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ON THE TAILS OF THE EXPONENTIAL SERIES 

C. YALÇIN YILDIRIM 

ABSTRACT. A relation between the zeros of the partial sums and the zeros of 
the corresponding tails of the Maclaurin series for ez is established. This allows an 
asymptotic estimation of a quantity which came up in the theory of the Riemann 
zeta-function. Some new properties of the tails of ez are also provided. 

1. Introduction. We were led to this study of the exponential series from some 
mean-value estimates pertaining to the derivatives of the Riemann zeta-function ([2], 
[11]). It is well known that (,(s) satisfies the functional equation 

r(f) 
r(V) 

In their work on the zeros pk of C^k\s) Conrey and Ghosh [2], assuming the Riemann 
Hypothesis, proved that 

T 
J2 xiPk) ~ otk— 

0<Spk<T Z 7 r 

as T —> oo (the number of pk with0 < Sspk <Tis ^ ±T\ogT). Here 

(1) ak:=k+l-J2e-"J 
7=1 

and i/j = i/j(k) (j = 1, 2, ...,&) are the (distinct) roots of 

(2) Pdz):=t^ 

the k-th partial sum of the Maclaurin series for ez. Conrey and Ghosh [3] also showed 
that for sufficiently large k 

\ak\ <*-<* 

with 0 < f3 < 1 — log 2. Most of the numbers e~uJ are in fact exponentially large as 
functions of k, so it is indeed striking that ak turns out to be exponentially small. Note 
that by Lindemann's theorem ak / 0. 

Upon further scrutiny of the exponential series [12] the stronger estimate 

ock < m k~me-\ 
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for any fixed m > 0, was reached [13]. Two ingredients were employed to obtain this 
result. One was bounds on the coefficients of the reciprocals of normalized tails of 
ez. These bounds were found by determining the values assumed by the normalized 
tails on the unit disk and then applying Cauchy's estimate. The other was—and the 
exponential smallness of ak really hinged on this—the fact that «s_2 = ••• = $_* = 0, 
where sr(= sr(&)) = £*=1 z/J. This also characterizes the partial sums of &\ All ^-tuples 
( i / i , . . . , i/k) with the property s-2 - • • • = £_* = 0 are formed by the roots of Pkiz) (S6s 
and Turân [9]). (Another characterization, by Buckholtz [1], expresses that in a certain 
sense the zeros of partial sums of the exponential series have larger moduli than those 
of the partial sums of any other power series.) 

In this paper we find the asymptotic value of ak as k —> 00. First it is found by direct 
estimation that 

1 r z* 
(3) 2ÏS J\z\=R k\Pk(z)Qk(z) dZ = °' 
where 
(4) Qk(z) = ez-Pk(z), 

as R —• 00 through a sequence which avoids the poles. Then, by means of the residue 

theorem, a connection is established between the zeros of Pk(z)(i/j(k)J = 1 , . . . , k) and 

those of e*(z)(/x/(*),/= 1,2,...). 

THEOREM 1. For every k>2 

k 00 

From some knowledge on the location of /x/'s it will become clear that 

00 

/=i 

(lii denotes the zero of Qk(z) with the least modulus), and this furnishes the asymptotic 
formula for a^ 

COROLLARY 1. As k —+ 00, 

where Q\ is the zero of erfc(z) closest to the origin, 

01 » - 1 . 3 5 + 1.99/ 

ferfc(z) = -7= Jz°° 6~ df w the complementary error function). 

In what follows we shall recount some facts concerning the partial sums and tails of 
ez from the literature. Some further results on the tails will be demonstrated in §3. 
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2. Outline of background knowledge. The Enestrom-Kakeya theorem states 
that the modulus of any zero of CIQ + a\x + • • • + a^, at G IR+, can be at most 
m a x ( f j , ^ , . . . , ^ ) . Hence 
(5) Wj\<k. 

