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Abstract

In this paper we complete two tasks. First we extend the nonsmooth critical point theory of Chang
to the case where the energy functional satisfies only the weaker nonsmooth Cerami condition and we
also relax the boundary conditions. Then we study semilinear and quasilinear equations (involving the
p-Laplacian). Using a variational approach we establish the existence of one and of multiple solutions.
In simple existence theorems, we allow the right hand side to be discontinuous. In that case in order to
have an existence theory, we pass to a multivalued approximation of the original problem by, roughly
speaking, filling in the gaps at the discontinuity points.
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1. Introduction

The purpose of this paper is twofold. First, we want to extend the nonsmooth critical
point theory of Chang [7], by replacing the compactness and the boundary conditions.
Second, we want to study nonlinear elliptic problems at resonance and establish the
existence of solutions and of multiple solutions.

Chang [7], in order to study equations with discontinuities, developed an extension
of the classical smooth critical point theory, to nonsmooth locally Lipschitz func-
tionals. The theory of Chang was based on the subdifferential of locally Lipschitz
functionals due to Clarke [8]. Using this subdifferential, Chang proposed a general-
ization of the well-known 'Palais-Smale condition' ((PS)-condition) and through it
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obtained various minimax principles concerning the existence and characterization of
critical points for locally Lipschitz functions. As is the case with the 'smooth' theory,
we can extend the theory of Chang in two directions. One is to weaken the (PS)-
condition, and use a nonsmooth counterpart of the Cerami condition (C-condition; see
Cerami [6]). It was shown by Bartolo-Benci-Fortunato [4], that in the smooth case,
we can have a deformation theorem and through it minimax principles about critical
points using only the weaker C-condition. The other possible generalization, is to relax
the boundary conditions, namely allow certain inequalities in the minimax principles
to be non-strict. Such generalizations are already well known in the context of the
'smooth' theory (see for example Ghoussoub [9]). In this work we present extensions
of the theory of Chang in both the aforementioned directions (see Section 3).

The second task of this paper is to study nonlinear elliptic problems at resonance.
In Section 4 and Section 5 we consider equations driven by the /7-Laplacian operator
(p > 2) and in Section 6 we deal with semilinear equations (p = 2). Moreover, in Sec-
tion 4 and Section 6, the right hand side nonlinearity / (z, •) is in general discontinuous.
On the other hand, in Section 5 the nonlinearity/ (z, •) is continuous, but we prove the
existence of at least two nontrivial solutions. The proof is based on an abstract mul-
tiplicity result under splitting due to Brezis-Nirenberg [5]. In our work the resonance
is simple, namely we have that the potential function F(z,x) = f*f (z, r)dr goes
to ±oo as |;t| ->• +oo. In this respect our work is similar to that of Ahmad-Lazer-
Paul [3] and Rabinowitz [21, Theorem 4.12, page 25]. Both works deal with semilinear
equations and have continuous nonlinearities. Strongly resonant problems (that is,
F(z, x) having finite limits as x —>• ±oo) were studied by Thews [23], Bartolo-Benci-
Fortunato [4], Ward [25] (for semilinear problems with continuous nonlinearity) and
Kourogenis-Papageorgiou [16] (for quasilinear problems with discontinuous nonlin-
earity). Multiplicity results for semilinear resonant problems with continuous right
hand side were obtained by Solimini [22], Ahmad [2], Goncalves-Miyagaki [10,11]
and Landesman-Robinson-Rumbos [18]. For quasilinear problems involving the p-
Laplacian, existence and multiplicity results were obtained by the authors in a series
of papers, see Kourogenis-Papageorgiou [14-17]. Our work here complements and
partially extends these works. In particular, Theorem 10 and Theorem 11 extend the
existence result of Kourogenis-Papageorgiou [14], where the growth and asymptotic
conditions on / (z, •) are more restrictive. Also, Theorem 12 compared to the results
of Ahmad-Lazer-Paul [3] and Rabinowitz [24], allows a more general growth condi-
tion on the nonlinearity of/, which in the aforementioned works was assumed to be
independent of z € Z, continuous and bounded.

In the next section we recall some basic definitions and facts from the critical point
theory (smooth and nonsmooth) and the Brezis-Nirenberg abstract multiplicity result.
In Section 3 we develop the extensions of the theory of Chang and finally in Section 4,
Section 5 and Section 6 we study resonant elliptic problems. In Section 4 and Section 5
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the equations are quasilinear involving the p-Laplacian, while in Section 6 the problem
is semilinear. Moreover, in Section 4 and Section 6 the nonlinearity is discontinuous
and in Section 5 we prove a multiplicity theorem.

2. Mathematical preliminaries

The nonsmooth critical point theory of Chang [7] is based on the subdifferential
theory of locally Lipschitz functions due to Clarke [8]. Let X be a Banach space and
X* its topological dual. A function 0 : X -*• R is said to be locally Lipschitz, if for
every x € X, there exists a neighbourhood Uofx and a constant k > 0 depending on
i/such that |0(z) — 4>(y)\ < k\\z — y\\ for all z, y e U. For such a function we define
a generalized directional derivative 0o(x; h) at x € X in the direction A e X b y

<p"(x;h) = hm .
x'-t-x X

no
The function h -> <f>°{x;h) is sublinear and continuous. By the Hahn-Banach

theorem we know that <p°(x; •) is the support function of a nonempty, convex and
w* -compact set

30 (x) = {x* e X* : (x\ h) < tf>\x\h) for all h e X}.

The set d</>(x) is called the generalized or Clarke subdifferential of 0 at x. If
0, f : X -» K are locally Lipschitz functions, then 3(0 + f){x) c 30(x) + d\fr(x),
while for any X e OS we have d(X4>)(x) = A30(x). Moreover, if 0 : X -*• R is
also convex, then this subdifferential coincides with the subdifferential in the sense
of convex analysis. If 0 is strictly differentiable (in particular if 0 e C1 (X, K), then
30(JC) = {<p'(x)}. A point x e X is a critical point of 0 if 0 6 30 (x). For details and
additional results we refer to the monograph of Clarke [8].

