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Abstract. A ring R is called a left APP-ring if the left annihilator lR(Ra) is pure
as a left ideal of R for every a ∈ R; R is called (left principally) quasi-Baer if the left
annihilator of every (principal) left ideal of R is generated by an idempotent. Let R
be a ring and M an ordered monoid. Assume that there is a monoid homomorphism
φ : M −→ Aut(R). We give a necessary and sufficient condition for the skew monoid
ring R ∗ M (induced by φ) to be left APP (left principally quasi-Baer, quasi-Baer,
respectively).

2000 Mathematics Subject Classification. 16S35, 16S36.

1. Introduction. Throughout this paper, R denotes a ring with unity. Recall that
R is a right PP-ring if the right annihilator of an element of R is generated by an
idempotent. Armendariz showed that polynomial rings over right PP-rings need not
be right PP in the example in [1]. Also the concept of right PP-rings is not a Morita
invariant property because �[x] is PP but the 2 × 2 full matrix ring over �[x] is not a
right PP-ring [1]. In order to consider the natural question of how much of the right
PP condition transfers to polynomial rings or matrix rings, a concept of left APP-rings
was introduced and considered in [15]. By [15], Proposition 2.3, right PP-rings are left
APP. It was shown in [15], Theorem 3.8 and Corollary 3.12, that the left APP condition
is a Morita invariant property and transfers to a variety of polynomial extensions.

On the other hand, a ring R is (quasi-)Baer if the left annihilator of every non-
empty subset (every left ideal) of R is generated by an idempotent of R. Clark defined
quasi-Baer rings in [7] and used them to characterise when a finite dimensional algebra
with unity over an algebraically closed field is isomorphic to a twisted matrix units
semi-group algebra. As a generalisation of quasi-Baer rings, Birkenmeier, Kim and
Park in [5] introduced the concept of left principally quasi-Baer rings. A ring R is
called left principally quasi-Baer if the left annihilator of a principal left ideal of
R is generated by an idempotent. Observe that biregular rings and quasi-Baer rings
are left principally quasi-Baer. Clearly the concept of left APP-rings is a common
generalisation of left principally quasi-Baer rings and right PP-rings. For more details
and examples of quasi-Baer rings, left principally quasi-Baer rings and left APP-rings,
see [2–6, 12, 13 and 15].

In this paper we consider the left APP property, left principal quasi-Baerness
and quasi-Baerness of the skew monoid ring R ∗ M. Some necessary and sufficient
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conditions for the skew monoid ring R ∗ M to be left APP (left principally quasi-Baer,
quasi-Baer) are obtained.

Let R be a ring, and let M be an ordered monoid. Assume that there exists a monoid
homomorphism φ : M −→ Aut(R). For any g ∈ M and any r ∈ R, we denote by rg the
image of r under φ(g). Then we can form a skew monoid ring R ∗ M (induced by the
monoid homomorphism φ) by taking its elements to be finite formal combinations∑

g∈M agg, with multiplication induced by

(agg)(bhh) = (agbg
h)(gh).

If φ is weakly rigid (that is to say ab = 0 implies agb = abg = 0 for any a, b ∈ R and any
g ∈ M), then it has been proved in [14] that the skew monoid ring R ∗ M is quasi-Baer
if and only if R is quasi-Baer. If R is φ-compatible, then it has been proved in [8] that
R ∗ M is (left principally) quasi-Baer if and only if R is (left principally) quasi-Baer. It
was shown in [15], Theorem 3.10, that if R is a left APP-ring, M is a u.p.-monoid, and
the monoid homomorphism φ : M −→ Aut(R) satisfies the condition that for every
a ∈ R, the left ideal

∑
g∈M Rag is finitely generated, then the skew monoid ring R ∗ M

(induced by the monoid homomorphism φ) is a left APP-ring. When M is a group or
Im(φ) is a group, a necessary and sufficient condition for the skew monoid ring R ∗ M
to be (left principally) quasi-Baer was given in [9]. In this paper we will show that
for an ordered monoid M and a monoid homomorphism φ : M −→ Aut(R), the skew
monoid ring R ∗ M is a left APP-ring (a left principally quasi-Baer ring, a quasi-Baer
ring, respectively) if and only if the left annihilator lR(

∑
g∈M Rag) is right s-unital for

every a ∈ R. (The left annihilator of
∑

g∈M Rag is generated by an idempotent for every
a ∈ R, and the left annihilator of left ideal

∑
b∈S

∑
g∈M Rbg of R is generated by an

idempotent for every subset S of R, respectively.)
For a non-empty subset Y of R, lR(Y ) and rR(Y ) denote the left and right

annihilators of Y in R, respectively. A monoid M is said to be ordered if the elements
of M are linearly ordered with respect to the relation < and if for all x, y, z ∈ M, x < y
implies zx < zy and xz < yz. It is well known that any submonoid of a free group or
a torsion-free nilpotent group is an ordered monoid. We denote by η the identity of a
monoid M.

