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Introduction. In [7] the level, sublevel, and product level of finite dimensional
central division algebras D over a field F were calculated when F is a local or global field.
In Theorem 1.4 of this paper we calculate the same quantities if all finite extensions K of
F satisfy @i(K) =<2, where i is the Hasse number of a field as defined in [2]. This occurs,
for example, if F is an algebraic extension of the function field R(x) where R is a real
closed field or hereditarily Euclidean field (see [4]).

We recall the main definitions here. The level of D, s(D), is the least integer s such
that —1 is a sum of s squares in D. The sublevel of D, s(D), is the least integer s such that
0 is a sum of s + 1 nonzero squares in D. The product level of D, s,(D), is the least
integer s, such that —1 is a sum of s, elements which are products of squares in D. In
each case, 5, §, or s, is set equal to  if no such representation exists. Clearly
s:(D)=s(D)=s(D) and if D is a field then all three quantities agree with the usual level
of a field.

Section 1 deals with those properties of formally real fields that are useful in
calculating levels of division algebras. In Sections 2 and 3 we restrict attention to the case
of quaternion division algebras. Additional background to the problem of calculating
levels of division algebras may be found in the introduction to [7]. The main references
for Sections 2 and 3 are [9, 10].

We use standard terminology from the theory of quadratic forms and ordered fields
as found in [6] and [11]. Let F* denote the nonzero elements of F. We shall assume
throughout that char F # 2. We let Dr(gq) denote the nonzero elements of F represented
by a quadratic form q over F. The topological space of orderings of a field F is denoted
X Basic properties of Xy and basic results on SAP fields can be found in [3] and [11].

1. Levels and sublevels of division algebras over formally real fields. In this section
we shall assume —1¢ F?, since otherwise s,(D)=s(D)=s(D)=1 for any division
algebra D. We recall from [7] that for a cyclic extension K/F of odd degree, ¢t(K/F) is the
least integer ¢ for which there exist a,, . .., a, € K such that Ng,(a;)=1, 1=i=¢, and
—1e Dx({ay,...,a)). We will use the following two results from [7].

(1) [7, Proposition 2.4] If K/F is a cyclic extension of odd degree n>1, then
t(K/F)y=n-1.

(2) [7, Proposition 2.5, 2.6] Let D be a division algebra of odd degree over its center
F. Then 2=g(D) and min{3, s(F)} =s(D). If, in addition, D is a cyclic division algebra
and K is a maximal subfield cyclic over F, then s(D)=t(K/F) and s(D)=t(K/F) + 1.

Let K/F be a cyclic extension of degree n>1 and let o be an automorphism that
generates Gal(K/F). If P is an ordering on K, then P, o(P), ..., 0"~'(P) are distinct
orderings of K and if a € K*, then o(a) € P if and only if a € 67 '(P).

Let €xr: Xx— Xr be the continuous map defined by restricting an ordering on K to F.
Then there exists a clopen set Y in Xy such that eK,Fly is a homeomorphism onto
€xr(Xk). (See [1, p. 139] or [8, Theorem 1.10].)

n-1 A
We claim X, = | ¢/(Y) is a disjoint union of clopen sets. Clearly each o'(Y) is
i=0
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clopen. If Ped(Y)Nd/(Y) then P=d'(P')=d(P"), P', P"eY. It follows that
exr(07'(P)) = €x,,(077(P)) and this implies o~ (P)=o7/(P) since each lies in Y.
Therefore i =j. Finally, if P e Xg, then €g,-(P)= €x,r(P') for some P' €Y. It follows

n—1
that P = ¢'(P’) for some i, and P € | &'(Y).
i=0

1.1. LeMMA. Using the notation above, assume also that K is a SAP field. Then there

exist &, B € K™ such that <1, > is totally indefinite over K.