It is well known that the smooth critical point theory, uses a compactness-type
condition, known as the Palais-Smale condition (PS-condition for short). So if
0 : X —• IR is a C1 function and c e K, we say that 0 satisfies the Palais-Smale
condition at level c (the (P5)c-condition for short), if every sequence {xn}n>i c X
such that <p(xn) "-^-+ c and <f>'(xn) ^ > 0 has a strongly convergent subsequence. If
this is true for every c € K, then we say that 0 ( ) satisfies the PS-condition. In
the nonsmooth setting with 0 : X —> R locally Lipschitz, this condition takes the
following form: every sequence {*„}„>! c X such that <p(xn) ^ » c and m(xn) ^ » 0
has a strongly convergent subsequence. Here m(x) = inf{||JC*|| : x* e d<f>(x)} and
the infimum is actually obtained, because 30(x) is u>*-compact and the norm || • || is
wMower semicontinuous. If 0 € Cl(X, R), then since 30(JC) = {<f>'(x)}, we see that
the above nonsmooth notion is an extension of the original smooth one.
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A weaker form of the (P S)-condition was introduced by Cerami [6], who required
that every sequence {xn}n>i c X such that (j>(xn) -*• c and (1 + \\xn\\)4>'{xn) -*• 0 as
n —> oo, has a strongly convergent subsequence. It was proved by Bartolo-Benci-
Fortunato [4], that this weaker condition suffices to prove a deformation theorem and
using that derive minimax principles. In the next section we do the same thing in
the nonsmooth setting for the theory of Chang [7]. We use the nonsmooth version of
Cerami's condition, which says that every sequence {xn}n>i c X such that </>(xn) —?
c and (1 + \\xn ||)m(;cn) ^ > 0, has a strongly convergent subsequence. In what follows
we write (C)c-condition (or simply C-condition if it holds for every level c 6 IR), for
the Cerami condition at level c.

As we already mentioned in the introduction, our multiplicity theorem in Section 5
is based on an abstract multiplicity result in the presence of splitting due to Brezis-
Nirenberg [5]. Here we recall the exact statement of this result.

THEOREM 1. If X is a Banach space, X = Y ® V with dim Y < oo, R : X ->• Ris
a C1 -functional satisfying the Palais-Smale condition ((P S) -condition) such that for
some r > 0 the following condition hold

(i) R(x)>0forxe V, \\x\\<r;
(ii) R(x)<0forx€ Y, \\x\\ < r;

(iii) R is bounded below and inf* R < 0.

Then /?(•) has at least two non-zero critical points.

Next consider the following nonlinear eigenvalue problem. Here Z c K" is a
bounded domain with a C-boundary f:

- div(||Dx(z)\\p-2Dx(z)) = X\x(z)\p-2x(z) almost everywhere on Z

The least real number A for which (1) has a nontrivial solution is called the first
eigenvalue of the negative p-Laplacian — Apx = — div(|[Z>jc ||P~2Z)JC) with Dirichlet
boundary conditions (that is, (—Ap, WQ'P(Z))) and it is denoted by kt. This first
eigenvalue A.i is positive, isolated and simple (that is, the associated eigenfunctions
are constant multiples of each other). Moreover, we have the following variational
characterization of A.! > 0 via the Rayleigh quotient

(2) A., = min „ „ / : x e o] .
J

This minimum is realized at the normalized eigenfunction u\ (recall that X{ is simple).
Note that if «t minimizes the Rayleigh quotient, then so does \u\\ and so we infer
that the first eigenfunction u{ does not change sign on Z. Moreover, we can show
that Ui(z) ^ 0 almost everywhere on Z and so we may assume that u\(z) > 0
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almost everywhere on Z (note that by the nonlinear elliptic regularity theory Ui e
CU(Z),O < p < 1; see Tolksdorf [24]). For details on these facts we refer to
Lindqvist [20]. The Ljusternik-Schnirelmann theory gives, in addition to A.], a whole
strictly increasing sequence of positive numbers k\ < k2 < k3 < • • • < kk < • • • for
which there exist nontrivial solutions for problem (1). In other words, the spectrum
< J ( - A P ) of (-Ap, WoP(Z)) contains at least these points {kk}k>i. Nothing is known
about the possible existence of other points in <r(—Ap) C [A.!, oo) c R+. However,
if Y = <«!> = RMJ and V is a topological complement (that is, Wo

lp(Z) = Y © V),
then because Â  is isolated, we have

n\Dv\\p i
(3) k*v = inf\——/-:v€V,v^0\>kl, k* = supk*v.

L I I u li J

If p = 2, then A* = k2 is the second eigenvalue of ( -A, WQP(Z)).

3. Abstract nonsmooth critical point theory

In this section we extend Chang's theory to the case where the locally Lipschitz
functional satisfies the nonsmooth C-condition and the boundary conditions are re-
laxed. Throughout this section X is a reflexive Banach space and </> : X —*• K a locally
Lipschitz functional. For each c e l w e set

Kc = {x eX :0e H(x), 4>(x) = c] and <pc = {x e X : <p(x) < c}.

Recalling that Grd<j> = {(x, x*) 6 X x X* : x* e d</>(x)} is sequentially closed in
X x XI (here X* denotes the space X* furnished with the weak topology), we see at
once that if <£(•) satisfies the nonsmooth C-condition, then Kc is compact. We start
with two auxiliary results which are analogous to [7, Lemma 3.2 and Lemma 3.3.]. In
what follows (Ke)t = {x 6 X : d(x, Kc) < 8} for S > 0.

LEMMA 2. If4>:X->- U. satisfies the nonsmooth {C)c-condition, then for each
8 > 0 there exist y > 0 and 0 < e such that

(l + ||jc||)ro(jt) > y far all x € (Kc)
c
s and c - s <<t>(x) <c + e.

PROOF. Suppose the result is not true. Then for yn, en I 0, we can find xn e
(Kc)

c
s, <p(xn) -> c such that (1 + ||jcn||)m(;cn) -»• 0. By virtue of the nonsmooth

(C)c-condition, we may assume that xn —> x in X. Therefore, we have <t>{x) = c.
Moreover, from Chang [7, page 105], we know that if m(x) < limw(jcn) = 0, then
m(x) = 0 and so x e Kc, a contradiction (recall that for any n > 1, xn G (Kc)

c
s). This

proves the lemma. •
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The second lemma gives us a locally Lipschitz vector field which plays the role of
a pseudogradient vector field of the smooth case.