2. Left APP-rings. An ideal I of R is said to be right s-unital if for each a ∈ I there
exists an element x ∈ I such that ax = a. Note that if I and J are right s-unital ideals,
then so is I ∩ J. (If a ∈ I ∩ J, then a ∈ aIJ ⊆ a(I ∩ J).) It follows from [17], Theorem 1,
that I is right s-unital if and only if for any finitely many elements a1, a2, . . . , an ∈ I
there exists an element x ∈ I such that ai = aix, i = 1, 2, . . . , n. A submodule N of a left
R-module M is called a pure submodule if L ⊗R N −→ L ⊗R M is a monomorphism
for every right R-module L. By [16], Proposition 11.3.13, an ideal I is right s-unital
if and only if R/I is flat as a left R-module if and only if I is pure as a left ideal
of R.

By [15], a ring R is called a left APP-ring if the left annihilator lR(Ra) is right
s-unital as an ideal of R for any element a ∈ R.

Right APP-rings may be defined analogously. Clearly every left principally
quasi-Baer ring is a left APP-ring. (Thus the class of left APP-rings includes
all biregular rings and all quasi-Baer rings.) From [15], it follows that right PP-
rings are left APP and left APP-rings are quasi-Armendariz in the sense that
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whenever f (x) = a0 + a1x + · · · + amxm, g(x) = b0 + b1x + · · · + bnxn ∈ R[x] satisfy
f (x)R[x]g(x) = 0, we have aiRbj = 0 for each i and j (see for example [10]).

Let M be a monoid and φ : M −→ Aut(R) a monoid homomorphism. The ring
R is called left M-APP if the left annihilator lR(

∑
g∈M Rbg) is right s-unital for every

b ∈ R. Clearly if φ(g) = 1 for every g ∈ M, then R is left M-APP if and only if R is
left APP. It is easy to see that if R is a left Noetherian and left APP-ring, then R is
left M-APP for any monoid M (in fact, there exists a maximal element

∑
g∈N0

Rbg

in the set {∑g∈N Rbg|N ⊆ M, |N| < ∞}, which is unique, and so lR(
∑

g∈M Rbg) =
lR(

∑
g∈N0

Rbg) = ∩g∈N0 lR(Rbg) is right s-unital).

REMARK 1. (1) It follows from [15], Theorem 3.10, that if R is a left APP-ring and
M an ordered monoid and if the monoid homomorphism φ : M −→ Aut(R) satisfies
the condition that for every a ∈ R, the left ideal

∑
g∈M Rag is finitely generated, then

the skew monoid ring R ∗ M (induced by the monoid homomorphism φ) is a left
APP-ring. Thus, by Theorem 2, R is a left M-APP-ring. Remark 3.11 of [15] gave some
examples of left M-APP-rings.

(2) For a given left APP-ring T , let

R =
{

(an)n∈� ∈
∏

T |an is eventually constant
}

,

which is a subring of the countably infinite direct product
∏

� T . Define
an automorphism σ of R by σ (an)n∈� = (an+1)n∈�. Let M = � ∪ {0}. Define
φ : M −→ Aut(R) via φ(0) = 1 and φ(n) = σ n for every n ∈ �. Suppose that
w = (. . . , a, a, as, as+1, . . . , at, a, a, . . .) ∈ lR(

∑
g∈M Rbg), where b = (bn)n∈� ∈ R. Then

wRbg = 0 for each g ∈ M. Thus for any s ≤ n ≤ t, anTbn = 0, anTbn−1 = 0, anTbn−2 =
0, . . . . Since (bn)n∈� is eventually constant, the left ideal Tbn + Tbn−1 + · · · is
finitely generated. By Proposition 2.6 of [15], lT (Tbn + Tbn−1 + · · · ) is right s-
unital. Thus an = ana′

n for some a′
n ∈ lT (Tbn + Tbn−1 + · · · ). Similarly a = aa′

for some a′ ∈ lT (
∑

n∈� Tbn). Now it is easy to see that w = ww′, where w′ =
(. . . , a′, a′, a′

s, . . . , a′
t, a′, a′, . . .) ∈ lR(

∑
g∈M Rbg). Therefore R is left M-APP.

