THE INHOMOGENEOUS MINIMA OF INDEFINITE QUADRATIC FORMS

E. S. BARNES

(received 5 September 1960)

If $f(\boldsymbol{x})$ is a real indefinite quadratic form in \boldsymbol{n} variables with determinant $d \neq 0$, we set for any real $\boldsymbol{\alpha}$

$$
\begin{aligned}
m(f ; \boldsymbol{\alpha}) & =\inf |f(\boldsymbol{x})| \quad \text { over } \boldsymbol{x} \equiv \boldsymbol{\alpha}(\bmod 1) \\
m(f) & =\sup _{\boldsymbol{\alpha}} m(f ; \boldsymbol{\alpha})
\end{aligned}
$$

A current problem in the geometry of numbers is the determination of bounds for the ratio $m(f) /|d|^{1 / n}$.

Setting

$$
c_{n}=\inf _{f} \frac{m(f)}{|d|^{1 / n}},
$$

Davenport [3] showed that $c_{2}>0$ (see Cassels [2] for a discussion of the literature on c_{2}). Cassels [2, p. 306] remarks that it is not known whether $c_{3}>0$.

It is in fact quite simple to show that

$$
\begin{equation*}
c_{n}=0 \quad \text { for } n \geqq 3 . \tag{1}
\end{equation*}
$$

I establish here the sharper result:
Theorem. For any $n \geqq 3$ and any signature $(r, s)(r \geqq 1, s \geqq 1, r+s=n)$, there exists a quadratic form f of signature (r, s) and determinant ± 1 with $m(f)=0$.

The result in fact holds for any f which represents arbitrarily small nonzero values for integral values of the variables.

We need the following lemma:
Suppose that f has signature (r, s) with $r \geqq 2, s \geqq 1, r+s=n$ and determinant $d \neq 0$, and that \dagger properly represents a value $a>0$; then, for some $\gamma>0$ depending only on n,

$$
\begin{equation*}
m(f) \leqq\left(\gamma a^{n-2}|d|\right)^{1 / 2(n-1) 1}+\frac{1}{4} a . \tag{2}
\end{equation*}
$$

Proof. We may suppose, after a suitable equivalence transformation, that $f(1,0, \cdots, 0)=a$; we may then write

$$
f(x)=a\left(x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{n} x_{n}\right)^{2}-g\left(x_{2}, \cdots, x_{n}\right)
$$

where g is indefinite with determinant $-d / a$.
For any $\boldsymbol{\alpha}$, we may choose $x_{j} \equiv \alpha_{j}(\bmod 1)(j=2, \cdots, n)$ so that

$$
g\left(x_{2}, \cdots, x_{n}\right)=b
$$

with

$$
\begin{equation*}
0 \leqq b \leqq\left(\gamma \frac{|d|}{a}\right)^{1 /(n-1)} ; \tag{3}
\end{equation*}
$$

this is a particular case of a result of Blaney [1] (Theorem 2). With this choice of x_{2}, \cdots, x_{n}, we have

$$
f(x)=a\left(x_{1}+\lambda\right)^{2}-b
$$

We now choose $x_{1} \equiv \alpha_{1}(\bmod 1)$ so that

$$
\left(\frac{b}{a}\right)^{\frac{1}{2}}-\frac{1}{2} \leqq x_{1}+\lambda<\left(\frac{b}{a}\right)^{\frac{1}{2}}+\frac{1}{2}
$$

an elementary calculation now gives

$$
-(a b)^{\frac{1}{2}}+\frac{1}{4} a \leqq f(x)<(a b)^{\frac{1}{2}}+\frac{1}{4} a .
$$

Thus, using (3), we have

$$
m(f ; \alpha) \leqq(a b)^{\frac{1}{2}}+\frac{1}{4} a \leqq\left(\gamma a^{n-2}|d|\right)^{1 /(2(n-1))}+\frac{1}{4} a ;
$$

since this holds for all α, (1) follows immediately.
Proof of the Theorem. Take $n \geqq 3$ and f any indefinite form of signature (r, s), with determinant ± 1, which represents arbitrarily small non-zero values of each sign. (An example of such a form is

$$
\theta x_{1}^{2}-\frac{1}{\theta} x_{2}^{2}+x_{3}^{2}+\cdots+x_{r+1}^{2}-x_{r+2}^{2}-\cdots-x_{n}^{2}
$$

where θ has a continued fraction with unbounded partial quotients.) Since $m(-f)=m(f)$, we may suppose that $r \geqq 2$; then, by the lemma,

$$
m(f) \leqq\left(\gamma a^{n-2}\right)^{1 /(2(n-1))}+\frac{1}{4} a
$$

for any $a>0$ represented by f. Since $n \geqq 3$ and a may be chosen as small as we please, it follows that $m(f)=0$.

This establishes the theorem, and hence the assertion (1).

References

[1] Blaney, H. Indefinite quadratic forms in n variables, J. London Math. Soc. 23 (1948), 153-160.
[2] Cassels, J. W. S. An introduction to the geometry of numbers (Springer, 1959).
[3] Davenport, H. Indefinite quadratic forms and Euclid's algorithm in real quadratic fields, Proc. London Math. Soc. (2) 53 (1951), 65-82.

University of Adelaide.

