THE INHOMOGENEOUS MINIMA OF INDEFINITE QUADRATIC FORMS

E. S. BARNES

(received 5 September 1960)

If f(x) is a real indefinite quadratic form in *n* variables with determinant $d \neq 0$, we set for any real α

 $m(f; \alpha) = \inf |f(x)| \quad \text{over } x \equiv \alpha \pmod{1},$ $m(f) = \sup_{\alpha} m(f; \alpha).$

A current problem in the geometry of numbers is the determination of bounds for the ratio $m(f)/|d|^{1/n}$.

Setting

$$c_n = \inf_f \frac{m(f)}{|d|^{1/n}},$$

Davenport [3] showed that $c_2 > 0$ (see Cassels [2] for a discussion of the literature on c_2). Cassels [2, p. 306] remarks that it is not known whether $c_3 > 0$.

It is in fact quite simple to show that

(1)
$$c_n = 0 \text{ for } n \ge 3.$$

I establish here the sharper result:

Theorem. For any $n \ge 3$ and any signature (r, s) $(r \ge 1, s \ge 1, r + s = n)$, there exists a quadratic form f of signature (r, s) and determinant ± 1 with m(f) = 0.

The result in fact holds for any *f* which represents arbitrarily small nonzero values for integral values of the variables.

We need the following lemma:

Suppose that f has signature (r, s) with $r \ge 2$, $s \ge 1$, r + s = n and determinant $d \ne 0$, and that f properly represents a value a > 0; then, for some $\gamma > 0$ depending only on n,

(2)
$$m(f) \leq (\gamma a^{n-2}|d|)^{1/(2(n-1))} + \frac{1}{4}a.$$

Proof. We may suppose, after a suitable equivalence transformation, that $f(1, 0, \dots, 0) = a$; we may then write

9

$$f(\mathbf{x}) = a(x_1 + \lambda_2 x_2 + \cdots + \lambda_n x_n)^2 - g(x_2, \cdots, x_n)$$

where g is indefinite with determinant -d/a.

For any α , we may choose $x_j \equiv \alpha_j \pmod{1}$ $(j = 2, \dots, n)$ so that

$$g(x_2, \cdots, x_n) = b$$

with

(3)
$$0 \leq b \leq \left(\gamma \frac{|d|}{a}\right)^{1/(n-1)};$$

this is a particular case of a result of Blaney [1] (Theorem 2). With this choice of x_2, \dots, x_n , we have

$$f(\mathbf{x}) = a(x_1 + \lambda)^2 - b.$$

We now choose $x_1 \equiv \alpha_1 \pmod{1}$ so that

$$\left(\frac{b}{a}\right)^{\frac{1}{2}} - \frac{1}{2} \leq x_1 + \lambda < \left(\frac{b}{a}\right)^{\frac{1}{2}} + \frac{1}{2}$$

an elementary calculation now gives

$$-(ab)^{\frac{1}{2}}+\frac{1}{4}a\leq f(x)<(ab)^{\frac{1}{2}}+\frac{1}{4}a.$$

Thus, using (3), we have

$$m(f; \alpha) \leq (ab)^{\frac{1}{2}} + \frac{1}{4}a \leq (\gamma a^{n-2}|d|)^{1/(2(n-1))} + \frac{1}{4}a;$$

since this holds for all α , (1) follows immediately.

Proof of the Theorem. Take $n \ge 3$ and f any indefinite form of signature (r, s), with determinant ± 1 , which represents arbitrarily small non-zero values of each sign. (An example of such a form is

$$\theta x_1^2 - \frac{1}{\theta} x_2^2 + x_3^2 + \cdots + x_{r+1}^2 - x_{r+2}^2 - \cdots - x_n^2$$

where θ has a continued fraction with unbounded partial quotients.) Since m(-f) = m(f), we may suppose that $r \ge 2$; then, by the lemma,

$$m(f) \leq (\gamma a^{n-2})^{1/(2(n-1))} + \frac{1}{4}a$$

for any a > 0 represented by f. Since $n \ge 3$ and a may be chosen as small as we please, it follows that m(f) = 0.

This establishes the theorem, and hence the assertion (1).

References

- [1] Blaney, H. Indefinite quadratic forms in *n* variables, J. London Math. Soc. 23 (1948), 153-160.
- [2] Cassels, J. W. S. An introduction to the geometry of numbers (Springer, 1959).
- [3] Davenport, H. Indefinite quadratic forms and Euclid's algorithm in real quadratic fields, Proc. London Math. Soc. (2) 53 (1951), 65-82.

University of Adelaide.