If we take T = S[[x]], where

S =
( ∞∏

i=1

�/2�

) / ( ∞⊕
i=1

�/2�

)
,

then, by Example 2.5 of [15], T is an APP-ring, but T is neither PP nor principally
quasi-Baer. Thus R is neither PP nor principally quasi-Baer.

(3) The following example (see [9]) shows that left M-APP rings need not be left
APP. Let F be a field; let A = F [s, t] be a commutative polynomial ring; and consider
the ring R = A/(st). Let s̄ = s + (st) and t̄ = t + (st) in R. Define an automorphism
σ of R by σ (s̄) = t̄ and σ (t̄) = s̄. Then lR(Rs̄) = Rt̄. Clearly this ideal is not right s-
unital. Thus R is not a left APP-ring. By Example 2 of [9], any non-zero ideal I of R
with σ (I) = I is essential in R, and so lR(I) = 0. (Note that R is a reduced ring.) Let
M = � ∪ {0}. Define φ : M −→ Aut(R) via φ(0) = 1 and φ(n) = σ n for every n ∈ �.
Therefore R is M-APP.

The following is our main result which gives a necessary and sufficient condition
for the skew monoid ring R ∗ M to be a left APP-ring.
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THEOREM 2. Let R be a ring, M an ordered monoid and φ : M −→ Aut(R) a monoid
homomorphism. Then the following are equivalent:

(1) The skew monoid ring R ∗ M is a left APP-ring.
(2) R is a left M-APP-ring.

Proof. (2)=⇒(1). Let α = a1g1 + a2g2 + · · · + angn, and let β = b1h1 + b2h2

+ · · · + bmhm ∈ R ∗ M satisfy α(R ∗ M)β = 0. Without loss of generality, we assume
that gi < gj and hi < hj if i < j. Suppose that c1, c2, . . . , cn ∈ R are such that ai = cgi

i for
i = 1, 2, . . . , n. We will show that ci ∈ lR(

∑
g∈M Rbg

j ) for i = 1, 2, . . . , n, j = 1, 2, . . . , m
by induction on n.

For any c ∈ R and any g ∈ M, from α(R ∗ M)β = 0 it follows that

(a1g1 + a2g2 + · · · + angn)(cg)(b1h1 + b2h2 + · · · + bmhm) = 0.

Considering the coefficient of the largest element gnghm in above, we obtain ancgn bgng
m =

0. This implies that (cncbg
m)gn = 0. Thus cncbg

m = 0, since (−)gn is an automorphism
of R. So cnRbg

m = 0 for all g ∈ M, which implies that cn(
∑

g∈M Rbg
m) = 0. That is

to say cn ∈ lR(
∑

g∈M Rbg
m). By (2), lR(

∑
g∈M Rbg

m) is right s-unital. Thus there exists
e ∈ lR(

∑
g∈M Rbg

m) such that cn = cne. Now for every c ∈ R and every g ∈ M, we have

0 = (a1g1 + a2g2 + · · · + angn)(ecg)(b1h1 + b2h2 + · · · + bmhm)

= a1eg1 cg1 bg1g
1 g1gh1 + · · · + an−1egn−1 cgn−1 bgn−1g

m gn−1ghm

+ anegn cgn bgng
m−1gnghm−1 + anegn cgn bgng

m gnghm.

