞

f (2xn + z)
f (xn)2 . (2.20)

Multiplying both sides of (2.20) by f (w) and using (1.3),

f (z) f (w) = lim
n→∞

f (2xn + z) f (w)
f (xn)2 = lim

n→∞

f (2xn + z + w) + R(xn, z,w)
f (xn)2 , (2.21)

where R(xn, z,w) = f (2xn + z) f (w) − f (2xn + z + w). Now, using (1.8),

|R(xn, z,w)| ≤ ψ(2xn + z,w) ≤ c2ψ(xn, xn) + β(z,w) (2.22)

for all xn, z,w ∈ S . Using (2.15) in (2.22),
R(xn, z,w)

f (xn)2 → 0 as n→∞.

Thus, from (2.20) and (2.21),

f (z) f (w) = lim
n→∞

f (2xn + z + w)
f (xn)2 = f (z + w)

for all z,w ∈ S . This completes the proof. �

Remark 2.2. As a matter of fact, fixing x ∈ S and taking the infimum of the right-hand
side of (2.10) with respect to L > 0, we get the inequality (2.1).

Remark 2.3. In particular, let S = X be a normed space and p j, q j, a j, j = 1, 2, . . . ,m,
be sequences of nonnegative real numbers. Then

ψ(x, y) =

m∑
j=1

a j‖x‖p j‖y‖q j

satisfies (1.7) and (1.8) and, if p = max{p j + q j : j = 1, 2, . . . ,m}, then µ = 2p. Now, as
a direct consequence of Theorem 2.1, we obtain the following corollaries.
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Corollary 2.4. Assume that f : X → C satisfies

| f (x + y) − f (x) f (y)| ≤ a1‖x‖p + a2‖x‖p/2‖y‖p/2 + a3‖y‖p

for all x, y ∈ X. Then either f satisfies

| f (x)| ≤ 1
2 (
√

2p +
√

2p + 4(a1 + a2 + a3)‖x‖p)

for all x ∈ X, or f is an exponential function.

With a1 = a3 = θ, a2 = 0, Corollary 2.4 gives a refined version of Theorem 1.1.

Corollary 2.5. Assume that f : X → C satisfies (1.1). Then either f satisfies

| f (x)| ≤ 1
2 (
√

2p +
√

2p + 8θ‖x‖p)

for all x ∈ X, or f is an exponential function.

Remark 2.6. In Corollary 2.5, the degree p/2 of the upper bound function of a
nonexponential function f satisfying (1.1) is optimal in the sense that one cannot
replace

√
‖x‖p by a function

√
‖x‖q of smaller degree with q < p. Indeed, let

f (x) =

{
δ
√
‖x‖p, ‖x‖ ≥ 1,

δ‖x‖p, ‖x‖ < 1.
(2.23)

If we choose δ = 1
2 (−λ +

√
λ2 + 4θ) with λ = max{1, 2p−1}, then the inequality

‖x + y‖p ≤ max{1, 2p−1}(‖x‖p + ‖y‖p) yields

| f (x + y) − f (x) f (y)| ≤ θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. However, f in (2.23) does not satisfy sup‖x‖≥1 | f (x)|/‖x‖q <∞ for q < p.

3. Superstability of Lobačevskiı̌’s functional equation

Using the same argument as in Section 2, we obtain the superstability of
Lobačevskiı̌’s functional equation. In this section, we assume that S is uniquely 2-
divisible (that is, for each x ∈ S , there exists a unique y ∈ S such that y + y = x). In
addition to the assumptions (1.5)–(1.7), we assume that ψ0(x, y) := ψ(x + y, 0) satisfies
the same conditions. In this section, we denote

λ = max
{
1, sup

x∈S

ψ(2x, 2x) + ψ(4x, 0)
ψ(x, x) + ψ(2x, 0)

}
.

Theorem 3.1. Assume that f : S → C satisfies (1.4). Then, if f (0) = 0,

| f (x)| ≤
√
ψ(2x, 0) (3.1)

for all x ∈ S and, if f (0) , 0, then either f satisfies

| f (x)| ≤ 1
2 (| f (0)|

√
λ +

√
| f (0)|2λ + 4(ψ(x, x) + ψ(2x, 0))) (3.2)

for all x ∈ S , or f (x)/ f (0) is an exponential function.
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Proof. Putting y = 0 in (1.4),∣∣∣∣∣ f ( x
2

)2
− f (x) f (0)

∣∣∣∣∣ ≤ ψ(x, 0) (3.3)

for all x ∈ S . If f (0) = 0, replacing x by 2x in (3.3) gives (3.1). If f (0) , 0, from (1.4)
and (3.3), using the triangle inequality and dividing the result by | f (0)|2,

|F(x + y) − F(x)F(y)| ≤
1

| f (0)|2
(ψ(x + y, 0) + ψ(x, y))

for all x, y ∈ S , where F(x) = f (x)/ f (0). By Theorem 2.1,

|F(x)| ≤ 1
2

(√
λ +

√
λ +

4
| f (0)|2

(ψ(x, x) + ψ(2x, 0))
)

(3.4)

for all x ∈ S , or F is an exponential function. Multiplying both sides of (3.4) by | f (0)|
gives (3.2). This completes the proof. �

In particular, let S = X be a real normed space. Then we obtain the following result.

Corollary 3.2. Assume that f : X → C satisfies∣∣∣∣∣ f ( x + y
2

)2
− f (x) f (y)

∣∣∣∣∣ ≤ a1‖x‖p + a2‖x‖p/2‖y‖p/2 + a3‖y‖p

for all x, y ∈ X. Then either f satisfies

| f (x)| ≤ 1
2 (| f (0)|

√
2p +

√
| f (0)|22p + 4((2p + 1)a1 + a2 + a3)‖x‖p)

for all x ∈ X, or f (x)/ f (0) is an exponential function.

Letting a1 = a3 = θ, a2 = 0 in Corollary 3.2, we obtain the following result.

Corollary 3.3. Assume that f : X → C satisfies∣∣∣∣∣ f ( x + y
2

)2
− f (x) f (y)

∣∣∣∣∣ ≤ θ(‖x‖p + ‖y‖p)

for all x, y ∈ X. Then either f satisfies

| f (x)| ≤ 1
2 (| f (0)|

√
2p +

√
| f (0)|22p + 8θ(1 + 2p−1)‖x‖p)

for all x ∈ X, or f (x)/ f (0) is an exponential function.
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Bul. Ştiinţ. Univ. Politeh. Timiş. Ser. Mat. Fiz. 42(56) (1997), 1–6.
[5] D. H. Hyers, ‘On the stability of the linear functional equation’, Proc. Natl. Acad. Sci. USA 27

(1941), 222–224.
[6] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables
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