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CAUCHY INTEGRAL OF CALDERON ON THE GRAPHS OF 
FUNCTIONS WITH BMO DERIVATIVES 

BY 

KÔZÔ YABUTA 

ABSTRACT. We first note that each graph (x,A(x)) of a function A(x) 
with BMO derivative is a chord-arc curve. Using this, Muckenhoupt's Ap 

theory, and the theory of Calderon-Zygmund operators, we shall derive 
weighted norm inequalities for the Cauchy integral on such graphs from a 
recent theorem of G. David on the L2-boundedness of Cauchy integral on 
almost-lipschitzian curves. 

1. Recently Murai [9] has proved the following theorem, related to the Cauchy 
integral of Calderôn. 

THEOREM A. LetA(x) be a real valued function on the real line R with A'(x) E BMO 
(R), and consider the singular integral 

r- 1 + iA'(y) 
Tf(x) = p.v. f(y) dy. 

)-«x-y + i(A(x)-A(y))JW 

Then for any w E Ap (1 < p < o°), there exists a constant C = C(p,w) such that 

||77l|j/Wx) - CH/lli/Vdx), 

and 

ll^/lli/w*) - C||/||i/wx). 

In the above, BMO(R) is the set of all functions/of bounded mean oscillation, i.e., 
H/IIBMO ~ sup |/|_1 fi\f(x) - n%if\dx < °°, where the supremum is taken over all 
intervals /, m7/ = |/ | -1 JIf(x)dx, and |/| is the length of/. Ap is the Muckenhoupt 
weight class, i.e. for \<p < oo Ap = {w E L,,0C(R); w > 0, sup/m/wt/n/Cw"1^-0)?"1 

T^f(x) = sup0<e<T f K(x,y)f(y)dy 

whereK(x,y) = (1 + iA'(y))/[x - y + i(A(x) - A(y))]. We note that#(;c, v) is the 
Cauchy integral kernel of the curve T0 = {(x, A(x)); x E U}, parametrized by the real 
variable x. 
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Now a rectifiable curve Y = {z(s) E C; s E U} on the complex plane C, para­
metrized by the arc-length, is said to be a regular curve in the sense of Ahlfors or an 
almost-lipschitzian curve, if there exists a constant C > 0 such that for all r > 0 and 
any disc D of radius r, the length of Y D D is smaller than Cr. And a rectifiable curve 
T is said to be a chord-arc curve or a Lavrentiev curve, if there exists a constant C > 
0 such that \s - t\ < (1 + C)\z(s) - z(t)\. The infimum of C is called the chord arc 
constant. A chord-arc curve is always almost-lipschitzian. Recently G. David showed 
the following [4]. 

THEOREM B. Let 1 < p < °°. Let Y = {z(s);s E R} be an almost-lipschitzian curve. 
Then, for any f EU (U), 

Sf(t) = linwo f [z(t) - z(s)rf(s)ds 
J\z(t)-z(s)\>e 

exists for almost every t and 

\\Sfhm s CJ/IU,. 
Note that the Cauchy integral kernel of the curve Y is z'(s)[z(t) — z(s)]~\ 
Murai has proved Theorem A directly by obtaining a good X inequality. Recently, 

B. C. Krickeles has also obtained Theorem A implicitly in [8], i.e. one can obtain 
Theorem A from Corollary 3 in [8]. His way is also to get a good X inequality for the 
kernel K(x,y). The purpose of this note is to deduce Theorem A from Theorem B, 
using Ap weight theory. This is suggested by Y. Meyer. 

Finally we note that in the case A' E. L°°, 

TJ(x) = p.v. f l- f{y)dy 
)-™x-y + i(A(x)-A(y)) 

is a Calderôn-Zygmund operator, and hence weighted norm inequalities hold [3]. 
Especially, Tis bounded fromL'(IR) to weak-L'(IR). However, for general A' E BMO, 
this is not true. Take, for example, A' (y) = log \y\ and/(y) = X(o, \)(y)(y^og22/y)~\ 
where \E is the characteristic function of the set E. 

2. Some properties of BMO and Ap weights. First we give a condition under which 
a curve is a chord-arc curve. This is perhaps known, but as far as we know, it has not 
appeared in literatures. 

LEMMA 1. Let Y = {x + iA(x) E C ; x £ R } andA(x) be a real valued function with 
A'(x) E BMO. Then Y is a chord-arc curve with chord-arc constant smaller than 
C||A'||BMO where C is an absolute constant. 