@ B
o(a)’ o(B)
(44

(@) for

Proof. If n is even, the lemma is trivial since Ng,(—1)=1 implies —1=

(n—-112 X
some « € K™ by Hilbert’s Satz 90. Now assume » is odd. Let D, = Lj 0*(Y) and let
i=0
(n=-r2 _.
D,= Lj (72‘+1(Y). Note that X, =D, UD,, DyND,=Y and D,, D, are clopen sets.

i=0

Using the SAP property of K, choose @, B € K™ such that

a>,0 if PeD, pB>;0 if PeD,,
a<p0 if P¢D, PB<z0 if P¢D,

2 0 it Pl g o

< LA ‘

Then (@) p0 if PG.EJI o'(Y) and (6) p0 if Pe'__L_Jza‘(Y) Therefore
a B > . ,

1, , —— ) 1s totally indefinite over K.

< o(a)’ () y

1.2. ProrosITION. Suppose K/F is a cyclic extension of odd degree n>1. If K is a
SAP field and K satisfies property A,,, m =2, (every torsion m-fold Pfister form defined
over K is hyperbolic), then t(K/F) < min{n — 1, 27"},

Proof. In general t(K/F)=<n —1 (7, Proposition 2.4]. Since K is a SAP field we may

« B > : : .
——, ——) is a totally indefinite
o(a) " a(p)

> is a torsion 2-fold Pfister form over

choose a, f € K™ as in Proposition 1.1. Then ¢ = <1,

ap
o(ap)
K. Therefore 2™ %t is hyperbolic over K, since K satisfies A,,, and it follows that the
subform (1) L 2™ >t is isotropic over K if m =3 and gq is isotropic over K if m = 2. This

implies —1 € Dx(2"%7) if m=3 and —1€ D (<Li>> =2,
implies € Di( 7) if m an € Dy o(a)’ o(B) if m=2. In each case
t(K/F)<2m"'.

quadratic form defined over K and 1=g¢ J.<

1.3. CoroLLARY. Suppose K/F is a cyclic extension of odd degree n>1. If
a(K)<2™ m=2, then t(K/F) <min{n — 1, 2" '}.

Proof. This follows from Proposition 1.2 since K satisfies property A,,, m =2. Note
that K is a SAP field by [4, Theorems B, C].
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1.4. THEOREM. Let D #F be a finite-dimensional crossed product division algebra
over a field F. Suppose K is a maximal subfield of D, K/F Galois, and 4(K)<2. Then
(1) s(D)=s(D) =s,(D)=1if deg D is even,
(2) s(D) =min{3,s(F)} if deg D is odd,
(3) s(D)=s,(D)=2 if deg D is odd.
(We are still assuming —1 ¢ F2.)

Proof. First assume deg D is even. Then [K:F] is even and Galois theory implies
there exists a subfield L with [K:L]=2 and @(L)=<2 by [5, Proposition 3.3]. The
centralizer of L in D is then a quaternion algebra (a, b), with a, b € L. The quadratic
form g =(1, a, b, —ab) is isotropic over L since g is totally indefinite over L and
i(L) <2. Therefore —1=aa®+ bp*—aby’=(ai + Bj + yk)? for some a, B, yeL and
where i, j, k=1ij is the standard basis of (@, b),. This shows s(D)=1 and hence
s(D) =s:(D)=1.

Now assume deg D is odd. Then Gal(K/F) has odd order and K contains a subfield L
corresponding to a subgroup of prime order. Thus K/L is a cyclic extension of odd degree
> 1. The centralizer of L in D is a cyclic algebra E of odd degree over its center L. From
[7, Proposition 2.6] we have 2 <s(D) and min{3, s(F)} =s(D). From {7, Proposition 2.5]
and Corollary 1.3 we have s(D)=<s(E)=#(K/L)<2 and s(D)=s(E)=#K/L)+1=3.
Since s(D)=<s(F) we conclude that s(D)=min{3, s(F)} and s(D)=2. We have
2=<s,.(D)=<s(D) since deg D is odd {7, Proposition 1.1] and therefore s,(D) =2.