LEMMA 3.1f<p:X-+ K satisfies the nonsmooth (C)c-condition, S > 0 is given
and y, e > 0 are as in Lemma 2, then there exists a locally Lipschitz vector field
v:{xeX: \<p(x) - c\ < e] n (Kc)

c
s -+ X such that

\\v(x)\\ < (1 + 11*11) and (x*, v(x)) > y/2 forallx* e 84>(x).

PROOF. We follow the proof of Lemma 3.3 of Chang [7] with the necessary modi-
fications.

Let x e X and let x* e d(j>(x) such that m(x) = \\x*\\. We have 5(0,11*1) n
84>(x) = 0 (where 5(0, ||**||) = {z* e X* : \\z*\\ < \\x*\\)). So by the separation
theorem, we find u e X with ||u|| = 1 such that (z*, u) < (x*, u) < (y*, u) for all
z* 6 5(0, ||JC*||) and all y* € 8<p(x). Recall that sup[(z*, u) : z* € 5(0, ||**||)] =
||**||. Hence we obtain )//(2(l + ||*||)) < ||**|| < (y*,u) for all y* e d(p(x).
Exploiting the fact that the multifunction v -> d(j>(v) is upper semicontinuous from
X into X*w, for each x e [x 6 X : |0(*) - c\ < e, x e (Kc)

c
s) we find 0 > 0 such

that for all y € B(x, 6) = {y € X : ||v - *|| < 6} and all v* € d^>(y) we have
y/(2(l + \\y\\)) < (y*, «) . Then [B(x, 6)} is a cover of the set {x € X : \<p(x) -c\<

s, x e (Kc)
c
s). By paracompactness we find a locally Lipschitz finite refinement

{#,},£/. Let {£,};<=/ be a locally Lipschitz partition of unity subordinate to {£/,},<=/ and
let v(x) = (1 + ||*||) E,6 /&(*)«,•. Evidently, v : {x e X : |0(*) - c\ < e,x e
(KcYs} -*• X is locally Lipschitz and

IM*)II < (1 + IIJCII) while (v*, «(*)) = (1 + IMI) £ > ( * ) ( / , «/) > K/2. Q

The next theorem (the deformation theorem) is the key tool for the nonsmooth
critical point theory. It extends Theorem 3.1 of Chang [7].

THEOREM 4. If<j> : X -> K satisfies the nonsmooth (C)c-condition, then for every
e0 > 0, and for every neighbourhood U of Kc (ifKc = 0, we take U = 0), fAere exist
0 < s < e0 and n : [0, I] x X -*• X continuous such that for all (t, x) € [0, 1] x X
we have

(a)
(b)
(c)

(d)

(e)

|| r)(t,x) —
\4>(x)-c\
rj({l] x<t>c

<t>(r)(t,x))
7){t,x)^X

x\\ < e(
> £o=*

< 4>(x);
c =» 6(n

1 + ||JC||)/;
n(t,x) =x;

:~e U U;

it,x))<d>(x).
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PROOF. By the compactness of Kc, we find 8 > 0 such that (KC)3S c U. Using
Lemma 2, we find y > 0 and 0 < s < e0 such that y < (1 + ||x||)w(x) for all
x e (ATc)j and c — I < <j>(x) < c + e. Consider the following two closed sets in X:

Q = {x €X:\4>(x)-c\>e}U(Kc)s and

C2 = {xeX: \cf>(x) -c\< e/2] n (Ke)
c».

Evidently, C\ D C2 = 0 and so we find £ : X —>• [0, 1] a locally Lipschitz function
such that £|c = 0 and £|c = 1 . Using the vector field v(x) obtained in Lemma 3, we
define L : X - • X by

ir ,\Hx)v(x) if \<Hx)-c\<e andxe(Kcys;

[0 otherwise.

Clearly, £,(•) is locally Lipschitz. We also have for x e {x e X : \<p(x) — c\ < I,
x e (Kcysy.

(4) ||L(JC)|| = ?(x)||i;(x)|| < (1 + ||x||) and

(5) (x*, L{x)) = -?(x)(x'f u(x)) < -£(*)£ •

For every fixed x € X, we consider the following Banach space-valued Cauchy
problem:

(6) at
a.e. on [0,

r)(x;0) =x.

Since L is locally Lipschitz, problem (6) has a unique solution t](x; •). We have

lh(*;0-*l l< f ||L(ij(x;s))||<fc< [ (l + \\ri(x;s)\\)ds (see (4))
Jo Jo

(7) < I | h (x ; s ) -x | | ^ + (l + ||x||)r.
Jo

By Gronwall's inequality, we have

\\r)(x;t)-x\\<e(\ + \\x\\)t

and so (a) is proved. Also if |</>(x) — c\ > e, then ^(x) = 0 and so ?J(A:; r) = x. So
we have proved (b). Next let h(t) = <t>(r](x; t)). We know that h : [0,1] - • X is
locally Lipschitz, hence differentiable almost everywhere. Moreover, we have (see
[7, page 106])

h'(t) < max (x*, —r)(x;t)\ : x* € d<l>(r)(x;t)) a.e. on T,
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= max[(x*, L(r)(x;t))) : x* e d(t>(j)(x;t))] a.e. on T

\— %(x)y/2 if \d>(x) — c\ < £ and* 6 (Kc)
c.;

[0 otherwise

=>• A(-) is nonincreasing.

Therefore, we infer that for all t € 7 and all JC e X, 4>(r)(x\ t)) < (p(x). This proves
(d). Also if \<j)(x) - c\ < e andx e (ATC)|, we have

/

' j ,

h'(s)ds > ^(J:)— > 0
2

=>• </>(rj(x;O) < 4>(x) ifi(x\t)^x, which proves (e).
It remains to show conclusion (c) of the theorem. Let p > 0 such that (KC)2S 9
5(0, p). Choose 0 < £ < £ such that

(8) 4e <y and 4s(l + p)e < Sy.

We proceed by contradiction. Let x e <f>c+c and suppose that <j>(r)(x; t)) > c — e and
T)(X;1) 6 f/c. We have

(9) c-e <0O?(x;O) < c + f for all / € [0,1].

Also it cannot happen that r)({x} x [0, 1]) n {Kc)2i = 0. Indeed, if this intersection is
empty, from (5) and the properties of £(•), we have

But x e <j>c+t. So combining this with (9), we obtain

<p(x) - 4>(r}(x; 1)) < 2e, then y < As,

which contradicts the choice of £ > 0(see(8)). Therefore, we can find 0 < ft < t2 < 1
such that

d(r,(x;tl),Kc) = 2S, d(rj(x;t2), Kc) = 3S and

28 < d(t){x;t), Kc) < 3c5 for all tx < t < t2.