It was first shown by Szegô [10] that the numbers ^ cluster around the simple closed 
curve r = {z : \zel~z\ = 1, \z\ < 1} as k —-» oo, and conversely each point of the Szegô 
curve is a limit point of the normalized zeros. Moreover, as k —>• oo, the proportion of 
the normalized zeros which cluster along a given arc of F is asymptotic to ^Aarg zex~z 

as z moves on the arc. In particular the proportion of the zeros with negative real parts 
tends to \ + ^ as k —> oo. Buckholtz [1] added that ^ always lies in the exterior of F 
within a distance of % from F. 

It is well-suited for our purpose to present a sketch of how such results concerning the 
zeros of the partial sums and the tails were derived by Dieudonné [4]. To see the pattern 
involved in the distribution of the zeros of P*(z) and Quiz) it is convenient to work with 
the normalized tails,/n, defined by writing 

(6) Q^=<ByMlh> 
The power series for/n is 

z z2 zp 

(7) fn(z) = 1 + 7- + ; T- + * • • + i Ô 7T + * * • • 
JKJ (1 + 1 ) (1 + 1)(1 + ^) ( i + I)(i + 2 ) . . . ( i + £) 

v n 7 v n / v n 7 v n / v n 7 v n 7 

We set n = k + 1 and the solutions of 
n\ enz 

(8) Uz)=w 
are ^ . By virtue of (5) we need to consider only \z\ < 1. Let (D) be the domain obtained 
from the unit disk by erasing all points of distance < r to 1, r being an arbitrarily small 
but fixed positive number. First it is shown that in (D) 

(9) Mz) = j^r(l+Xn(z)) 

where Xn(z) —> 0 uniformly as n —-» oo. Using (9) and Stirling's formula in (8) gives 

(10) v /2^( — Y = —^-(1 +rn(z))7 
1 

where rn(z) —+ 0 uniformly in (D) as « —̂  oo. Taking n-th roots decomposes (10) into n 
equations (k = 0 , 1 , . . . , n — 1) 
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The equations (11) may be compared with 

(12) = e n 

z 
with solutions on T to see the distribution of the zeros of the partial sums. Of course the 
immediate neighbourhood of 1, and the possible zeros there, are left in the dark by this 
analysis. 

To look for the zeros of the tails it is first shown that ^"^ffi-i1^ tends to y^y as 
n —-> oo, uniformly in (/)'), the domain formed by removing from \z\ > 1 all points of 
distance < r to 1. Hence, using Stirling's formula, fn(z) = 0 may be expressed as 

(13) • Vniz)) 

where r]n(z) —> 0 uniformly in (Df) as n —> oo. The last equation differs from (10) only 
in the sign of the right-hand side, and its solutions are close to those of (12) on the curve 
r ' = {z : \zel~z\ = 1, |z| > 1}. There are two branches of T', symmetrical with respect 
to the positive real axis. At large abscissae the branch in the upper half-plane behaves 
like y = ex~l. Each of the equations (12) has an infinite number of solutions on r ' . If zp 

and Zp+\ denote two consecutive roots of (12) with the same k, then 9(zp+i — zp) —> 2TT 
as p —> oo. If zp

q) and zp
q} are two roots of (12) corresponding respectively to the values 

q and q' of k and situated consecutively on T\ then $s(zp
q) — zp

q)) —> ^q~n
q)7r asp —> oo. 

Again the neighbourhood of 1 has been unexplored. Dieudonné concludes by remarking 
that the zeros of the partial sums Pk(nz) and the tails/„(z) are situated in a complementary 
fashion, together they tend to the curve r u r ' = {z : \zel~z\ = 1} as n —> oo. 

We now give some lemmas the first two of which follow directly from the definition 

of/„(z). 

LEMMA 1. For every positive integer n and for all z G C 

fn(z)(l-z) = l tfniz) 

LEMMA 2. For every positive integer n and for all z G C 

rn+ 1 
Zfn+\{Z) =fn{ ZJ ~ 1. 

LEMMA 3. The zeros offn(z) are in the region \z\ > 1, \ze \-z\ > 1. 