2. Levels and sublevels of quaternion algebras. Levels and sublevels of quaternion
algebras were considered in [9] and [10]. We give several additional results in this section.
For convenience we list some of Lewis’s results below in Proposition 2.1.

, b . . . .. ..

Let D= (gF_) be a quaternion algebra with standard basis {1, i, j, kK = ij} where
i’=a, j2 =b, ji=—ij. Following the notation in [9,10], let T, =(1,a, b, —ab) and
T ={a, b, —ab). We will consider the equation ¢ = f] (X2 + y2i + 2, j + wk)? with c =0

A=1
or —1. Let £=(x;,...,%,),..., w=(w,...,w,). Then this equation is equivalent to
c=Yxi+alyi+bLzi—-abLwiandX.y=%.Z=%.w=0.

Note that s, (D) = 1 for all quaternion algebras D since i%%(ij) > = —1. Also note that if

D is a split algebra, then we may assume a = 1. In this case Tp is isotropic and the next
result shows s(D) = 1.

2.1. ProposiTion. (1) [9, Lemmas 2, 4] If (1) L nTp is isotropic over F, then s(D) < n.
The converse holds if n=2¥ —1, k=2. If k=1, then s(D) =1 if and only if either Ty, is
isotropic or —1 ¢ F~.

(2) (10, Proposition 2] If either (1) LnTp or (n+1)Tp is isotropic over F, then
s(D)=<n. The converse holds if n=2*-1, k=1.

Lewis proved the “only if” direction of the following result in [9, Lemma 3].

2.2. THEOREM. For k =0, s(D) <2 if and only if either (1) or (2) below holds.
(1) (2¥+1)(1) L (2¥ = 1)T; is isotropic over F.
(2) (1) L 2*T; is isotropic over F.
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Proof. We prove the “if” direction here. If (2) holds then s(D)=2* by Proposition
2.1 (1). Now assume (1) holds. Then there exists —A € Dp({1) L (2 —1)T;) for some
nonzero A € Dx(2(1)). Hence for some a € F and B, C, D € De((2* — 1)(1)) U {0} we
have

1
-A=a*+aB+bC—abD, ie., -1 = (a*A + aAB + bAC — abAD).

Zk 2k
Let A= Y, x2. We show now there exist y, € F such that ¥ y5=AB and ¥.y=0. If
A=1 A=1

B =0, let each y, =0. If B+#0, then (A, AB)=A(1, B) is a subform of A.2*(1) =
2%(1) since Be DF((2" —1)(1)) and A € Dp(2%(1)). Therefore such a j exists. Similarly

Z, w exist such that Z] 22=AC, Z wi=ADand ¥.Z =%.w =0. It follows that
A=1 A=

2k 2
ax, Yi. Zy., W ) 1 2
— i+ =i+ L =—(a*A +aAB +bAC —abAD) = —1.
Z(A a'Tal Ak A2( “ “ )

Therefore s(D) < 2.

2.3. LemMA. Suppose 2Ty is isotropic, k =0. Then (1+ (5. 2¥]) T is isotropic. ([ ] is
the greatest integer function.)

Proof. If 2*T, is isotropic then 2¥(—a, —b, ab) is isotropic and 2¢{{—a, —b)) is
hyperbolic. After multiplying by —1 we see that any subform of 2(—1, a, b, —ab) of
dimension greater than 2.2* is isotropic. The conclusion follows since 3(1 + [5. 2¢]) >
3(2.24)=2. 2%

2.4. ProposiTION. If k =2, then s(D) <2* — 1 implies s(D)<2* - 1.

Proof. 1f s(D) <2* — 1 then by Proposition 2.1(2), either (1) 1 (2 —1)T, or 2T} is
isotropic. If (1) L (2* — 1)T; is isotropic, then s(D) <2* — 1 by Proposition 2.1(1). If 2T,
is isotropic, then (1+[3.2*])Tp is isotropic by Lemma 2.3. Then Proposition 2.1(1)
implies s(D) <1+ [5. 2¢] =2* — 1 since k =2.