PROOF. For 0 < a < 1 we have 

J '(I +(A'(jc))2)1/2djt < a~] J (1 + a\A'(x)f)mdx. 
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Now, since log (1 + ix) is a Lipschitz function on U, with Lipschitz constant 1, we 
get 

||log (1 + iaA'(x))lM0 s 2fl||A'||BMo. 

Hence, if 2a||A'||BM0 — *i < 1 fe is a sufficiently small constant), then by Proposition 
13 in [2], the curve {x + iaA(x)} is a chord-arc curve of chord-arc constant smaller than 
C2(2a||A'||BMO)2. Hence 

\X\\ + a\A'{x)f)mdx < (1 + 4C2a
2||A'||2BMO)[te - x,)2 

+ a2(A(x2) - A(x,)ff\ 

Thus taking a = 1 if ||A'||BMo ^ e2/2 and a = e2/(2||A'||BMO) if ||A'||BMo ^ e2/2, we 
have 

f V + (A'(x))2)V2dx < (1 + 2e2-'(l + C2^)|H'||BM0) 

x [ f e - j c . ^ + C A ^ - A U , ) ) 2 ] 1 7 2 . 

This completes the proof. 

LEMMA 2. Letf(z) be a nonnegative function on the complex plane C satisfying 
\f(z\) - f(z2)\ ^ C\zx - z2\ (for all zu z2 E C) andf(z) > a for some a > 0. Then 
for any real number k and any complex valued function G(x) E BMO(R) it holds 

[f(G(x))f E H Ap. 
\<P 

PROOF. We may assume 1 < p < 2, since Ar C As (1 < r < 5). Put m = 
l/(/7 - 1), so that m > 1. Then for £ > 0 one can easily show that log (& + f(z))mh 

is a Lipschitz function on C with Lipschitz constant smaller than Cm\k\/(b + a). 
Hence we get 

2 C / W I *L ., 
log (i+/(GWH BMO — fo _^_ a | | G | | B M O -

So, for sufficiently large fr, by John-Nirenberg's lemma ([5], p. 417, 3' or [1], p. 41) 
we obtain 

(b + f(G(x)))mk = exp [log (b + f(G(x))rk] E A2. 

Hence one gets easily 

(b+f(G(x)))kEAim+l)/m = Ap. 

Since a(2b + 2a)~l(b + f(G(x))) <f(G(x)) < b + / ( G ( J C ) ) , we obtain the desired 
conclusion. q.e.d. 

LEMMA 3. Let 4>(0 = JQ ty(s)ds be a homeomorphism of the real line with 0 ^ $(t) 
E A» = Up>i A .̂ Then for any w(x) E A„, we /zave w(<I>(f))<E>' (r) E A«>. 
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PROOF. This can easily be derived from the following characterization of Aœ by 
Coif man and Fefferman [1]: v(t) E Aœ if and only if there exist C > 0 and 8 > 0 such 
that for any interval / and any measurable subset E of I 

jEv(t)dt /\E\\* 
7 ~ C ( T T ) • q-e-d-
Jiv(t)dt V | / | ; 

LEMMA 4. Let I < p < <», p~x + q~x = 1 and 4>(0 = J0
r <b(s)ds be an increasing 

homeomorphism of the real line satisfying <P'(<P~l(x)) E Aq. Then there is a C > 0 
such that for any f E Ll0C(R) and x E IR 

M{f(<S>->))mx)) < CMp(f)(x). 

HereMp(f)(x) = sup (\l\~l J!\f(x)\pdxy/p andM(f) = M{(f), where the supremum 
is taken over all intervals I containing x. 

PROOF. Let / be an arbitrary interval with <i>(x) E /. Then after applying Holder's 
inequality to the right-hand side of the following identity 

i /r f i/(<i>-,)(oi^ = \i\-] f moisit)*, 
use the assumption 0 ' ( $ _ 1 ) E Aq, and we obtain the desired assertion. q.e.d. 

Finally in this section we quote a theorem of P. Jones [6]. 

LEMMA 5. Let <I>(0 = J0' $(s)ds be an increasing homeomorphism of the real line 
with 4> E Lloc((R). Then the following are equivalent each other. 

(0 (f> E Aoo; 
( H ) / ( $ - 1 ) E BMO(U) for all f E BMO(R); 
( / « ) / (* ) G BMO(R) . /b ra / / / e BMO(IR); 
(I'V) (4>_,)'(0 = l / * ' ( * _ , ( 0 ) E A». 

