
J. Functional Programming 6 (2): 269-298, March 1996 © 1996 Cambridge University Press 269

Generating action compilers
by partial evaluation

ANDERS BONDORF1 AND JENS PALSBERG2

lDIKU, Department of Computer Science, Vniversitetsparken 1,
DK-2100 Copenhagen 0, Denmark

(e-mail: andersSdiku. dk)
2 Computer Science Department, Aarhus University,

DK-8000 Aarhus C, Denmark
(e-mail: palsbergfidaimi. aau. dkj

Abstract

Compiler generation based on Mosses' action semantics has been studied by Brown, Moura,
and Watt, and also by the second author. The core of each of their systems is a handwritten
action compiler, producing either C or machine code. We have obtained an action compiler
in a much simpler way: by partial evaluation of an action interpreter. Even though our
compiler produces Scheme code, the code runs as fast as that produced by the previous action
compilers.

Capsule Review

Self-applicable partial evaluation can be applied to compiling and compiler generation, given
a definitional interpreter. This paper describes compiling and compiler generation by partial
evaluation of an interpreter for Action-semantics specifications. The results are threefold:

• A definitional interpreter of a subset of Action notation is given, that is simpler than
earlier presentations.

• Compiler generation and compilation are actually carried out in practice, using an off-
the-shelf partial evaluator.

• The results are competitive with existing work on Action semantics-based compilation
and compiler generation.

The paper also sheds some light on binding-time improvements, a technique for making
partial evaluators yield better results.

1 Introduction

Action semantics is a framework for formal semantics of programming languages,
developed by Mosses (1989, 1991, 1992) and Watt (1987, 1991). It differs from
denotational semantics in using semantic entities called actions, rather than higher-
order functions.

Compiler generation based on action semantics has been studied by Brown,
Moura and Watt (1992), and also by Palsberg (1992a, b, c). The core of each of their
two action semantics directed compiler generators is a handwritten action compiler,

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

270 A. Bondorfand J. Palsberg

producing either C or machine code. These compilers are rather complicated and,
due to their complexity, difficult to modify.

We have obtained an action compiler in a much simpler way: by partial evalu-
ation of an action interpreter. The action interpreter is written in Scheme, and is
straightforward, except for some binding time improving parts (Jones et al., 1993).
We have obtained the action compiler using the Similix partial evaluator (Bondorf,
1991, 1992, 1993; Bondorf and Danvy, 1991). Even though our action compiler
produces Scheme code, the code runs as fast as that produced by the previous action
compilers.

We have used the generated action compiler in an action semantics directed com-
piler generator. The generated compilers produce target code that, by comparison
with measurements reported in Lee (1989), is at least ten times faster than that pro-
duced by the compilers generated by the classical systems of Mosses (1979), Paulson
(1982) and Wand (1984), but still around 100 times slower than target programs
produced by handwritten compilers.

None the classical systems of Mosses, Paulson and Wand include a binding-time
analysis. Binding-time analysis enables computations to take place at compile-time
and it is an integrated component of the Similix partial evaluator. This is part of
the reason why our system is faster than the classical systems.

The claim that partial evaluation may lead to the generation of acceptable
compilers has been made many times, for example in the first paper on Jones,
Sestoft and Sondergaard's (1985) Mix partial evaluator. Jorgensen (1992) used partial
evaluation to generate a compiler for a lazy functional language, and this compiler
emits code that compares favorably to that emitted by handwritten compilers. Consel
and Danvy (1991) used partial evaluation to generate a compiler from denotational
semantics, and their compiler produces target code that is only two times slower
than that produced by handwritten compilers.

A key point in the development of Consel and Danvy (1991) is to identify and
process the static semantics by partial evaluation. Our approach is similar: we
identify and process the static semantics partly by a separate action type checker
and partly by partial evaluation. The observation that our system leads to around
50 times slower target code than the system of Consel and Danvy indicates, in our
opinion, that more powerful analyses might take place in the separate action type
checker. We leave investigations of this to future work.

In the following section we explain the principles of action semantics and in
section 3 we outline the problems connected to compiling actions. In section 4 we
discuss our action interpreter, in section 5 we focus on its binding time improving
parts, and in section 6 we give a performance evaluation. Finally, in section 7 we
conclude and outline directions for further work.

2 Action semantics

Actions reflect the gradual, stepwise nature of computation. A performance of an
action, which may be part of an enclosing action, either

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

Generating action compilers by partial evaluation 271

• completes, corresponding to normal termination (the performance of the en-
closing action proceeds normally);

• escapes, corresponding to exceptional termination (the enclosing action is
skipped until the escape is trapped);

• fails, corresponding to abandoning the performance of an action (the enclosing
action performs an alternative action, if there is one, otherwise it fails too); or

• diverges, corresponding to nontermination (the enclosing action also diverges).

The performance of an action receives and produces transients (tuples of data,
used to hold intermediate results); it receives and produces bindings of tokens to
data (environments), and it manipulates an implicit, single-threaded store. Actions
may also communicate, but here we consider only single-agent performance where
communication is uninteresting. Actions themselves are not data, but they can be
incorporated in so-called abstractions, which are data, and subsequently 'enacted'
back into actions.

Transients are produced only on completion or escape, and bindings are produced
only on completion. In contrast, changes to the store are made during action
performance, and are unaffected by subsequent divergence or failure.

Dependent data are entities that can be evaluated to yield data during action
performance. (In Mosses (1992), dependent data are called yielders; they may be
thought of as expressions.) The data yielded may depend on the current information,
i.e. the given transients, the received bindings, and the current state of the store.
Evaluation cannot affect the current information. Data is a special case of dependent
data, and it always yields itself when evaluated.

The language of actions is called action notation. We use a subset of action
notation which was also studied in Palsberg (1992a, c) and defined in Palsberg
(1992b). This subset covers roughly half of the full action notation and is sufficiently
general to allow the easy description of Lee's HypoPL (1992c) and a non-trivial
subset of Ada (1992a). For an example of an action semantic description using this
subset, see Appendix C. Scaling up our results to full action notation would require
significant extension of our action interpreter, especially to handle communication.

The meaning of the action notation used in Appendix C is informally presented
in the following three tables. The first table describes five primitive actions. The
symbols D, D\, D2 stand for dependent data.

Primitive action Informal meaning

give D Creates a piece of transient information.
bind D\ to D2 Creates a binding.
store Di in D2 Changes the store.
allocate integer cell Allocates a fresh cell in the store.
check D If D evaluates to the value true,

then check D completes, otherwise it fails.

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

272 A. Bondorf and J. Palsberg

The second table describes seven pieces of dependent data. The symbol p stands
for a positive integer and the symbol T stands for a token.

Dependent data Informal meaning

the given D #p Yields the p'th component of sort D
of the received transients,

it Yields the first and only component
of the received transients,

the D bound to T Yields the datum of sort D to which T
is bound by the received bindings,

the D{ stored in D2 Yields the data of sort D\ stored in
the cell yielded by D2.

sum(£>i,D2) Integer addition.
D\ is less than D2 Integer comparison,
not D Boolean negation.

The third table describes five binary action combinators. The symbols A\, A2

stand for actions. Common for the first four is that A2 is only performed if A\
completes. In contrast, for A\ or A2, the action A2 is only performed if A{ fails.