Remark. This result is a slight improvement of [10, Proposition 4].

2.5. THeorREM. (1) If s(D)=1, then s(D)<2 and if 2=s5(D)<w, then s(D)<
25(D).

() If s(Dy=2* -1, k=2, then s(D)=2"—1.

(3) If s(D)=2%, k=2, then s(D) =2*.

(4) If s(D)=2*+1, k=1, then s(D)=2" or 2* + 1.

Proof. (1) If s(D)=1, then s(D)=2 by Proposition 2.1(2) and Theorem 2.2. If
2=5(D) <, then s(D) < 2s(D) by Proposition 2.4.

If k=2, then (2), (3), (4) all follow from Proposition 2.4 and the estimate
s(D)=s(D). If k =1in (4) and s(D) =3, then s(D) =3. Since s(D) =1 implies s(D) =2
by (1), it follows that s(D) =3 implies s(D) =2 or 3.

The next section deals with examples where the ordered pair (s(D), s(D)) has been
computed.
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3. Examples of levels and sublevels of quaternion division algebras. We continue
the notation of Section 2. If F is a local or global field then (s(D), s(D)) was calculated in
[7) and we had s(D) =s(D) =2 in all cases. If i(F) =<2, then (s(D), s(D)) was calculated
in Theorem 1.4 and we found (s(D), s(D)) =(1, 1). (The maximal subfield K satisfies

i@(K) =2 by [5, Proposition 3.3].) In [12], s(D) was calculated if D = ( ) where a is

at
F((1))
a nonsquare in F™ and F((z)) is the field of formal power series over F. We review this
result below and also calculate s(D).
If a € F*, let g(a) be the least integer such that g(a)(1, —a) is isotropic over F and set
g(a) =« if no such integer exists.

3.1. TheoreM [12]. (1) Let D = <F‘z,(¢t))
min{g(a), s(F(Va))}.

(2) Let F=R(x,, ..., x,), the rational function field in n variables over the real

& at -a,t
numbers, and assume n=2. Let a= Y, x? and let D =( 4 ), D' =( ’ ) Then

i=1 F((r)) F((®)
s(D)=2*+1if2*<n=2"and s(D") =2~ if 2 =n <2**",

It was shown in [12] that g(a) always has the form 2* + 1 if g(a) is finite. Since the
level of a field is always a power of 2 if finite, we see that for D as in Theorem 3.1(1),
s(D)=2%or 2" + 1 if s(D) <ce.

3.2. THeoreM. (1) Let D be as in Theorem 3.1(1). Then
s(D) = min{g(a) — 1, s(F(Va))}.
(2) Let D, D' be as in Theorem 3.1(2). Then s(D)=2* if 2*<n=2""' and
s(Dy=2Fif 2 =n < 2**
We omit the proof of Theorem 3.2 since it is so similar to the proof in [12]. Note that

the result for D' in (2) with k =2 follows from Theorems 2.5(3) and 3.1(2).
The examples mentioned here show that the following values of the ordered pair

(s(D), s(D)) can occur when D is a quaternion algebra:
(s(D), s(D))=(2%,2%) or (2%,2¥+1), k=0.

The main questions to consider on levels and sublevels of quaternion algebras D are
the following.

(1) Is it always true that s(D) = 2*?

(2) Is it always true that s(D) =2 or 2* +1?

(3) Is it always true that s(D) <s(D) +1?

Added in proof. Kriiskemper and Wadsworth have constructed a quaternion division
algebra D with s(D) = 3. By Theorem 2.5(2), it follows that s(D) = 3. Thus the answer to
question (1) is no.

> where a is a nonsquare in F*. Then s(D) =
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