PROOF. First we show that fn(z) has no zeros on the unit disk. By Lemma 1 if 
fn(w) = 0, then wf„(w) = n. So, if |w| < 1, then |/^(w)| > n. But on the unit disk the 
maximum off„(z) is/^1) = n and/w(l) ^ 0. Now suppose \z\ > 1 and \zel~z\ < 1. Then 

(nz)n 
1%(Z) (zel zfe-n ^ riz 1 „p 

UP-
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so/„ cannot vanish. 
The next is a result due to Buckholtz [1] which can be proved by employing the 

Cauchy inequality for derivatives in conjunction with Lemma 1. 

LEMMA 4 ([1]). The points where fn(z) = 1 are situated within a distance -^ ofV. 

Now we can elicit more information about where fn vanishes. By Lemma 3, all such 
points lie to the left of V. First consider the zeros with large moduli. If fn(u) = 0 and 
UJ is large, then by Lemmas 2 and 4, d{u, V) < x^§^ < ^ . Clearly argo; -+ § ". 
Lemmas 2, 3 and 4 imply further that, for sufficiently large n, the zeros of /„ with 
smallest moduli must also be those closest to 1. Lemma 4 suggests examining the 
possibility fn{\ + -4 )̂ = 0, where s is in a fixed compact set. An alternative expression 
for/n appropriate for this purpose is ([7]) 

Uz)'1*^t"~hCe"f,*nz)''") '•'• 

upon putting t = y^(C ~~ s)> where the path of integration is the horizontal line from s 
Sx/n p-

to the right to oo. As n —•> oo, ({
e
+_s_)n converges to e^ uniformly on every compact set 

in the s-plane. By the dominated convergence theorem, J5°°(l + -$%)ne~^ dQ converges 
uniformly to J5°° e 2 dC, on any compact set in 9s > 0. If fn{\ + ^ ) = 0, then from 
(14) it is seen that, by virtue of Hurwitz's theorem, as n —• 00, sn tends to a limit si 
such that -4= J^° e~ 2 J£ = 1. Hence erfc(^|) = 0. The first hundred zeros of erfc(z) 
have been calculated by Fettis-Caslin-Cramer [5] (the first three pairs are approximately 
-1.35 ±1.99/, -2.18±2.89/, -2.78±3.24/).In particular, as n —• 00, the zeros offn(z) 
with the least modulus are 1 + ^(i-35-±n.99-)^(i) 

3. The zeros of the tails of ez. We shall presently return to the zeros with the least 
modulus after a little digression. Let the zeros UJ\ offn (which are in conjugate pairs) be 
numbered as |a;i| = \ui\ < |a>3| = \u)4\ < • • •, SCJ2/+1 > 0. By inverting (7), write 

1 00 

(15) J7Â=Y,dp*, 

the inversion being valid for \z\ < \u\\. 

THEOREM 2. The normalized tail ofez,fn(z), possesses the infinite product represen
tation (uniformly convergent on compact subsets of€) 

/„(z)=e^n(i--V"-
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PROOF. Clearly fn(z) is an entire function of order 1, with Hadamard factorization 

/»(z)=^n(i--M-
By logarithmic differentiation, when |z| < |o;i|, 

(16) f(z) = a-t{E-Ly-

(Note that the exponent of convergence of fn(z) is 1, therefore £z r ^ is convergent if 

p > 2. Dieudonné's results related in §2 reveal that £/ TK is divergent. However, by 

Lindelof's theorem (see e.g. [6], p. 20), E|W/|<r ~ is bounded as r —•» oo.) On the other 

hand from Lemma 1 and (15) we also have 

(i7) ff(z) = - (TIT+z- 0 = -Jr - » Ê ^ -

Comparing alike coefficients in (16) and (17) shows that a = j ~ , and also 

COROLLARY 2. dp = \ £/ ^ (p > 2). 

COROLLARY 3. \dp\<^\u\\~p; (p> 2). 

PROOF. Observe that for all sufficiently large n, Uui > 1. From the way the zeros 
are located we infer that 3î(o^) > 1 except for some zeros at a distance 0(1) from 1. 
The number of such exceptional zeros must be 0(ri) by §2. Then, for p > 10, we have 
by Corollary 2 

1 

*I4,| < E LUi P 

<—— £ l 

— 1,,. i n - 1 0 ^ wi|p-1 0YI^I1 0 

Sr-FufcfaNoc.)) 