3. Proof of Theorem A. Let T = {(x,A(x))\ x E R}, S(JC) = 4>(*) = £ ( 1 + 
(A'(y))2yi2dy, and z(s) = JC + iA(x). Then by Lemma 1 we get 

1 I C 
(3.1) 

(3.2) 

z(t) — z(s)* \t — s\ 

1 C 
d ' z ( 0 - z(j)l |r - s\ 

One also sees that, for/(s) = z'(s)g(s) with g E CQ( 

(3.3) (7/ (0 = lim f — ' - 1 ds 
e-^0 J\t-S\>e Z(t) ~ Z(S) 

f(s)_ 

ds. 
(0 - z(s) 

https://doi.org/10.4153/CMB-1985-062-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1985-062-6


1985] CAUCHY INTEGRAL 499 

Hence (3.1), (3.2) and Theorem B imply that U is a Calderôn-Zygmund operator (as 
for the definition and basic properties of Calderon—Zygmund operators see, for 
example, [7]). Hence for any v£Aœ ,we have, as in Theorem 3 in Coif man—Fefferman 
[1], \\U*fhivdx) =s Cp\\Mf\\LP{vdx). So, putting Vf = U(z'f), we have for any 0 < 
p < co 

(3.4) 

where 

v*/to = 

II v* fhivdx) ^ Cp\\Mf\\LPivdx), 

- sup 
€>0 

f z'{s)[z(t) - z(s)]-lf(s)ds 

Now let w E Ap (1 < p < oo) and put ¥(f) = &~l(t). Then by Lemma 2, $ ' E 
flr>1 Ar and hence by Lemma 5 V(t) E A«>. Thus by Lemma 3 we get u(t) = 
w ( ^ ( 0 ) ^ ' ( 0 G Aoo. (Unfortunately we cannot, for the present, assert u E Ap.) We 
obtain next the following identity. 

(3.5) f K(x,y)f(y)dy = f L(*U), j)/(^(j))dj 

f24>(jr)-<P(jr + €) 

+ L ( * ( x ) , j ) / ( ^ ( j ) ) r f j , 
• /<D(jr-€) 

where K(x,y) = (1 + /A'(y))/[(;c - y) + /(A(JC) - A(y))] andL(r, s) = z'(s)/[z(t) 
— z{s)\ By Lemma 1 and (3.1) we see easily that the second term in the right-hand 
side of (3.5) is dominated by CM(/o¥)(<!>(*)). So 

(3.6) T*f{x) < 2V*(/o ¥) (*(*)) + CM(/o^)(d>U)). 

Since ivEA^, there is 1 < p' < p such that w E A^- by a theorem of Coifman and 
Fefferman [1]. Since <&' E A», by Lemma 5 we get A'OP(f)) G BMO, and hence by 
Lemma 2 <!>'(¥) E flr>, Ar. Thus by Lemma 4 we get M(/o ¥)(*(*)) < Cp> 
Mp>{f)(x), and so 

(3.7) \\M(foV)(s)\\LP{uds) = \\M(foV)(Q(x))Uwds) < C||M^(/)| |L , (^} 

^ c'll/IU^,. 
The last inequality follows from w E A ^ , because weighted norm inequalities hold 
for the Hardy-Littlewood maximal function M(g). By (3.4) we get 

(3.8) \\v*(foV)mX))yiwdx) = IIV*(/O^)(J)|| Lp(uds) Lp(uds)-

From (3.6), (3.7) and (3.8) we have 

(3.9) \\T*fhiwdx) ^ C\\f\\LP{wdx). 

It is easily seen that for a n y / E CQ(R) , p.V. JK(x,y)f(y)dy exists a.e. and equals 
U((z'f)oV)(&(x)) a.e.. Since CQ(U) is dense in Lp(wdx), from (3.9) it follows, by 

https://doi.org/10.4153/CMB-1985-062-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1985-062-6


500 K. YABUTA 

a standard argument, that for any / E Lp(wdx), p.v. $K(x,y)f(y)dy exists a.e.. 
Hence we have 

\\Tf\Wdx) s C\\fUKdx). 

This completes the proof of Theorem A. 

4. Final remark. Murai has shown more in [9]. We note that by his method one can 
prove, for example, the following: Let A(x) be a real valued function on U with 
A'(x) E BMO and for nonnegative integer k 

\A{x) - A(y) 
Tk[A,f](x) = p.v. f (x - J)"1 [-

-A'(y) exp 
A(x)-A(y) 

i 
x - y 

f(y)dy. 

Then for any w E Ap (1 < p < <*>), there are C = C(p, w) and a nonnegative number 
N such that 

(4.1) \\T[AJ]\\LP{wdx) < C*||A'||*BMOa + IIA'IIBMO)! Wiwdx)-

From this (the case k = 1) one can naturally prove Theorem A. Unlike the case A' E 
L00, it seems that one can not prove (4.1) from Theorem A or its variants, (cf. [3]). 
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