Using once again (5), we have

~(t2 -h)< ^ h'(s)ds = 0OK*;;,)) - <t>(.r,(x;t2)) < 2e
J
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and hence

Using the last inequality and arguing as in the proof of (a), we obtain

\\L(r,(x;s))\\ds

< e{\ + ||U(JC;/,)||)(/2 - *i) < (1 + P)—e,
Y

which contradicts the choice of e > 0 (see (8)). This proves (c) and so the proof of
the theorem is complete. •

Using Theorem 4 we can derive useful minimax principles for critical points in the
nonsmooth setting. We start by introducing a basic notion of critical point theory.

DEFINITION. Let A, C c X. We say that C links A, if A n C = 0 and C is not
contractible in X \ A.

REMARK. The following is a well-known consequence of degree theory. If X is
finite dimensional and U is an open bounded neighbourhood of x, then dU (= the
boundary of U) is not contractible in X \ [x].

The next abstract minimax principle generates as byproducts the nonsmooth 'Moun-
tain Pass Theorem', 'Saddle Point Theorem' and 'Linking Theorem', under the non-
smooth C-condition.

THEOREM 5. If A , C C X are nonempty, A is closed, C links A, Tc is the set of all
contractions of C, <f> : X —*• K satisfies the nonsmooth (C)c-condition with

c = inf sup <f> o h < oo and sup0 < inf <f>,
fterC[0,l]xC C A

then c > inf A </> and c is a critical value of <$>. Moreover, if c = infA (j>, then there
exists x e A such that x € Kc.

PROOF. Since, by the hypothesis, C links A, for every h e Tc we have h([0, 1] x
C) n A ^ 0. So we infer that c > infA<f>.

First we assume that inf A <j> < c. Suppose that Kc = 0. Let U = 0 and let e > 0
and t) : [0, 1] x X ->• X be as in Theorem 4. From the definition of c, we find h e Tc

such that

(10) (f>(h(t,x))<c + £ foralWe[0, l],x e C.
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Let /f :[0, l]xC^Xbe defined by

\r)(2t,x) if 0 < r < 1/2;

\r,(l,h(2t-l,x)) if 1/2 < * < 1.

It is easy to check that H e F c and for every * € C we have

<t>(H(t,x)) = <l>(r)(2t,x)) <<t>(x) < s u p 0 <c forO<r < 1/2
c

(see Theorem 4(d)) and

l, h(2t - l,x))) <c-s <c for 1/2 <f < 1

(see Theorem 4(c) and recall that h(t, x) e <f>c+£ for all f e [0, 1], x € C; see (10)).
So we have contradicted the definition of c. This proves the nonemptiness of Kc

when c > inf4 <j>. Next assume that c = infA <f>. We need to show that Kc n A / 0.
Suppose the contrary and let £/ be a neighbourhood of ATC with U C\ A = 0. Let
£ > 0 and r] : [0, 1] x X -» X be as in Theorem 4. As before, let /i € F c such that
4>{h{t,x)) < c + £forall(f , ; t) € [0, 1] x C. Then we define H : [0, 1] x C -*• X by

) _ {
[»j(l,ft(2f-l,jc)) if 1/2 < r < 1.

Again we can easily verify that H e Fc. From Theorem 4, we know that for all

0 < t < 1/2 and all x € C, we have

r}{2t,x)=x or <p(r)(2t,x)) < <f>(x) < inf0 = c, then

r)(2t,x)eAc fora l !0</ < 1/2 and all x € C.

For all 1/2 < / < 1 and all x 6 C, we have from Theorem 4(c)

i ) ( U ( 2 f - l , j : ) ) 6 f - E U [ / while ( f "£ U (/) n A = 0.

So / / is a contraction of C in X \ A, a contradiction. This proves the theorem. •

As a first consequence of this minimax theorem, we derive an extended version of
the nonsmooth 'Mountain Pass Theorem' (see [7, Theorem 3.4]).

THEOREM 6. If there exist Xi e X and r>0 such that \\xx || > r, max[0(O), <p{xi)] <
inf[0(x) : ||*|| = r] and <p : X -> K satisfies the nonsmooth (C)c-condition with
c = miyer max/6[0.i] <t>(y(t)), where F = {y e C([0, 1], X) : y(0) = x0, y(l) = x{),
then c > M[<p(x) : \\x\\ = r] and c is a critical value of 4>. Moreover, if c =
inf[0(jc) : ||J:|| = r], then there exists a critical point x of <p with <p(x) = c and
\\x\\ =r.
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PROOF. We apply Theorem 5 with A = {x e X : \\x\\ = r) and C = {0,*,}.
Clearly C links A and c < oo. Let y e T and define

«,.x)f
[xi if x =

Then /i e Tc (see Theorem 5). So,

(11) jnf sup

On the other hand, if h e Fc, then

) i f O < r < l / 2 ;
\h(2-2t,Xl) if 1/2 < / < 1

belongs to f and so

(12) inf sup <t>(h(t,x))>c.
*6rC[0,l]xC

From (11) and (12), we have c = infAerc sup[01]xC <f>(h(t, x)) and so we can apply
Tneorem 5 and finish the proof. D

REMARK. In addition to assuming the weaker nonsmooth (Qc-condition (while
Chang [7] assumes that <p satisfies the nonsmooth PS-condition), here we have proved
the nonsmooth mountain pass theorem under relaxed boundary conditions, that is, it
can happen that max[0(O), 4>(xi)] = inf[0(x) : II* II = r] (in Chang [7] the left hand
side is strictly smaller than the right hand side). Also the choice of 0 as the second
point in C was done only for convenience. In fact we can replace 0 by any x2 e X,
provided that the hypothesis \\xx || > r is replaced by the condition ||JC2 — *i II > r.

The next important consequence of Theorem 5, is an extended version of the
nonsmooth 'Saddle Point Theorem' (see [7, Theorem 3.3]).