Action combinator Informal meaning

A\ then A2 Passes on transients from A\ to A2.
A\ and then A2 Combines the transients produced by A\ and A2.
A\ before A2 Accumulates the bindings produced by A\ and A2.
furthermore A± hence A2 Lets A2 receive the bindings produced by A\.
A\ or A2 If A\ fails, then A2 is performed.

In the chosen subset of action notation, just one action combinator gives the
possibility of divergence. That combinator is unfolding A, where A is an action,
unfolding A represents the (in general, infinite) action formed by continually substi-
tuting A for the primitive action unfold. Our subset of action notation restricts the
possible actions A in unfolding A to be those where unfold occurs exactly once and
in a tail recursive position.

For a precise definition of the above notation, see Appendix B.

3 Action compilation

To obtain an action semantics directed compiler generator, an action compiler is
required. Such a compiler can then, as usual, be composed with a preprocessor
that, given a language definition, expands programs to actions. This expansion is
straightforward because action semantics is compositional.

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

Generating action compilers by partial evaluation 273

It is non-trivial to compile actions into efficient code. For example, the primitive
action 'bind_to_' is used both in the semantics of constants (for example 'bind
'max' to 100'), in the semantics of variables (for example 'bind i to the given
integer-cell ... '), and in the semantics of procedures (for example 'bind 'fact' to
closure abstraction ... '). In each of the examples, the action produces a binding,
but no transients, and it does not modify the storage. It is a task of the implementer
of actions to discover that these three binding actions can be treated differently and
use that knowledge to produce efficient code. The following section describes our
approach which is a combination of static type checking and partial evaluation.

As another example, consider the binary action combinator 'before'. It is used in
the semantics of declaration sequences (for example, '(bind 'max' to 100) before
(bind T to the given integer-cell ...) '). The example action produces two
bindings. In general, A\ before A2 produces the bindings produced by A\ overlayed
by those produced by Ai. Moreover, it gives the transients given by A\ concatenated
with those given by Ai- It is a task of the implementer to discover that the example
action does not produce any transients and use that to avoid generating superfluous
code. Instead appropriate information must at compile-time be propagated to later
actions. The following section demonstrates how this work can be divided by
combining static type checking and partial evaluation.

The two existing action compilers are handwritten; we automatically generate one
from an action interpreter. The action compiler is obtained by applying the (self-
application generated) compiler generator of Similix 5.0 to an action interpreter.
This approach to compiler generation can be informally summarized as follows.
Both the action interpreter int and the partial evaluator Similix are written in
Scheme. The following equation expresses that when we execute int on the action
act together with input, then we get output. (The notation <dl d2> means a tuple
of dl and d2.)

Scheme int <act input> = output

The next equation is the so-called mix-equation. It expresses that instead of
running a program on all its input, we get the same result by first executing the
partial evaluator on the program and part of its input, and then executing the
resulting program with the remaining input.

Scheme prg <dl d2> = Scheme (Scheme Similix <prg dl>) d2

The self-application generated compiler generator, cogen, of Similix can be ex-
pressed as follows.

cogen = Scheme Similix <Similix Similix>

The action compiler comp is then defined by

comp = Scheme cogen int

To see that comp is indeed an action compiler, notice that if act is an action, and
we define

code = Scheme comp act

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

274 A. Bondorf and J. Palsberg

then

code
= Scheme comp act

= Scheme (Scheme cogen int) act

= Scheme (Scheme (Scheme Similix <Similix Similix>) int) act

= Scheme (Scheme Similix <Similix int>) act

= Scheme Similix <int act>

so

Scheme code input

= Scheme (Scheme Similix <int act>) input

= Scheme int <act input>

= output

We have used the generated action compiler in an action semantics directed
compiler generator. This system was essentially obtained by replacing the hand-
written action compiler in the Cantor system of Palsberg (1992a, b, c) with the
automatically generated action compiler. Thus, a compiler generated by our system
first expands the input program to an action, then it type checks the action, and
finally it runs the action compiler on the result, see Appendix D for an example.

4 The action interpreter

Our subset of action notation, see Appendix A, has an operational semantics
(Palsberg, 1992b). From that we have systematically derived an action interpreter,
written in Scheme, see Appendix B. Its size is approximately half the size of the
operational semantics. In previous work (Palsberg, 1992b), the second author defined
and proved the correctness of a type analysis and a code generator for our subset
of action notion. In comparison, our interpreter is less than a third of the size of
the code generator, and about one tenth of the size of the (sketchy) proof.

It is possible to consider our action interpreter as an alternative semantics of our
subset of action notation (although not equally useful for all purposes). If we do so,
then our approach has the advantage of requiring neither a code generator nor a
correctness proof. This is because our system generates a compiler directly from a
(rather short) semantics of actions. Correctness concerns are moved one level 'down':
is the partial evaluator correct? This is a major advantage since such a correctness
proof must be carried out only once, irrespectively of the application of the partial
evaluator. For examples of such proofs for toy partial evaluators, see the papers by
Gomard (1991) and Wand (1993). Note, however, that Similix has not been proved
correct.

Our subset of action notation is statically typed. We use the same type-checker as
the second author did in his previous work (Palsberg, 1992a, b, c). Thus, we first run
the type-checker and then the interpreter. Both operate on the same abstract syntax:
the type-checker inserts various information in the syntax-tree. This information is
about type correctness, tokens and number of transients (see later).

We have experimented with merging the type-checker with the interpreter. This

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

Generating action compilers by partial evaluation 275

complicates the program structure considerably, however, and creates the problem
of ensuring that all type-checking code depends only on static data. Since the type
system is indeed static and since type-checking produces only a moderate amount
of information, we decided to run the type-checker first and then let the interpreter
exploit the type information.

Our subset of action notation is statically scoped and, like the whole of action
notation, single-threaded. The latter means that just one store is sufficient to execute
actions. Single-threadedness is an issue in connection with the 'or' combinator.
Consider for example the action act l or act2. The two actions actl and act2
are alternatives of which just one should be performed. If the chosen action fails,
however, then the other should be tried on the same store on which the performance
of the first chosen action began ('back-tracking'). The semantics of actions defines
that if the first chosen action has changed the store or in some other way 'committed'
to the current alternative (like cut in Prolog), then back-tracking is not allowed, so
the performance of the entire action fails. This ensures single-threadedness.

Our action interpreter is called ev-act and has the following structure:

(define (ev-act act dats env commit c e f)

Here, act is the action to be interpreted; dats is a tuple that represents the
transients received by act; env is a map that represents the bindings received by
act; commit is a boolean that tells if the current action has committed; and c, e,
and f are continuations, to be used should the performance complete, escape, or
fail, respectively. Since an action on completion may produce both transients and
bindings, the complete-continuation has the form:

(lambda (dats vs commit) ...)

The vs argument is a list of values that the continuation will use to extend its
environment, see later. On escape, an action can only produce transients, so the
escape-continuation does not have the vs argument. A failing action produces
neither transients nor bindings, so the fail-continuation has only a commit argument.

Notice that there is no store argument; we represent the store by a globalized
Scheme vector. This directly reflects the intention with the store in action notation:
it is implicit and by definition single-threaded. The store is not structured as a stack
because storage can be allocated at any time during action performance.