Since anegn cgn bgng
m = an(ecbg

m)gn = 0, an−1egn−1 cgn−1 bgn−1g
m = an−1(ecbg

m)gn−1 = 0, consider-
ing the coefficient of the largest element gnghm−1 in above, we have anegn cgn bgng

m−1 = 0.
Thus (

cncbg
m−1

)gn = (
cnecbg

m−1

)gn = cgn
n egn cgn bgng

m−1 = anegn cgn bgng
m−1 = 0,

which implies that cnRbg
m−1 = 0 for every g ∈ M. Hence cn ∈ lR(

∑
g∈M Rbg

m) ∩
lR(

∑
g∈M Rbg

m−1). Noting that lR(
∑

g∈M Rbg
m) and lR(

∑
g∈M Rbg

m−1) are right s-
unital ideals of R, so is lR(

∑
g∈M Rbg

m) ∩ lR(
∑

g∈M Rbg
m−1). Thus there exists

f ∈ lR(
∑

g∈M Rbg
m) ∩ lR(

∑
g∈M Rbg

m−1) such that cn = cnf . Now for any g ∈ M and
any c ∈ R we have (a1g1 + a2g2 + · · · + angn)(f cg)(b1h1 + b2h2 + · · · + bmhm) = 0.

Continuing this process, we obtain

cn ∈ ∩m
j=1lR

⎛
⎝∑

g∈M

Rbg
j

⎞
⎠ .

Thus for any c ∈ R and any g ∈ M, (angn)(cg)(b1h1 + b2h2 + · · · + bmhm) =
ancgn bgng

1 gngh1 + · · · + ancgn bgng
m gnghm = (cncbg

1)gn gngh1 + · · · + (cncbg
m)gn gnghm = 0.

So we have

(a1g1 + a2g2 + · · · + an−1gn−1)(R ∗ M)(b1h1 + b2h2 + · · · + bmhm) = 0.

Now using induction on n, we obtain that ci ∈ ∩m
j=1lR(

∑
g∈M Rbg

j ) for all i.
Since lR(

∑
g∈M Rbg

1), . . . , lR(
∑

g∈M Rbg
m) are right s-unital ideals, it is clear that

https://doi.org/10.1017/S0017089509990255 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990255


ON ANNIHILATOR IDEALS OF SKEW MONOID RINGS 165

∩m
j=1lR(

∑
g∈M Rbg

j ) is right s-unital. Thus there exists e ∈ ∩m
j=1lR(

∑
g∈M Rbg

j ) such that
ci = cie, i = 1, 2, . . . , n. Now we have

α(eη) = (a1g1 + a2g2 + · · · + angn)(eη)

=
n∑

i=1

aiegi gi =
n∑

i=1

(cie)gi gi =
n∑

i=1

cgi
i gi =

n∑
i=1

aigi

= α.

For every r ∈ R and every g ∈ M, (eη)(rg)β = ∑m
j=1 erbg

j (ghj) = 0. Thus eη ∈ lR∗M((R ∗
M)β). This shows that R ∗ M is a left APP-ring.

(1)=⇒(2). Suppose that R ∗ M is a left APP-ring. Let b ∈ R and a ∈ lR(
∑

g∈M Rbg).
Then (aη)(R ∗ M)(bη) = 0. Thus there exists c0η + c1g1 + · · · + cngn ∈ R ∗ M such
that aη = (aη)(c0η + c1g1 + · · · + cngn) and (c0η + c1g1 + · · · + cngn)(R ∗ M)(bη) = 0,
where ci ∈ R and η, g1, . . . , gn are distinct elements of M. It is easy to see that
a = ac0. Note that M is cancellative. For any r ∈ R and any g ∈ M, from (c0η +
c1g1 + · · · + cngn)(rg)(bη) = 0 it follows that c0rbgg = 0, which implies that c0rbg = 0.
Thus c0(

∑
g∈M Rbg) = 0. This shows that R is a left M-APP-ring. �

COROLLARY 3. Let R be a ring and M an ordered monoid. Then the monoid ring
R[M] is left APP if and only if R is left APP.

COROLLARY 4. Let R be a ring and σ a ring automorphism of R. Then the ring R[x; σ ]
(respectively R[x, x−1; σ ]) is left APP if and only if the left annihilator of

∑∞
i=0 Rσ i(b)

(respectively
∑∞

i=−∞ Rσ i(b)) is right s-unital for every b ∈ R.

Proof. Define a homomorphism φ : � ∪ {0} −→ Aut(R) (φ : � −→ Aut(R)) of
monoids via φ(i) = σ i. Then the result follows from Theorem 2. �

3. Left principally quasi-Baer rings and quasi-Baer rings. Let R be a ring, M
a monoid and φ : M −→ Aut(R) a monoid homomorphism; R is called a left M-
principally quasi-Baer ring if for any a ∈ R, the left annihilator of

∑
g∈M Rag is

generated by an idempotent. For the condition that M is a group, left M-principally
quasi-Baer rings were considered by Y. Hirano in [9]. Note that by Remark 1(3), left
M-principally quasi-Baer rings need not be left principally quasi-Baer.