THEOREM 7. ifX — Y © V, with dim Y < oo, there exists r > 0 such that

max[0(jc) : x e Y, \\x\\ = r] < inf[0(*) : x € V]

andcp : X —*• R satisfies the nonsmooth (C)c-condition, where

c = inf max0(y(x))

with r = [Y € C(£, X) : y\u = identity}, E = [x e Y : ||x|| < R] and dE =
{x e Y : ||A: || = r), then c > miv<t> and c is a critical value of <p. Moreover, if
c — inf v (j>, then
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256 Nikolaos C. Kourogenis and Nikolaos S. Papageorgiou [12]

PROOF. In this case we apply Theorem 5 with A = V and C = dE. Clearly from
the compactness of E (recall that by the hypothesis Y is finite dimensional), we have
that c < oo. Let P : X -*• Y be the projection operator (see Hu-Papageorgiou [12,
Proposition IV.7.8, Proposition IV.7.9, pp. 502-503]). First we show that with the
aforementioned choices, C links A. Suppose not and let / ibea contraction of C in
X \ V. Let H(t, x) = Ph(t, x), which is a contraction of C in Y \ {0}, a contradiction
(see the remark following the definition of linking). So indeed C links A.

Next let y e T and define h(t, x) = y ((1 - t)x). Evidently h € Fc. So we have

(13) inf sup <f>(h(t,x)) < <Kh(t,x)) < c.
/ l6rC[0,l]xC

Also if h 6 F c and h(l, x) = z\ for all x € C, then we define

if (t,x) 6 [0,1] x C;

" i f ( f , j c )€{ l}x£

which is continuous from ([0, 1] x C) U ({1} x E) into X. Let 9 : E ->• ([0, 1] x
C) U ({1} x E) be a homeomorphism such that 9(C) = {0} x C. Then we see that
£ o 0 € F and so

(14) c < inf sup <(>(h(t,x)).
*€rqo,i]xc

From (13) and (14) it follows that c = inf/,ercsuP|0 „„,-*(/.((,*)) and so we can apply
Theorem 5 and finish the proof. •

REMARK. In this theorem too in addition to assuming a weaker compactness con-
dition of Chang [7] (namely the nonsmooth (C)c-condition), we also use a relaxed
boundary condition, namely we do not require that sup[0(y) : y € Y, \\y\\ = r] be
strictly smaller than inf v<f>. In our formulation equality is also possible.

The next theorem is not in Chang [7] and is a nonsmooth generalization of the well-
known 'Linking Theorem' of Rabinowitz [21, Theorem 5.3, page 28] with relaxed
boundary condition.

THEOREM 8. IfX = Y © V with dim Y < oo, with 0 < r < R and e € V with
||e || = 1 such that

max[<t>(x) :x€dQ]< inf[4>(x) : x e dB(0, r) n V],

where Q = {x = y + te : y e Y,t > 0, ||*|| < R] and dQ is its bound-
ary in Y © Re, and <p : X —> R satisfies the nonsmooth (C)c-condition, where
c = infyermax.x€Q(i>(y(x)) with F = {y 6 C(Q, X) : yUg = identity}, then
c > inf[<p(x) : x e dB(0, r) n V] and c is a critical value. Moreover, if c —
inf[0(x) : x e 35(0, r) n V], then KC n (3fi(0, r) D V) / 0.
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[13] Nonsmooth critical point theory 257

PROOF. Because Q is compact, it is clear that c < oo. Let Pi : X —>• Y and P2 :
X -*• V be the projection operators on Y and V and let A = d 5(0, r) D V and C = 3 Q.
If h(t, x) is a contraction of C in X \ A, then //(f, x) = Pxh(t, x) + || P2h(t, x)\\e is
a contraction of C in (V © IRe) \ {re} which is not possible (see the remark following
the definition of linking). Moreover, as in the proof of Theorem 7, we can verify that
c = inf/,erc sup[0 l]xC<f> o h. So we can apply Theorem 5 to finish the proof. •

We conclude this section with a result which is a direct consequence of Corollary 2.3
of Zhong [26] and extends Theorem 3.5 of Chang [7J.

THEOREM 9. If 4> : X -* K satisfies the nonsmooth C-condition and is bounded
below, then there exists ? e X such that (f>(x) = inf* <j> = c (and sox~ e Kc).

4. Equations at resonance with discontinuities

Let Z € RN be a bounded domain with a Cl+a-boundary r (0 < a < 1). We
consider the following quasilinear elliptic resonant problem:

-div(\\Dx(z)V-2Dx(z))-Xl\x(z)\'>-2x(z)=f(z,x(z)) a.e. on Z 1
xw=0, 2<p<oo. J

We do not assume tha t / (z, •) is continuous. It is well known then that (15) need not
have a solution. Then we replace (15) by a multivalued equation which approximates
it and is obtained by, roughly speaking, filling in the gaps at the discontinuity points of
/ (z, •)• For the resulting elliptic inclusion, we can develop an existence theory based
on the abstract results of Section 3. We introduce the following two functions:

fi(z,x) = l i m / ( z , x ' ) — limess inf f(z,x') and
X'->X S10 \x'-x\<S

fi(z,x) = lim/(z,.x') = limess sup f(z,x').
x'->x HO \x'-x\<S

Let f(z,x) = {y e R : fi(z,x) < y < f2(z,x)} and consider the following
multivalued approximation of (15):

) ) l \ ( ) \ ( ) f ( , ( ) ) a.e. on Z
, l r = 0 , 2 < p < o o .

In the sequel we deal with (16). By a solution of (16), we mean a function x €
<"(Z) such that div(\\Dx(-)\\"-2Dx(-)) e L\Z) and -div(||Dx(z)\\"-2Dx(z)) -
^i\x(z)\p~2x(z) = u(z) almost everywhere on Z, with u € O(Z), fi(z,x(z)) <
"(z) 5 f2(z,x(z)) almost everywhere on Z.
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In this section we prove an existence theorem for problem (16) under general
growth conditions on the discontinuous nonlinearity f (z,x), extending this way an
earlier existence theorem by the authors [14]. The precise hypotheses on / (z, JC) are
the following:

H (f ) i : / : Z x K -*• R is a Borel measurable function such that

(i) fi, f2 are both N-measurable functions (that is, for every x : Z —• K measur-
able function, z -> /,(z, x(z)), i = 1,2, are measurable);

(ii) there exist ax € L°°(Z) and ct > 0 such that for almost all z € Z and all x e K

\f(z,x)\ < I P - l

(iii) for some 0 < fx < p we have l im^^^ (/(z,x)x — pF(z,x))/^^ > 0
uniformly for almost all z e Z (recall that F(z,x) = /„* f(z, r)dr, the potential
function corresponding to / ) ;

(iv) \imx_0pF(z, x)/\x\p < —kt uniformly for almost all z € Z;
(v) there exists £ 7̂  0 such that fz F(z, ?«i(z)) dz > 0.