Consider the following excerpt of the action interpreter. It is the part defining the
'bind_to_' action:

(define (ev-act act dats env commit c e f)

(casematch act

(('bind_to_ token dep type-correct)
(if (error? type-correct)

(f commit)
(ev-dependent

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

276 A. Bondorf and J. Palsberg

dep dats env
(lambda (dat) (c (Odats) (l ist dat) commit))
(failure f commit))))

The abstract syntax of the bind action is ('bind_to_ token dep type-correct).
The type-correct field is inserted by the action type-checker. This field is error
if dep is not type-correct, and in this case the interpreter correctly uses the f
continuation (passing on the commit value). If dep is type-correct, then the interpreter
proceeds by evaluating dep. This will either yield a datum ('dat') or lead to an error
(for example, at an attempt to compute the head of an empty list).

Notice the application (Odats) of the nullary constructor Odats in the above
piece of Scheme code: it reflects that the bind action gives no transients. Notice
also that the second argument to c is a list (with one element, namely dat), not
a binding of token to dat. This is possible since our subset of action notation is
statically scoped. Intuitively, tokens may only be 'synthesized' in ways that can be
understood statically. The information that some particular token is being bound
is propagated to later actions by the action type-checker. This means that we
can write the interpreter so that it ignores the token field in ('bind_to_ token
dep type-correct). It is sufficient to pass the result of evaluating 'dep' to the
continuation. This way of writing the interpreter considerably improves the binding
times.

In general, the second argument to c (a list of values) will flow to some continua-
tion which then extends its environments using this list, see the treatment of before
below. This may be understood as a generalization of binding in a call-by-value
lambda calculus, where evaluation of (lx.E){E') proceeds by first evaluating E' to
some value v, and then extending the environment by binding x to v, and finally
evaluating E.

If we drop the restriction that actions should be statically scoped, then the
interpreter will manipulate tokens in ways that cannot be understood statically.
Experience with an early version of our action interpreter indicates that if static
scoping is not assumed, then the target code may run five times slower.

Consider then the following excerpt of the action interpreter. It is the part defining
the before combinator:

(define (ev-act act dats env commit c e f)
(casematch act

((' inf ix-op op act l act2)
(casematch op

(('before tokensl d l l dl2)
(ev-act
actl dats env commit

(lambda (datsl vsl commit1)

(let ((envl (make-env tokensl vsl)))

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

Generating action compilers by partial evaluation 277

(ev-act
act2 dats (env-overlay envl env) commitl

(lambda (dats2 vs2 commit2)

(c (dats-append datsl dats2 dll dl2)

(append vs2 vsl) commit2))

e f)))

e f))

The abstract syntax of the combination of two actions act l and act2 using
the binary combination before is 0 infix-op ('before tokensl dl l dl2) actl
act2). The tokensl, dl l and dl2 fields are inserted by the action type-checker. The
tokensl field is a list of tokens that matches the list of data vsl that will be given
to the complete continuation of actl . This makes it possible to make the extension
of the environment mentioned above: first the extension-part is constructed as
(make-env tokensl vsl), and the extension is performed by (env-overlay envl
env).

The dl l and dl2 fields are integers that give the number of transients given on
completion by actl and act2. The operation dats-append is controlled by these
(static) integers.

In an early version of our action interpreter, the arguments of ev-act had the
following binding times: act was static, dats was dynamic, env was partially static
(tokens static, values dynamic), and commit, c, e, and f were all dynamic. These
binding times correspond exactly to those implicitly used by the handwritten action
compiler of the second author (Palsberg, 1992b). We partially evaluated that version
of the interpreter with respect to some actions and found that the target code ran
several times slower than the target programs produced by the handwritten action
compiler.

In the current version of the action interpreter, also the dats argument is partially
static, and, more significantly, the c continuation is static. The following section
sketches how we obtained the static c and why it is significant.

5 Binding time improvements

Suppose we are given a piece of straightline code in some programming language
and suppose we expand it to an action. Every subaction of this action will complete,
so the code obtained by specializing the action interpreter with respect to the
action need not build and apply continuations for each subaction it implements.
If the complete continuations c in the interpreter are dynamic, however, the target
program will indeed do just that. As a consequence, every control transfer becomes
costly: it requires building a continuation and calling a function (as when running
the interpreter).

To obtain reasonable code, we have performed some binding time improvements
of the interpreter that make the complete-continuations static. The trouble points
are the higher order control transfers where the target code generated by partial

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

278 A. Bondorfand J. Palsberg

evaluation becomes parameterized over the complete-continuation. The improve-
ments involve inserting eta-redexes at appropriate places (Bondorf, 1993); these
places are marked with comments bt-imp 3 and bt-imp 9 in Appendix B. With
these improvements, the complete-continuations will be static everywhere, except at
higher order control transfers; the target program will consequently only manipulate
continuations if there are higher order control transfers.

To obtain an intuitive understanding of why the insertion of eta-redexes improves
binding-times, let us consider the two trouble points in turn. First, at bt-imp 3 we
find the value dat being applied to some arguments:

(dat (ps->d datsl dl-in)
commit
(cl->d c dl-c) ; bt-imp 3
e f))

The operation cl->d creates an eta-redex around the complete-continuation c.
(The extra parameter dl-c is present for other reasons; this is explained below.)
Essentially, cl->d is of the form

(lambda (xl x2 x3) (c xl x2 x3))

The idea behind the eta-redex is the following. The value dat is a function which
according to the binding-time analysis is not statically known. The binding analysis
will therefore make all arguments to dat dynamic. Had no eta-redex been inserted,
c would have been made dynamic, even though we want it to be static. Now, the
eta-redex serves as 'padding' around c so that c stays static while the whole eta-redex
becomes dynamic. Intuitively, this works because it makes sense to let the static c
be applied to the dynamic arguments xl, x2, and x3.

Next, at bt-imp 9 we have

(c (lambda (dats commit c e f)
(ev-act act (d->ps dats dl-in)

env commit
(d->cl c dl-c) ; bt-imp 9
e f))))

The operation d->cl creates an eta-redex around the complete-continuation c.
Like cl->d, d->cl is essentially of the form

(lambda (xl x2 x3) (c xl x2 x3))

Here, c is not statically known. It is used as the complete-continuation argument
to ev-act, however, so we need it to be static; otherwise, the binding-time of all
complete continuations will be dynamic. Again, the eta-redex serves as 'padding'
around c so that c stays dynamic while the whole eta-redex can be treated as being
static. Intuitively, this works because it makes sense to have a static continuation
where its arguments xl, x2, x3 are dynamic.

For a thorough treatment of the insertion of eta-redexes, see Danvy et al. (1994).
In the terminology of that paper, the trouble point bt-imp 3 is an occurrence of'a

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

Generating action compilers by partial evaluation 279

static value in a dynamic context' and the trouble point bt-imp 9 is an occurrence
of 'a dynamic value in a static context'.