There are a lot of results concerning quasi-Baerness and left principal quasi-
Baerness of polynomial extensions of a ring. G. F. Birkenmeier, J. Y. Kim and J. K. Park
showed in [4], Theorem 1.8, that R is quasi-Baer if and only if R[X ] is quasi-Baer
if and only if R[[X ]] is quasi-Baer if and only if R[x, x−1] is quasi-Baer if and only
if R[[x, x−1]] is quasi-Baer, where X is an arbitrary non-empty set of not necessarily
commuting indeterminates. Furthermore, it was shown in [4], Theorem 1.2, that if R is
quasi-Baer, then so are R[x; σ ], R[[x; σ ]], R[x, x−1; σ ] and R[[x, x−1; σ ]]. It was proved
in [3], Theorem 2.1, that a ring R is left principally quasi-Baer if and only if R[x] is
left principally quasi-Baer. C. Y. Hong, N. K. Kim and T. K. Kwak showed in [11],
Corollaries 12, 15 and 22, that if σ is a rigid endomorphism of R, then R is a quasi-Baer
(respectively left principally quasi-Baer) ring if and only if R[x; σ, δ] is a quasi-Baer
(respectively left principally quasi-Baer) ring if and only if R[[x; σ ]] is a quasi-Baer ring.
If R is a ring and (S,≤) a strictly totally ordered monoid which satisfies the condition
that 0 ≤ s for every s ∈ S, then it is shown in [13] that R is a quasi-Baer ring if and
only if the ring [[RS,≤]] of generalised power series over R is a quasi-Baer ring. If M
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is an ordered monoid, then it is proved in [9], Theorem 1, that R[M] is quasi-Baer
if and only if R is quasi-Baer. This result has been generalised by G. F. Birkenmeier
and J. K. Park in [6], Theorem 1.2, by showing that if M is a u.p.-monoid, then R[M]
is quasi-Baer (respectively left principally quasi-Baer) if and only if R is quasi-Baer
(respectively left principally quasi-Baer). For skew monoid rings it was proved in [9],
Theorem 2, that if R is a ring and M an ordered group acting on R, then R ∗ M is
a left principally quasi-Baer ring if and only if R is a left M-principally quasi-Baer
ring. It was also noted in [9], Remark, that if M is an ordered monoid and if there
exists a monoid homomorphism φ : M −→ Aut(R) such that Im(φ) is a group, then
the skew monoid ring R ∗ M is a left principally quasi-Baer ring if and only if R is a
left Im(φ)-principally quasi-Baer ring. Here we have the following result.

THEOREM 5. Let R be a ring, M an ordered monoid and φ : M −→ Aut(R) a monoid
homomorphism. Then the following are equivalent:

(1) The skew monoid ring R ∗ M is a left principally quasi-Baer ring.
(2) R is a left M-principally quasi-Baer ring.

Proof. (2)=⇒(1). Suppose that b1h1 + b2h2 + · · · + bmhm belongs to R ∗ M, and
consider the principal left ideal I = (R ∗ M)(b1h1 + b2h2 + · · · + bmhm) of R ∗ M.
Without loss of generality, we assume that h1 < h2 < · · · < hm. Let J denote the set of
all coefficients of elements of I . Then it is easy to see that

J =
∑
g∈M

Rbg
1 +

∑
g∈M

Rbg
2 + · · · +

∑
g∈M

Rbg
m.

By point (2), there exists an idempotent ej ∈ R such that lR(
∑

g∈M Rbg
j ) = Rej,

j = 1, 2, . . . , m. Let e = e1e2 . . . em. Then lR(
∑

g∈M Rbg
1 + ∑

g∈M Rbg
2 + · · · +∑

g∈M Rbg
m) = ∩m

j=1lR(
∑

g∈M Rbg
j ) = Re. Clearly eη ∈ lR∗M(I). Suppose a1g1 +

a2g2 + · · · + angn ∈ lR∗M(I). Then (a1g1 + a2g2 + · · · + angn)(R ∗ M)(b1h1 + b2h2