We have the following existence result.

THEOREM 10. IfhypothesesH(f)i hold, then problem (16) has at least one nontrivial
solution.

PROOF. Let <p : WlP(Z) -> K be defined as

4>(x) = -\\Dx\\p
p - ^-\\x\\; - f F(z,x(z))dz.

P P P P Jz

We know that 0(-) is locally Lipschitz (see [7, page 111]). In what follows let
f : Wo"(Z) - • R be defined by f(x) = fz F(z,x(z)) dz.

CLAIM 1. <p(-) satisfies the nonsmooth C-condition.

Let {xn}n>i c WoP(Z) be a sequence such that \<p(xn)\ < M for all n > 1 and
(1 + ||jcn||>m<jcn) " - ^ 0. Letxn* € d<p(xn) such that m(xn) = \\x*\\, n > 1. We know
that

x*n = A(xn) - k^rh, - un

with A : Wo'p(Z)-• Whq(Z) the nonlinear operator defined by

(A(x), y) = I \\Dx(z)\\p-2(Dx(z), Dy(z))v> dz
Jz
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for all y e WQ"(Z) and un e d\jr{xn), n > 1. From Chang [7] we know that
un € Lq(Z) andfi(z,xn(z)) < un(z) < fi{z,xn(z)) almost everywhere on Z. We
have

\{x*,xn)\ < £„ and \<p(xn)\ <M, n > 1, with e, I 0,

(17) =» -£n<-| |£>^| | ;+A1| |xn | | ;+ f un(z)xn(z)dz<sn and

(18) -p^<||DJc(1||J-X1||jcli||J- f pF(z,x(z))dz<PM.
J z

Adding (17) and (18), we obtain

f(un
Jz

(19) -£tt-pM< f(un(z)xn(z)-pF(z,xn(z)))dz<sn+pM.
Jz

By the hypothesis H(fh (iii), given e > 0, we find Mx = M](e) > 0 such that for
almost all z € Z and all |JC| > Mu we have

(20) f(z,x)x-PF(z,x)> 08-6)1*1", ( 0 - e > O ) .

On the other hand, by the hypothesis H(f)i (ii), for almost all z e Z and all |JC | < Mi
we have

(21) \f(z,x)x-PF(z,x)\<a2(z) witha2 e

Therefore, from (20) and (21) we have that for almost all z e Z and all z e

/ ( * , * ) * -pF(z,x) > (/8 -

Thus going back to inequality (19), we obtain (ft - e)\\xn\\* < fi{ for some ^ > 0,
then {xn}n>i c LM(Z) is bounded.

Next, from the hypothesis H(fh (ii), we see that for almost all z e Z and all x e IR
we have

F(z,x)<ai(z) + r1\x\'1 witha3€L°°(Z), IJ > 0

withp < ̂  < min[p*,/7(// + fi)/N, fi + p]. Since (tz. < q < p*, we find 0 < 0 < 1
such that 1/g = (1 — ^) /M + #//>*• Using the interpolation inequality, we have

(22) llx.ll, < Hx j j f l x j ' . < PiWxnC < AH*-llL f o r s o m e A. ft > 0

(recall that Wo
lp (Z) is embedded continuously in Lp' (Z)). Recall, from the choice of

the sequence {.*„}„>, c Wo
lp(Z), that |0(xn)| < M for all n > 1, then

-HflJCllJ - - l k n | l p ~ /" F(z,xn(z))dz < M, then
P P P p Jz
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-\\Dxn\\
p

p<-\\xn\\
p + \\a3h+r1\\xn\\'>+M

P P

— llJc.li; + Italli + r)\\xn\\
q
q + M for some ft > 0.

Let r = q/p > 1, r' > 1 the conjugate exponent (that is, 1/r + l/r' — 1) and on
\\xn\\

p apply Young's inequality with r, r1 > 1. We have

p

Thus we can write that

-\\Dxn\\ < ft(A.i) + /36||jcB||« for some ft (A.,), ft > 0
P

(23) < ft(A.,) + Pj\\xn \\
eq for some ft > 0 (see (22)).

If p < TV, then since \/q = (1 - 0 ) /M + 0/p*, then ^^(ju. - p*) = up* - qp*,
then 9q = (up* - qp*)/(n - p*) = p*(q - M)/ (P* - fi) < H < p, because
q < p(N + (J.)/N, then (q — p)N/p < /x.

lip > N, then p* = +oo (Sobolev embedding theorem) and so l/q = (1 - 6)/fi,
then q — q8 — fx, then Oq — q — fi < q — (q — p) = p, because q < fx + p.

Therefore, in both cases we have 6q < p. Using this fact in (23), together with
Poincare's inequality we infer that {*„}„>] c WQP(Z) is bounded. Thus by passing
to a subsequence if necessary, we may assume that*,, —> x in WQP(Z) as n —> oo. If
we denote by {•, •) the duality brackets for the pair ( WQP(Z), W~Ug(Z)), we have

(A(xn),xn - x) - ki j \xn(z)\p-2xn(z)(xn -x)(z) dz

- / un(z)(xn-x)(z)dz<en\\xn-xh,p
Jz

with sn i 0. Since Wo
lp(Z) is embedded compactly in LP(Z) (Sobolev embedding

theorem), we have that xn —> x in Lp (Z) and so

/ \xn(z)\p-2xn(z)(xn -x){z)dz "-^ 0 and I un(z)(xn-x)(z)dz "-^ 0.
Jz Jz>z

Therefore, we obtain

lim(A(xn),xn-x) <0.
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But we know (see for example Kourogenis-Papageorgiou [14]) that A is monotone,
semicontinuous, hence maximal monotone and of course pseudomonotone (see Hu-
Papageorgiou [12]). Thus we have

(A(xn),xn) -> {A(x),x) then \\Dxn\\p -+ ||D*||P.