However, care must be taken now that the complete-continuations are static. The
reason is that the Similix specializer now 'believes' that it can statically compute
every complete-continuation as long as there are no higher order control transfers.
This is of course false in the presence of loops (unfolding): the specializer will
loop (analogue: a compiler that tries to build run-time stacks at compile-time).
The cure is to insert an additional binding time operation collapse at loops; see
the comment bt-imp 4 in the interpreter text. This operation locally generates a
dynamic complete-continuation cl. The effect is that applications of the complete-
continuations that represent 'iterate loop' (unfold) are not beta-reduced at partial
evaluation time, so the target code will be parameterized over cl.

To see how collapse works, notice that it contains the code

(if #t cl (generalize cl))

Clearly, this evaluates to cl. The binding-time analysis, however, will notice that
the operation (generalize cl) enforces cl to be dynamic.

The collapse-operation is also used to avoid code duplication even when termi-
nation is guaranteed; see bt-imp 5, 7, 10, and 12. Currently, no automatic method
for inserting collapse-operations exists.

The binding time improvements bt-imp 1, 2, 6, 8, and 11 ensure that the transients
dats become partially static everywhere, except when being passed to dynamic
continuations. To do this, the number of transients is required, and this is provided
by the action type checker as the value called dl (or dl-in, dl-c, etc.). The effect
is that the target code will pack and unpack transients only when being passed
to continuations; in target straightline code, each transient will be represented by
its own Scheme variable. These binding-time improvements are the data structure
analogues of the ones for functions (bt-imp 3 and bt-imp 9) that were explained
above (see also Danvy et al., 1994).

The operation _sim-memoize (just above bt-imp 4) is also a kind of binding
time improvement: it forces the partial evaluator to specialize/memoize at this point
(instead of using the default "dynamic conditional" strategy (Bondorf and Danvy,
1991)). This results in shorter and somewhat faster target code (with fewer function
calls), and also faster partial evaluation. Current work by Malmkjsr addresses
finding (good) specialization points automatically (Malmkjaer, 1993).

We have experimented with making the escape and fail continuations static; this
yields bigger and/or slower target programs. It is not surprising that target programs
become bigger since escape and fail are the exceptional outcomes of performing
an action: having three static continuations corresponds to wanting to have three
different pieces of code at the same place in the program. Target programs can
be made smaller by (extensive) use of collapse, but this slows them down since
collapse yields target code that unpacks and packs transients. Our conclusion is
'optimize the straightline code'.

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

280 A. Bondorf and J. Palsberg

6 Performance evaluation

We have tested our compiler generator on specifications of Lee's HypoPL and a
substantial subset of Ada. These language specifications may be found in Palsberg
(1992a, b, c).

Our example programs are a bubblesort program (written in both HypoPL and
Ada), and programs for performing the sieve of Erathosthenes and the algorithm of
Euclid (written in Ada). These programs may be found in Palsberg (1992a).

The four example programs were all compiled both by compilers generated by
the Cantor system of the second author, and by compilers generated by applying
the (self-application generated) compiler generator of Similix 5.0 to the interpreter
in Appendix B.

In the following tables we have listed some timings obtained on a SPARC 1
running Scm version 4b4. The tables also show (in the fourth column) the timings
after we have discounted the overhead imposed by interpreting Scheme programs
by Scm rather than compiling them by a Scheme compiler. After comparing Scm
with both MIT-Scheme, Scheme->C, and Chez Scheme, we (rather conservatively)
estimate this factor to be 5. For comparison, the tables also show timings of the
Cantor system running on a SPARC 1. All timings are in seconds.

The tables show the times taken to generate compilers, to compile the example
programs, and to run the target programs, respectively. The last two tables also
show (in the last column) how many times faster the compilers and target programs
of our system were (with the factor 5 counted).

Compiler-gen

HypoPL
Mini-Ada

Compile times

. times

Cantor

Cantor

3
9

Ours

Ours

179
185

Ours/5

Ours/5

36
37

Speed-up

bubble.hpl
bubble.ad
sieve.ad
euclid.ad

486
542
377
136

56.6
40.9
34.7
20.5

11
8.2
6.9
4.1

43
66
54
33

Run times Cantor Ours Ours/5 Speed-up

bubble.hpl
bubble.ad
sieve.ad
euclid.ad

0.1
0.9
1.2
0.8

0.13
6.0
2.9
3.0

0.026
1.2

0.58
0.60

3.8
0.75
2.1
1.3

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

Generating action compilers by partial evaluation 281

The first two tables indicate that our system, in contrast to the Cantor system,
yields relatively long compiler-generation times and relatively short compile times,
rather than the opposite. This makes our new system much better for experimental
use than the Cantor system.

The run times in the third table are encouraging, considering that the action
compiler in the Cantor system is designed specifically to generate SPARC code
(Palsberg, 1992b). In contrast, our action compiler generates Scheme code.

Currently, we do not understand why there is a difference between the HypoPL
and the Ada bubblesort programs. However, this difference seems to depend on the
machine the tests are run on: on an HP9000s730, the ratio between our run-times
for 'bubble.ad' and 'bubble.hpl' (6.0/0.13) is 40% smaller.

It is apparent from the target programs that a reasonable amount of constant
folding has been performed by the partial evaluator: it has not just compiled from
actions into Scheme. Being an offline partial evaluator, one should not a priori
believe that Similix would do such constant folding. That this nevertheless happens
is due to the postprocessing phase of Similix.

Even more constant folding can be obtained by partially evaluating the target
program (with no static input) once more. By doing this for the bubble.hpl target
program, the program becomes twice as fast. That is, the speed-up compared to
Cantor can be improved to around 8 from the 3.8 above. However, the time .for
performing this second specialization is significant, about ten times larger than the
current compile time (56.6 seconds) listed above. For a small example of partially
evaluating a target program a second time, see Appendix D.

A worthy experiment would be to disable postprocessing in the first partial
evaluation and then to do partial evaluation a second time. This would enable a
clear separation between the compilation from actions into Scheme (first partial
evaluation), and the extra constant folding (second partial evaluation).

The target programs obtained using the Cantor system and the system of Brown,
Moura, and Watt are about 100 times slower than those emitted by hand-written
compilers. With the above measurements, our system yields roughly the same results.
Note that the system of Brown, Moura and Watt does not distinguish between
committed and non-committed failures (Watt, 1992). We believe that this is a
significant simplification because our target programs contain a considerable amount
of code to distinguish failures.

7 Conclusion

We have obtained an action compiler by partially evaluating an action interpreter.
We have used the automatically generated action compiler in an action semantics
directed compiler generator, and found that it yields faster compilers and as fast
target programs as the previous Cantor system. There is still room for improvement,
however: compared to C, our target code is still almost 100 times slower.

Improvements of the compiler can be obtained by performing static analyses
of actions and exploiting the information in the interpreter. The current action
interpreter only takes advantage of the information provided by the action type-

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

282 A. Bondorfand J. Palsberg

checker that came for free with the subset of action notation we have considered. One
specific idea for improvement is to split the environment into two parts: one where
the bound data are known to be static, and another for the remaining bindings. The
work needed to perform compile-time analyses of actions is of course independent
of whether actions are eventually compiled by a hand-written compiler or by a
compiler generated by partial evaluation. However, we believe that it is easier to
rewrite the action interpreter to take advantage of additional information generated
by static analyses than it is to rewrite a hand-written compiler.

It may hinder practical use of our system that target programs are in Scheme,
which is rather slow compared to C. It might be worthwhile rewriting the action
interpreter in C, and then use Andersen's partial evaluator of C programs (Andersen,
1992).