+ · · · + bmhm) = 0. Without loss of generality, we assume that g1 < g2 < · · · < gn.
Suppose that c1, c2, . . . , cn ∈ R are such that ai = cgi

i for i = 1, 2, . . . , n. Then, by
analogy with the proof of Theorem 2, we have ci ∈ lR(

∑
g∈M Rbg

j ) for i = 1, 2, . . . , n,
j = 1, 2, . . . , m. Thus ci ∈ lR(J), and so ci = cie, i = 1, 2, . . . , n. Now(

n∑
i=1

aigi

)
(eη) =

n∑
i=1

aiegi gi =
n∑

i=1

(cie)gi gi =
n∑

i=1

cgi
i gi =

n∑
i=1

aigi,

which implies
∑n

i=1 aigi ∈ (R ∗ M)(eη). Thus lR∗M(I) ≤ (R ∗ M)(eη). Therefore
lR∗M(I) = (R ∗ M)(eη), and so R ∗ M is a principally quasi-Baer ring.

(1)=⇒(2). Suppose that the skew monoid ring R ∗ M is a left principally quasi-
Baer ring. Let b ∈ R. We consider the left annihilator lR(

∑
g∈M Rbg). By Hypothesis

(1), there exists an idempotent α ∈ R ∗ M such that lR∗M((R ∗ M)(bη)) = (R ∗ M)α.
We may write α = e0η + e1g1 + · · · + engn ∈ R ∗ M, where ei ∈ R and η, g1, . . . , gn are
distinct elements of M. Note that the monoid M is cancenllative. For any r ∈ R and
any g ∈ M, from 0 = (e0η + e1g1 + · · · + engn)(rg)(bη) = e0rbgg + e1rg1 bg1gg1g + · · · +
enrgn bgnggng it follows e0rbgg = 0, and so e0rbg = 0. Since g is an arbitrary element of
M, we have e0(

∑
g∈M Rbg) = 0. Thus Re0 ⊆ lR(

∑
g∈M Rbg). To prove the converse

inclusion, let a ∈ lR(
∑

g∈M Rbg). Then for any r ∈ R and any g ∈ M, (aη)(rg)(bη) =
arbgg = 0. Thus (aη)(R ∗ M)(bη) = 0, and so (aη) = (aη)α = (aη)(e0η + e1g1 + · · · +
engn) = ae0η + ae1g1 + · · · + aengn. Considering the coefficient of η we obtain a = ae0.
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Hence lR(
∑

g∈M Rbg) ⊆ Re0. In particular e0 is an idempotent of R. Hence R is a left
M-principally quasi-Baer ring. �

Let M be an ordered monoid and φ : M −→ Aut(R) a monoid homomorphism.
R is called a left M-quasi-Baer ring if for any subset S of R, the left annihilator of left
ideal

∑
b∈S

∑
g∈M Rbg of R is generated by an idempotent of R. For the condition that

G is a group, left G-quasi-Baer rings was considered by Y. Hirano in [9]. Note that by
Remark 1(3), left M-quasi-Baer rings need not be left quasi-Baer. By analogy with the
proof of Theorem 5 we have the following result.

THEOREM 6. Let R be a ring, M an ordered monoid and φ : M −→ Aut(R) a monoid
homomorphism. Then the following are equivalent:

(1) The skew monoid ring R ∗ M is a quasi-Baer ring.
(2) R is a left M-quasi-Baer ring.

Proof. Let I be a left ideal of R ∗ M. Denote by I0 the set of all coefficients of
elements of I . Let

J =
∑
b∈I0

∑
g∈M

Rbg.

If R is left M-quasi-Baer, then there exists an idempotent e ∈ R such that lR(J) = Re.
Now by analogy with the proof of Theorem 5 we can complete the proof. �

COROLLARY 7. Let R be a ring and σ a ring automorphism of R. Then
(i) the ring R[x; σ ] (respectively R[x, x−1; σ ]) is left principally quasi-Baer if and only

if the left annihilator of
∑∞

i=0 Rσ i(b) (respectively
∑∞

i=−∞ Rσ i(b)) is generated
by an idempotent for every b ∈ R;

(ii) the ring R[x; σ ] (respectively R[x, x−1; σ ]) is quasi-Baer if and only if the left
annihilator of

∑
b∈S

∑∞
i=0 Rσ i(b) (respectively

∑
b∈S

∑∞
i=−∞ Rσ i(b)) is generated

by an idempotent for any subset S of R.
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