We already know that Dxn -+ Dx in LP{Z, RN). Since LP(Z, RN) is uniformly
convex, we infer Dxn —*• Dx in LP(Z, RN) and so xn —> x in WQP(Z) which proves
the claim. •

CLAIM 2. There exist ft, ft > 0 such that <f> (x) > ft ||JC ||p - f t ||JC ||" with p <v<p*.

By the hypothesis H(f)( (iv), given s > 0 we find S > 0 such that for almost all
z € Z and all |JC | < 8 we have

F(z,x)<-(-Xl+e)\x\".
P

Also from the hypothesis H(fh (ii), we have

\F(z, x)\ < a4(z) + r]'\x\p almost everywhere on Z

with a4 € L°°(Z), t)' > 0. Therefore, we find a > 0 large enough so that for
P < v < p* we have

F(z,x) < -(-A., +e) |* | p +cr|jcr almost every where on Z, forallx € R.
P

Therefore, for every x e Wo
lp(Z) we have

4>(x) = -\\Dx\\p
p - -\\x\\" - f F(z,x(z))dz

P P P P Jz

Choose £ > 0 so that e < A.(. So from Poincare's inequality and since WQP(Z) is
embedded continuously in L"(Z) (recall that v < p*), we can find ft, ft > 0 such
that

0(*) > ft II* V - f t 11*11" for all x e Wo"(Z).

This proves the claim. •
Using Claim 2 we find r > 0 small enough such that
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On the other hand, </>(0) = 0 and by the hypothesis H(f)i (v) for the particular £ ^ 0,
we have (see (2))

f f
~ / F(z,t«i(z))rfz= /Jz Jz

„n .n> ^ T Vp\\Dui\\p
p p\\uifp

So Claim 1 permits the use of Theorem 6 which gives us x 6 WQP(Z) such that
<p(x) > 0 (hence x ^ 0) and 0 e 30 (x).

From the inclusion we have that

with M 6 d\/f(x), hence/i(z, JC(Z)) < u(z) < f\(z,x(z)) almost everywhere on Z.
For every 0 e C™(Z) we have

I \\Dx(z)\\p-2(Dx(z), D0(z))x« dz
Jz

-A, [ \x(z)\p-2x(z)9(z)dz- [ u(zMz)dz = 0, then
Jz Jz

,^) = A1 f \x(z)r2x(z)0(z)dz+ / u{z)6{z)dz.
Jz Jz

(24) (-di

From the representation theorem for the elements in W~lq(Z) (see Adams [1]),
we see that div(||Dx||"-2Dx 6 r ' - « ( Z ) . Note that C™(Z) is dense in ^ ' " ( Z ) and
W-l-i(Z) = WoP(Z)*. So from (24) it follows that

-div (\\Dx(z)\\p-2Dx(z)) - li\x(z)\"-2x(z) e/(z,*(z)) a.e. on Z
xw = 0, 2 < p < oo.

then A: e WQP (Z) is a nontrivial solution of (16). •

5. Multiple solutions for problems at resonance

In this section we consider quasilinear problems at resonance with the Caratheodory
right hand side. So we deal with problem (15). Using Theorem 1, we prove the exis-
tence of at least two nontrivial solutions. Recall that a function / : Z x K - > R i s a
Caratheodory function if for all x 6 OS, z -*• f (z, x) is measurable and for almost all
z e Z, x —>• / (z, x) is continuous. Recall that a Caratheodory function is jointly mea-
surable, hence N-measurable (see Hu-Papageorgiou [12, Proposition II. 1.6, page42]).
The hypotheses on the nonlinearity / (z, x) are the following:

H(f)2: / : Z x K - > K i s a Caratheodory function such that
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(i) for every M > 0, there exists aM e L°°(Z) such that for almost all z e Z and
all |JC| < M we have \f(z,x)\ < aM(z);

(ii) there exists S > 0 such that for almost all z € Z and all JJC | < S, we have
F(z,x)>0;

(iii) there exists 0 e L°°(Z) with #(z) < 0 almost everywhere on Z and the inequa-
lity is strict on a set of positive Lebesgue measure such that lim|i|_oop F(z, x)/\x \p =
9(z) uniformly for almost all z € Z;

(iv) lim^^o PF(z, x)/\x \p = 0 uniformly for almost all z € Z;
(v) there exists £ > 0 such that fzF(z, £«i(z)) dz > 0.

We have the following multiplicity result.

THEOREM 11. Ifhypotheses H(f>2 hold, then problem (15) has atleasttwo nontrivial
solutions.

PROOF. AS before the energy functional 0 : Wo
lp(Z) -*• K is defined by

/ ( ) - -\\x\\p
p - f

P P Jz
F(z,x(z))dz.

Now we have <f> e C\W0
Ip(Z)). By the hypothesis H(f)2 (iv), we find 1 > Si =

8i(e) > 0 such that for almost all z e Z and all \x\ < Si we have F(z, x) < e/p\x\p.
Combining this with H(f)2 (i) we obtain that for almost all z € Z and all x € K

£
C251 F(7 jel < — \x V 4- ft Ixl**

with p < \x < p* (recall that p*, the critical Sobolev exponent, equals Np/(N — p)
if p < N and +oo if p > N).

Let WQP(Z) = Y © V, where F = KM, and V a topological complement.

CLAIM 1. There exists r, > 0 such that(j>(v) > 0 for all v e V, \\v\\ < rx.

Using (3) and (25), for every v e V, we have

1
.. ..„ - - I M I £ - f F(z,x(z))dz

P ' P P Jz

for some ^2 > 0,
P - - -

for some p3 > 0,
P

https://doi.org/10.1017/S1446788700002202 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002202


264 Nikolaos C. Kourogenis and Nikolaos S. Papageorgiou [20]

Choose e > 0 so that kt + e < k*v. Then we have

for some /J4 > 0 and all v G V. Since 6 > p , by choosing rx > 0 small enough we
see that <p{v) > 0 for all v € V, \\v\\ < r,.

CLAIM 2. 77iere existe r2 > 0 sKcfc that <j>(,tux) < 0 for all \t\ < r2.

We have

F(z,tudz))dz
z

\t\p \t\p f

P P P P Jz

= - f F(z,tUl(z))dz.
Jz

Since «i e Cl(Z) (see Lieberman [19, Theorem 1]), from the hypothesis H(f)2 (ii) it
follows that if r2 = <5/ll"i IL, we have that 4>{tui) < 0 for all |/| < r2.