At the initial stages of our project we considered writing a meta-interpreter for
action semantic descriptions. The arguments of such a meta-interpreter should be
both a language semantics and a program in that language. Informally, we might
have a meta-interpreter meta-int so that for a semantics sem we get

Scheme meta-int <sem prg input> = output

We can now get a meta-compiler, meta-comp, by denning

meta-comp = Scheme cogen meta-int

It could then be possible to generate a compiler by applying the meta-compiler
to a particular language semantics. Informally, we might define

new-comp = Scheme meta-comp sem

The generated new-comp will compile programs in the defined language into
Scheme. This approach does not seem worthwhile, however, because the efficient
implementation of actions requires extensive type analysis. The result of this analysis
is most naturally put in the syntax tree of the analyzed action, but using the meta-
interpreter approach, this action is never generated! It might of course be possible
to recompute the type information whenever needed, and then hope that a partial
evaluator could perform the necessary caching. The key point would be to keep the
recomputation under static control. Unfortunately, with the Similix 5.0 system, this
is impossible.

Acknowledgements

This work has been supported in part by the Danish Research Council under the
DART Project (5.21.08.03). The authors thank Peter Mosses, Michael Schwartzbach,
and the anonymous referees for helpful comments on a draft of the paper. A
preliminary version of this paper appeared in Proc. FPCA'93, pages 308-317.

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

Generating action compilers by partial evaluation 283

A Abstract syntax of actions

This appendix presents the syntax of actions that is processed both by the action
type-checker and the action interpreter. The action type-checker updates the fields
denoted Type-correct, Dats-length, and Tokens.

Act ::= complete I (escape Dats-length) I fail
commit I diverge I regive
(give Dependent Type-correct)
(check Dependent Type-correct)
(bind_to_ Token Dependent Type-correct)
(store_in_ Dependent Dependent Type-correct)
allocate-truth-value-cell
allocate-integer-cell
(batch-send Dependent Type-correct)
batch-receive-an-integer
(enact-application_to_ Dependent Tuple

Type-correct Dats-length Dats-length)
(indivisibly Act)
(unfolding Unfolding Dats-length)
(infix-op Act-Infix Act Act)

Tuple ::= empty-tuple I (dependent Dependent)
I (comma Tuple Tuple Dats-length Dats-length)
I them

Dependent ::= true I false I (nat Natural)
I (empty-list-&_-list Type)
I (closure-abstraction-of_&-perhaps-using_-act

Act Data Dats-length Dats-length)
I (unary-op Unary Dependent)
I (binary-op Binary Dependent Dependent)
I i t
I (the-given_#_ Datum Natural Dats-length)
I (the_bound-to_ Datum Token)
I (the_stored-in_ Datum Dependent)

Unfolding ::= (infix-op Infix Act Unfolding) I (unfold Dats-length)

Act-Infix ::= Infix
I (furthermore-hence Tokens Dats-length Dats-length)
I (furthermore-thence Tokens)

Infix ::= (and-then Dats-length Dats-length)
I then
I (before Tokens Dats-length Dats-length)
I (trap Dats-length Dats-length)
I (or Dats-length)

Unary ::= not I negation I list-of I head I ta i l

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

284 A. Bondorf and J. Palsberg

Binary ::= both I ei ther I sum I difference
I concatenation I i s I i s - less - than
I component#_items_

Datum ::= datum I ce l l I abstraction I l i s t
I (datum-or Datum Datum) I (type Type)

Data ::= empty-data I (type Type)
I (comma Data Data)

Type ::= truth-value I integer
I t ruth-value-cel l I in teger -ce l l
I (_- l is t Type)

Type-correct ::= ok I error

Dats-length ::= Natural

Tokens ::= (V*)

Token ::= V

V ::= "the set of Scheme symbols"

Natural ::= "the set of Scheme numbers"

B Text of the action interpreter

This appendix presents the complete text of our action interpreter.

(define (int act in-file out-file)

(init! in-file out-file)

(ev-act act (Odats) (init-env) #f

(lambda (dats vs commit) (close!) ' completed)

(lambda (dats commit) (close!) ' escaped)

(lambda (ct) (close!) '__failed)))

(define (ev-act act dats env commit c e f)

(casematch act

('complete

(c (Odats) '() commit))

(('escape dl)

(e (ps->d dats dl) commit)) ; bt-imp 1

('fail

(f commit))

('commit

(c (Odats) '() #t))

('diverge

(loop))

Cregive

(c dats '() commit))

(('give dep type-correct)

(if (error? type-correct)

(f commit)

(ev-dependent

dep dats env

(lambda (dat) (c (ldats dat) ' () commit))

(failure f commit))))

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

Generating action compilers by partial evaluation 285

(('check dep type-correct)
(if (error? type-correct)

(f commit)
(ev-dependent
dep dats env
(lambda (dat)

(if (equal? dat #t)
(c (Odats) '() commit)

(f commit)))

(failure f commit))))

(Cbind_to_ token dep type-correct)

(if (error? type-correct)

(f commit)

(ev-dependent

dep dats env

(lambda (dat) (c (Odats) (list dat) commit))

(failure f commit))))

(Cstore_in_ depl dep2 type-correct)

(if (error? type-correct)

(f commit)

(ev-dependent

depl dats env

(lambda (datl)

(ev-dependent

dep2 dats env

(lambda (dat2)

(update-store! dat2 datl)

(c (Odats) •() #t))

(failure f commit)))

(failure f commit))))

('allocate-truth-value-cell

(c (ldats (allocate-cell!)) '() #t))

('allocate-integer-cell

(c (ldats (allocate-cell!)) '() #t))

(('batch-send dep type-correct)

(if (error? type-correct)

(f commit)

(ev-dependent

dep dats env

(lambda (dat)

(output! dat)

(c (Odats) '() #t))

(failure f commit))))

('batch-receive-an-integer

(c (ldats (input!)) '() #t))

(('enact-application_to_

dep tuple type-correct dl-in dl-c)

(if (error? type-correct)

(f commit)

(ev-dependent

dep dats env

(lambda (dat)

(ev-tuple

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

286 A. Bondorf and J. Palsberg

tuple dats env
(lambda (datsl)

(dat (ps->d datsl dl-in) ; bt-imp 2
commit
(cl->d c dl-c) ; bt-imp 3

e f))
(failure f commit)))

(failure f commit))))

(('indivisibly act)

(ev-act act dats env commit c e f))

(('unfolding unf dl-c)

; force insertion of a specialization point:

(_sim-memoize

(ev-unfolding unf act dats env commit

(collapse c dl-c) ; bt-imp 4

e f)))

(('infix-op op actl act2)

(casematch op

(Cand-then dll dl2)

(ev-act

actl dats env commit

(lambda (datsl vsl commitl)

(ev-act

act2 dats env commitl

(lambda (dats2 vs2 commit2)

(c (dats-append datsl dats2 dll dl2)

vs2 commit2))

e f))

e f))

('then

(ev-act actl dats env commit

(lambda (datsl vsl commitl)

(ev-act act2 datsl env commitl c e f))

e f))

(('before tokensl dll dl2)

(ev-act

actl dats env commit

(lambda (datsl vsl commitl)