— - ( ^ 5 + 0(„)), 
1̂ 1 

and Corollary 3 is proved. We note in passing that Cauchy's estimate on the unit disk 
implies dp <C 4^ for/? > 2. 

We now return to the problem of locating precisely the least-moduli zeros of fn in 
terms of the zeros of erfc(z). The asymptotic expansion of fn(z) by Soni and Soni [8] 
lends itself to this end. Let 

z = ea 

b = a{2(ea- l - a ) / a 2 } 5 , 
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where z = 1 corresponds to a = 0 and the principal branch of the square-root function is 
taken. Then b = b(z) satisfies 

-h- \-z 
e 2 =ze \ 

Also put 

(18) 

Hn(b) := J°° e~n^-bw) dw 

pn~ ml ( fn \ 
= \hr~e 2 erfc —\l-b). 

\2n V V2 / 

LEMMA 5 ([8]). Let Q, be a compact set in C with the cut, | argz| < ix, \z\ > 0. As 
n —• oo, uniformly for all z G £2, 

/.(*>=! + (»+à + 2à>"(fc)-
z 1 

+ - + 
z - 1 " * n(z - l)3 

Let £ be a zero of erfc(z). Based on the discussion following Lemma 4, for/„(o;) = 0 
we try 

2 c _i 
CJ= 1 — A - g + - + 0{n 2)? 

i n « 

where c will be determined. Then 

b{u) = - \ - £ 
N n -p + 

3 + 0(/i"ï), 

and using the Taylor expansion (up to second order) of erfc(z) around z - g in (18) 

Hn(b) = h2 

• " ^ +0(/T5). 

These are plugged in the formula of Lemma 5 to obtain c = 2^y^-, so that 

LEMMA 6. If erfc(g) = 0, Q fixed, then asn—^ oo 

4. Proof of Theorem 1. By (6), the zeros of Qk(z) are at nui = ///, say. From the 
discussion in §2 we know that |/i/+2| — |/x/| —> 27r as / —> oo. So in order to have the 
contour of integration in (3) stay clear of the zeros of Qk(z) we choose R[ = IMipiii^ an (j 
write ^ = (/?/)£i. Now we claim that if k > 2, then 

(19) 
Zni J\z\=Ri 

z* 
/•^,27ri^|=Jf,fc!/'i(z)ô*(z) 

dz = 0. 
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To see this we examine the values of the integrand on the semicircle z = Reld, 0 < 0 < TT. 
As R —> oo, 
,20) |»i4)hi+o'(s)-
For 0 < Ai < A < A2, where Ai and A2 are fixed, the equality |^ | = A|Pfc(z)| is achieved 
at 

. (k\ogR-logk\+logA / l ^ 
^arccos j^ - + 0 ( ^ ) J . 

2 
A = f (resp.). If 6 £ [</>!, <£2], then 

(21) \Qk(z)\ = \ez-Pk(z)\> 3kl 

Let </>i and fc (resp.) be the angles (in the first quadrant) so determined for A = \ and 

Rk 

At the large-moduli zeros of Qkiz) we have roughly 

(22) g|jz/|cos0/gi|/x/|sin0/ _ lM/1 g#flf^ 

A:! 

Since sinfy —> 1, it is seen once again that |/i/+2| — |/^/| ~ 27r. Moreover, using Ri in 
place of I///| renders the left-hand side of (22) diametrically opposite to what it is with 
|///|. Hence (21) holds for 9 G [<t>\,(j>2] too, provided that/? G ̂ . This proves (19). 

The residues of the integrand at its poles are 

\Pk{z)Qk(zY ') Qt(yj) 

J • 
\k\Pk( 

Res I ; ai I = = e 

Resl , . „ _ ; o l = ik+l . 

Together with (19) this completes the proof of Theorem 1. 

ACKNOWLEDGEMENTS. I am indebted to the referee for his/her suggestion of the 
present version of the results. Formerly I had deduced the same estimate as here (save 
for a constant factor) as an upper-bound for ak from Corollary 3. 
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