(let ((envl (make-env tokensl vsl)))

(ev-act

act2 dats (env-overlay envl env) commitl

(lambda (dats2 vs2 commit2)

(c (dats-append datsl dats2 dll dl2)

(append vs2 vsl) commit2))

e f)))

e f))

(('trap dl-c dl-e)

(let ((c (collapse c dl-c))) ; bt-imp 5

(ev-act

actl dats env commit c

(lambda (datsl commitl)

(ev-act act2

(d->ps datsl dl-e) ; bt-imp 6

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

Generating action compilers by partial evaluation 287

env commit1 c e f))

f)))

(Cor dl-c)

(let ((c (collapse c dl-c))) ; bt-imp 7

(ev-act

actl dats env #f

(lambda (datsl vsl commitl)

(c datsl vsl (or commit commitl)))

(lambda (datsl commitl) (e datsl (or commit commitl)))

(lambda (ctl)

(if commitl

(bomb)

(ev-act act2 dats env commit c e f))))))

(('furthermore-hence tokensl dll dl2)

(ev-act

actl dats env commit

(lambda (datsl vsl commitl)

(let ((envl (make-env tokensl vsl)))

(ev-act

act2 dats (env-overlay envl env) commitl

(lambda (dats2 vs2 commit2)

(c (dats-append datsl dats2 dll dl2)

'() commit2))

e f)))

e f))

(('furthermore-thence tokensl)

(ev-act

actl dats env commit

(lambda (datsl vsl commitl)

(let ((envl (make-env tokensl vsl)))

(ev-act

act2 dats (env-overlay envl env) commitl

(lambda (dats2 vs2 commit2) (c dats2 '() commit2))

e f)))

e f))))))

(define (ev-tuple tuple dats env c fO)

(casematch tuple

('empty-tuple

(c (Odats)))

(('dependent dep)

(ev-dependent

dep dats env (lambda (dat) (c (ldats dat))) fO))

(('comma tuplel tuple2 dll dl2)

(ev-tuple

tuplel dats env

(lambda (datsl)

(ev-tuple

tuple2 dats env

(lambda (dats2)

(c (dats-append datsl dats2 dll dl2)))

fO))

fO))

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

288 A. Bondorf and J. Palsberg

('them
(c dats))))

(define (ev-dependent dep dats env c fO)

(casematch dep

('true

(c #t))

('false

(c #f))

(Cnat nat)

(c nat))

(Oempty-list-&_-list type)

(c '()))

(('closure-abstraction-of_&-perhaps-using_-act

act data dl-in dl-c)

(c (lambda (dats commit c e f)

(ev-act act (d->ps dats dl-in) ; bt-imp 8

env commit

(d->cl c dl-c) ; bt-imp 9

e f))))

(('unary-op unary dep)

(ev-dependent dep dats env

(lambda (dat)

(casematch unary

('not

(c (not dat)))

('negation

(c (- 0 dat)))

Clist-of

(c (list dat)))

('head

(if (pair? dat) (c (car dat)) (fO)))

('tail

(if (pair? dat) (c (cdr dat)) (fO)))))

fO))

(('binary-op binary depl dep2)

(ev-dependent

depl dats env

(lambda (datl)

(ev-dependent

dep2 dats env

(lambda (dat2)

(casematch binary

('both

(c (and datl dat2)))

('either

(c (or datl dat2)))

('sum

(c (+ datl dat2)))

('difference

(c (- datl dat2)))

('concatenation

(c (append datl dat2)))

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

Generating action compilers by partial evaluation 289

(' is

(c (equal? datl dat2)))
Cis-less-than
(c (< datl dat2)))

('component#_items_
(if « (length dat2) datl)

(fO)

(c (list-ref dat2 (- datl 1)))))))
fO))

fO))
(' i t

(c (1-lst-dats dats)))

(Cthe-given_#_ type-set nat dats-length)

(c (dats-ref dats nat dats-length)))

(('the_bound-to_ type-set token)

(c (lookup-env token env)))

(Cthe_stored-in_ type-set dep)

(ev-dependent

dep dats env

(lambda (dat)

(let ((stored-value (read-store! dat)))

(if (equal? stored-value "Uninitialized")

(fO)

(c stored-value))))

fO))))

(define (ev-unfolding unf act dats env commit c e f)

(casematch unf

(('infix-op op actl unfl)

(casematch op

('then

(ev-act

actl dats env commit

(lambda (datsl vsl commitl)

(ev-unfolding unfl act datsl env commitl c e f))

e f))

(('trap dl-c dl-e)

(let ((c (collapse c dl-c))) ; bt-imp 10

(ev-act

actl dats env commit c

(lambda (datsl commitl)

(ev-unfolding unfl act

(d->ps datsl dl-e) ; bt-imp 11

env commitl c e f))

f)))

(Cor dl-c)

(let ((c (collapse c dl-c))) ; bt-imp 12

(ev-act

actl dats env #f

(lambda (datsl vsl commitl)

(c datsl vsl (or commit commitl)))

(lambda (datsl commitl) (e datsl (or commit commitl)))

(lambda (ctl)

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

290 A. Bondorfand J. Palsberg

(if commitl

(bomb)

(ev-unfolding unfl act dats env commit c e f))))))

(else ; (member op '(and-then before))

(ev-act actl dats env commit

(lambda (datsl vsl commitl)

(ev-unfolding unfl act dats env commitl c e f))

e f))))

(('unfold dl-c)

(ev-act act dats env commit c e f))))

; Environments:

(define (init-env) (init-env-cstr))

(define (update-env token dat env)

(update-envl (binding-env-cstr token dat) env))

(define (lookup-env token env)

(let ((binding (car-env-sel env)))

(if (equal? token (name-env-sel binding))

(dat-env-sel binding)

(lookup-env token (cdr-env-sel env)))))

(define (update-envl binding env)

(cons-env-cstr binding env))

(define (env-overlay env2 envl)

(if (init-env-cstr? env2)

envl

(update-envl

(car-env-sel env2)

(env-overlay (cdr-env-sel env2) envl))))

(define (make-env tokens vs)

(let ((arity (length tokens)))

(let loop ((offset 0))

(if (equal? offset arity)

(init-env)

(update-env (list-ref tokens offset)

(list-ref vs offset)

(loop (+ offset 1)))))))

; Processing dats:

(define (dats-append datsl dats2 dll dl2)

(cond

((= dll 0)

dats2)

((= dl2 0)

datsl)

((and (= dll 1) (= dl2 1))

(2dats (1-lst-dats datsl) (1-lst-dats dats2)))

((and (= dll 1) (= dl2 2))

(3dats (1-lst-dats datsl)

(2-lst-dats dats2)

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

Generating action compilers by partial evaluation 291

(2-2nd-dats dats2)))
((and (= dll 2) (= dl2 1))
(3dats (2-lst-dats datsl)

(2-2nd-dats datsl)
(1-lst-dats dats2)))

(else
(_sim-error 'dats-append "Tuples too long"))))

(define (dats-ref dats nat dl)
(cond

((= dl 1)
(1-lst-dats dats)) ; (= nat 1)

((= dl 2)
(cond ((= nat 1) (2-lst-dats dats))

((= nat 2) (2-2nd-dats dats))))
((= dl 3)

(cond ((= nat 1) (3-lst-dats dats))
((= nat 2) (3-2nd-dats dats))
((= nat 3) (3-3rd-dats dats))))))

; Binding-time improvements:

(define (cl->d c dl)
(lambda (xl x2 x3) (c (d->ps xl dl) x2 x3)))

(define (d->cl c dl)

(lambda (xl x2 x3) (c (ps->d xl dl) x2 x3)))

(define (collapse c dl)

(let ((cl (lambda (xl x2 x3)

(c (d->ps xl dl) x2 x3))))

(lambda (xl x2 x3)

((if #t cl (generalize cl))

(ps->d xl dl) x2 x3))))

(define (ps->d dats dl)

(cond

((= dl 0)

(Odats))

((= dl 1)

(ldats (1-lst-dats dats)))

((= dl 2)

(2dats (2-lst-dats dats) (2-2nd-dats dats)))

(else ; (= dl 3)

Odats (3-lst-dats dats)

(3-2nd-dats dats)

(3-3rd-dats dats)))))

(define (d->ps dats dl)

. . .) ; same code as body of ps->d

; Auxiliary:

(define (failure f commit) (lambda () (f commit)))

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

292 A. Bondorf and J. Palsberg

(define (error? type-correct)

(equal? type-correct 'error))

(define (loop)

(_sim-error 'loop "Going off the deep end: diverge"))

(define (bomb) "Committed failure (bomb :-)")

; Primitives and constructors:

(defprim-opaque (init! in-file out-file)

(set! **store** (make-vector 5000 "Uninitialized"))

(set! **last-used** -1)

(set! **input-port** (open-input-file in-file))

(set! **output-port** (open-output-file out-file)))

(defprim-opaque (close!)

(close-input-port **input-port**)

(close-output-port **output-port**))

(defprim-opaque (allocate-cell!)

(set! **last-used** (+ 1 **last-used**))

last-used)

(defprim-opaque (update-store! location value)

(vector-set! **store** location value))

(defprim-opaque (read-store! location)

(vector-ref **store** location))

(defprim-opaque (input!) (read **input-port**))

(defprim-opaque (output! value)

(write value **output-port**))

(defprim-dynamic (generalize x) x)

(defconstr (Odats)

(ldats 1-lst-dats)

(2dats 2-lst-dats 2-2nd-dats)

Odats 3-lst-dats 3-2nd-dats 3-3rd-dats))

(defconstr (init-env-cstr)

(cons-env-cstr car-env-sel cdr-env-sel))

(defconstr (binding-env-cstr name-env-sel dat-env-sel))

C The Tiny language

This appendix presents an example of an action semantic description. The
source text of the appendix is a legal input to both the compiler generator (Cantor)
of the second author (Palsberg, 1992a, b, c) and also to our new one.

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

Generating action compilers by partial evaluation 293

C.I Abstract syntax

grammar:
(1) Statement = [[Identifier " : = " Expression J |

[["whi le" Expression "do" Statement J |
[[Statement ";" Statement J |
[[Declaration "begin" Statement " e n d " J .

(2) Declaration = ["var" Identifier J |
["const" Identifier " = " natural]] |
[[Declaration ";" Declaration]] .

(3) Expression = [["nat" natural] | Identifier |
H Expression Operation Expression] .

(4) Operation = " + " | " < " .
(5) Identifier = token .

C.2 Semantic functions

introduces: execute . , establish - , evaluate . ,
operation-result . , id . .

C.2.1 Statements

• execute _ :: Statement —> act .
(1) execute H / i den t i f i e r " : = " £:Expression J =

evaluate E then
store it in the cell bound to id / .

(2) execute [["whi le" £:Expression "do" S:Statement]] =
unfolding

| evaluate E
then

| check it then execute S then unfold
or check not it .

(3) execute [S,:Statement ";" S2:Statement J =
execute S] and then execute S2 .

(4) execute [D:Declaration "begin" S:Statement "end" J =
I furthermore establish D
hence execute S .

C.2.2 Declarations

• establish . :: Declaration - • act .
(1) establish ["var" / ident i f ier] =

allocate integer cell then bind id / to it .
(2) establish d "const" / ident i f ier " = " n:natural] =

bind id / to n .
(3) establish [£>i:Declaration ";" D2:Declaration J =

establish D\ before establish Di .

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

294 A. Bondorf and J. Palsberg

C.2.3 Expressions

• evaluate . :: Expression —• act .
(1) evaluate ["nat" n:natural J = give n .
(2) evaluate/ ident i f ier =

give the integer bound to id / or
give the integer stored in the cell bound to id / .

(3) evaluate [/^Expression O:Operation £2:Expression I
| evaluate E\ and then evaluate £2
then give operation-result O .

C.2.4 Operations

• operation-result . :: Operation —> dependent datum .
(1) operation-result " + " =

sum(the given integer # 1 , the given integer #2)
(2) operation-result " < " =

(the given integer #1) is less than
(the given integer #2) .

C.2.5 Identifiers

• id _ :: Identifier —> token .
(l) id fc:token = k .

D Tiny example program

This appendix first presents an example program in the Tiny language. We use an
appropriate concrete syntax.

const n = 10;

var x

begin

x := 0;

while x < n do

x := x + 1

end

This program can be expanded to an action and then type checked by the action
type-checker. In the following we present the resulting, annotated action. We use
an appropriate concrete syntax, rather than the abstract syntax of Appendix A.
For readability, we have rearranged the action using some of the algebraic laws of
actions (Mosses, 1992).

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

Generating action compilers by partial evaluation 295

execute [["const" "n" " = " 10 ";" ..."end" J =
furthermore

| bind "n" to 10 (ok)
before (("n") 0 0)
| allocate integer cell then bind "x" to it (ok)

hence (("x" "n") 0 0)
give 0 (ok) then
store it in the cell bound to "x" (ok)

and then (0 0)
unfolding (0)

give the integer bound to "x" (error) or (1)
give the integer stored in the cell bound to "x" (ok)

and then (1 1)
give the integer bound to "n" (ok) or (1)
give the integer stored in the cell bound to "n" (error)

then give (the given integer #1 (2)) is less than
(the given integer #2 (2)) (ok)

then
| check not it (ok)
or(0)

| check it (ok)
then

give the integer bound to "x" (error) or (1)
give the integer stored in the cell bound to "x" (ok)

and then (1 1)
give 1 (ok)

then give sum(the given integer #1 (2),
the given integer #2 (2)) (ok)

then store it in the cell bound to "x" (ok)
then unfold (0)

This annotated action can then be compiled by the action compiler. The result
is a 105 lines Scheme program (which we omit). We then partially evaluate that
Scheme program (with no static input) once more. The result is the following 31
lines Scheme program (we have renamed bound variables, for readability).

(define (int in-file out-file)

(define (ev-act c ten e x f)

(let ((xvall (read-store! x)))

(if (equal? xvall "Uninitialized")

(f #t)

(let ((g (< xvall ten)))

(cond ((equal? (not g) #t) (c (Odats) '() #t))

((equal? g #t)

(let ((xval2 (read-store! x)))

(if (equal? xval2 "Uninitialized")

(f #t)

(begin

(update-store! x (+ xval2 D)

(ev-act

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

296 A. Bondorf and J. Palsberg

(lambda (dats vs commit)
(c (Odats) vs commit))

ten
e
x
f)))))

(else (f #t)))))))
(init! in-file out-file)
(let* ((g (allocate-cell!))

(vs (append (l is t g) '(10)))
(x (list-ref vs 0)))

(update-store! x 0)
(ev-act

(lambda (dats vs commit) (close!) ' completed)
(list-ref vs 1)
(lambda (dats commit) (close!) ' escaped)

x

(lambda (ct) (close!) ' __failed))))

The function int is a specialized version of the function int in Appendix B.
First, it initializes the in - f i l e and the out-fi le. Then, it declares three variables
g, vs, and x, corresponding to the const and var declarations in the Tiny program.
Specifically, g contains a fresh cell (for the variable x in the Tiny program), vs
contains a list of values (the cell and the value 10), as explained in Section 4, and
x also contains the cell. The partial evaluator does not split vs into two separate
variables because one of its elements (the cell) is dynamic. The function int now
proceeds with storing the value 0 in the cell (corresponding to 'x : = 0' in the Tiny
program). Then it calls the function ev-act that corresponds to the while loop in
the Tiny program.

The function ev-act is a specialized version of the function ev-act in Appendix B.
It is called with five arguments. The first, third, and fifth are the complete, escape,
and fail continuations, respectively. The second argument is the value 10, and the
fourth argument is the cell for the variable x in the Tiny program. When ev-act is
called recursively, only the first argument is changed, and that in a trivial way. The
new continuation is'(lambda (dats vs commit) (c (Odats) vs commit))'. The
only call of the continuation c is '(c (Odats) ' () #t) ' so the first argument to c
is always (Odats) anyway. Clearly, the continuation '(lambda (dats vs commit)
(c (Odats) vs commit))'could be replaced by simply c. The specializer does not
do that because the data is passed to a dynamic continuation.

The Scheme program contains superfluous code for checking that the Tiny variable
x is indeed initialized. A straightforward analysis of actions might annotate all uses
of cells with conservative information about whether they are initialized or not.
This could then be exploited by the action interpreter and lead to shorter target
programs.

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

Generating action compilers by partial evaluation 297

The Scheme program also contains superfluous code to distinguish failures: the
commit parameter of the continuations. In the 105 lines Scheme program that
we omitted, the commit parameters was frequently used in tests. Fortunately, the
second partial evaluation got rid of those tests, making the resulting target program
considerably shorter and also more efficient.

References

Andersen, L. O. (1992) Self-applicable C program specialization. In Proc. of PEPM'92,
Workshop on Partial Evaluation and Semantics-Based Program Manipulation, pp. 54-61.
(Technical Report YALEU/DCS/RR-909, Yale University).

Bondorf, A. (1991) Automatic autoprojection of higher order recursive equations. Science of
Computer Programming, 17(1—3) :3—34.

Bondorf, A. (1992) Improving binding times without explicit cps-conversion. In 1992 ACM
Conference on Lisp and Functional Programming. San Francisco, California. LISP Pointers
V, 1, pp. 1-10.

Bondorf, A. (1993) Similix 5.0 Manual. DIKU, University of Copenhagen, Denmark. Included
in Similix 5.0 distribution.

Bondorf, A. and Danvy, O. 1991) Automatic autoprojection of recursive equations with global
variables and abstract data types. Science of Computer Programming, 16:151-195.

Brown, D. R, Moura, H. and Watt, D. A. (1992) Actress: an action semantics directed
compiler generator. In Proc. CC'92, 4th International Conference on Compiler Construction,
Paderborn, Germany, pp. 95-109. Springer-Verlag (LNCS 641).

Consel, C and Danvy, O. (1991) Static and dynamic semantics processing. In Eighteenth
Symposium on Principles of Programming Languages, pp. 14-24.

Danvy, O., Malmkjasr, K. and Palsberg, J. (1994) The essence of eta-expansion in partial
evaluation. Lisp and Symbolic Computation. To appear. Also in Proc. PEPM'94, ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation,
pp. 11-20.

Gomard, C. K. (1991) A self-applicable partial evaluator for the lambda calculus: Correctness
and pragmatics. ACM Transactions on Programming Languages and Systems, 14(2):147—172.

Jones, N. D., Gomard, C. K. and Sestoft, P. (1993) Partial Evaluation and Automatic Program
Generation. Prentice-Hall International.

Jones, N. D., Sestoft, P. and Sendergaard, H. (1985) An experiment in partial evaluation: The
generation of a compiler generator. In J.-P. Jouannaud, editor, Proc. Rewriting Techniques
and Applications, pp. 225-282. Springer-Verlag (LNCS 202).

Jergensen, J. (1992) Generating a compiler for a lazy language by partial evaluation.
In Nineteenth Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. Albuquerque, New Mexico, pp. 258-268.

Lee, P. (1989) Realistic Compiler Generation. MIT Press.
Malmkjaer, K. (1993) Towards efficient partial evaluation. In Proc. PEPM'93, Partial Evalu-

ation and Semantics-Based Program Manipulation, Copenhagen, Denmark.
Mosses, P. D. (1979) SIS—semantics implementation system. Technical Report Daimi MD-30,

Computer Science Department, Aarhus University.
Mosses, P. D. (1989) Unified algebras and action semantics. In Proc. STACS'89, pp. 17-35.

Springer-Verlag (LNCS 349).
Mosses, P. D. (1991) An introduction to action semantics. Technical Report DAIMI PB-370,

Computer Science Department, Aarhus University. Lecture Notes for the Marktoberdorf'91
Summer School, to be published in the Proceedings of the Summer School by Springer-
Verlag (Series F).

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

298 A. Bondorf and J. Palsberg

Mosses, P. D. (1992) Action Semantics. Cambridge University Press. Number 26 Tracts in
Theoretical Computer Science.

Mosses, P. D. and Watt, D. A. (1987) The use of action semantics. In Proc. IFIP TC2 Work-
ing Conference on Formal Description of Programming Concepts III (Gl. Avernces, 1986),
pp. 135-163. North-Holland.

Palsberg, J. (1992a) An automatically generated and provably correct compiler for a subset
of Ada. In Proc. ICCL'92, Fourth IEEE International Conference on Computer Languages,
pp. 117-126.

Palsberg, J. (1992b) Provably Correct Compiler Generation. PhD thesis, Computer Science
Department, Aarhus University.

Palsberg, J. (1992c) A provably correct compiler generator. In Proc. ESOP'92, European
Symposium on Programming, pp. 418-434. Springer-Verlag (LNCS 582).

Paulson, L. (1982. A semantics-directed compiler generator. In Ninth Symposium on Principles
of Programming Languages, pp. 224-233)

Wand, M. (1984) A semantic prototyping system. In Proc. ACM SIGPLAN'84 Symposium on
Compiler Construction, pp. 213-221. Sigplan Notices.

Wand, M. (1993) Specifying the correctness of binding-time analysis. Journal of Functional
Programming, 3(3):365-387.

Watt, D. A. (1991) Programming Language Syntax and Semantics. Prentice-Hall.
Watt, D. A. (1992) Personal communication.

https://doi.org/10.1017/S0956796800001684 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001684