CLAIM 3. 0 ( ) satisfies the (P S)-condition.

Let {xn}n>i c WQP(Z) be such that {<£(*„)}„>, is bounded and <p'(xn) "-^ 0. Let
t/r : Wo

lp(Z) ^ R be denned by VOO = \\Dx\\p - k^xW? - fze(z)\x(zW dz. We
show that there exists £ > 0 such that i/r(x) > t-\\Dx\\p

p. Suppose not. Then we can
find {xm}m>0 <= Wo

lp(Z) with ||Dxm||p = 1 such that f(xm) I 0. Using Poincare's
inequality and by passing to a subsequence if necessary, we may assume that xm -^ x
in WoP(Z) andxm -+ x in U(Z). Thus we have

0 = l i m ^ O t J > lim H J I £ , | | | | J

[ d(z)\x(z)\p dz > 0 (Rayleighquotient),- [
Jz

a contradiction. So there exists £ > 0 such that \jf(x) > %\\Dx\\p for all x G Wlp(Z).
Now by virtue of hypothesis H(f)2(iii), given e > 0 we can find M = M(e) > 0 such
that for almost all z G Z and all \x\ > M, we have F(z,x) < Q(z)\x\p/p. On the
other hand, from the hypothesis H(f)2 (i), we know that for almost all z € Z and all
\x\ < M, we have \F(z,x)\ < aM(z). Thus we infer that there exists ax e L°°(Z)
(take for example ax (z) = aM(z) + ||#||oo) such that for almost all z G Z and all z G K,
we have

(26) F(z,x)<-e(z)\x\p+e
P
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Using (26) we have

<fi(x)>-\\Dx\\p-^-\\x\\p-- [e(z)\x(z)\pdz-P5, for some ft > 0,
P P P Jz

P P

From the above inequality we see that #(•) is coercive. Since {</>(*«) }n>i is bounded,
we must have that {xn}n>! c WQ'P(Z) is bounded and so by passing to a subsequence
if necessary, we may assume that xn -4- x in WQP(Z). Then arguing as in the proof
of Theorem 10 we have that xn -> x in WQ'P (Z), which proves the claim. •

Finally note that 0 (•) being coercive is bounded below, while by virtue of hypothesis
H(f)2(v) and since \\Dui\\p = A-i||«i|l^, we have that infW>.P(Z)<j> < 0. These facts
together with Claim 1, Claim 2 and Claim 3, allow as to use Theorem 1, which gives
*i / JC2, X\,xi ^ 0, such that </>'(*i) = <f>'(x2) = 0. The same argument as in the
proof of Theorem 10, shows that xux2 e WQ'P(Z) are nontrivial distinct solutions
of (15). •

6. Semilinear problems at resonance

In this section we prove an existence theorem for the semilinear problem (that is,
p = 2) at resonance with a discontinuous right hand side. So our problem is the
following:

( -Ax(z)-kiX(z)=f(z,x(z)) a.e. on Z J
1 *lr = 0. J

As before (see Section 4), since we do not require / (z, •) to be continuous, by
introducing the functions f\ {z,x) = limt, .xf (z, x') and f2(z,x) = limx^xf (z, x'),
we pass to the following multivalued approximation of (27):

- A * ( z ) - X,x(z) € f{z,x(z)) a.e. on Z

x l r = 0

where f(z,x) = {v e R : fi(z,x) < y < f2(z,x)}. Our hypotheses on the
discontinuous nonlinearity / (z, x) are the following:

/ : Z x l - > E i s a Borel measurable function such that

(i) / i and f2 are both N-measurable functions
(ii) for every M > 0, there exists aM € L2(Z) such that for almost all z e Z and

all |*| < M we have \f (z, JC)| < aM{z);
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(iii) liiri|.t|_0O/ (z, x)/x — 0 uniformly for almost all z 6 Z;
(iv) if

2 r
- f(z,x)dr-fi(z,x) rfx^O;
X Jo
0 if x = 0

and
1 r

f (z, x) dr -/2(z, x)
- /
* Jo
0 if x = 0,

then G7(z) = limx^_oo Gi(z, x) and G^(z) = limJ_+00 G2(z, x) exist uniformly for
almost all z e Z, G^, Gj e L2(Z) and JZGX (z)ux(z)dz < 0 < /zG2

f(z)w,(z)rfz.
We have the following existence theorem.

THEOREM 12. If hypotheses H(f)i hold, then problem (28) has at least one nontrivial
solution.

PROOF. We consider the energy functional <p : H0\Z) —> 1 defined by

1 , A., , r
</>(*) = - | | £ > ; C | | 2 - - H | J C | | 2 - / F(z,x(z))dz.

By virtue of hypothesis H(f)3 (iii), given e > 0 there exists M = M(e) > 0 such
that for almost all z 6 Z and all |JC| > M we have | / (z, x)\ < s\x\. Combining this
with hypothesis H(f)3 (ii) we infer that for almost all z £ Z and all i e l , w e have

(29) \f(z,x)\<£\x\+ai(z)

with ax e L2(Z). Evidently the same growth condition is satisfied by/i and/2.

CLAIM 1. The energy functional $(•) satisfies the nonsmooth PS-condition.

Let [xn}„>! c Ho
{ (z) be a sequence such that {0(*„)}„>! is bounded and m(xn) —? 0.

We show that {*„}„> i is bounded. Suppose it is not bounded. Then we may assume
that \\xn\\ "-^+ oo. Letx* € 30(xn), n > 1, such that m(xn) = \\x*n\\. We have

x* = A(xn) - Xixn - wn, n > 1,

where A e S?(H0\Z), H~\Z)) is defined by (A(x), y) = fz(Dx(z), Dy(z))w dz
and wn € L2(Z), fx(z, xn(z)) < wn(z) < /2(z, xn(z)) almost everywhere on Z. Let
Y = (Rui and V = K1. Then H0'(Z) = K0 V. We can write that*,,, with tn e /? and
i»n 6 V. From the choice of the sequence {xn}n>i

K* .̂ vn)\ < ^lll^nll for some f}x > 0,
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then, since fz u{(z)vn(z) dz = 0,

267

- f
Jz

then (using (31))

WDvJl - XtHv.Hl - e|k,||2|Kll2 - NIWKIh < AII«• IIu,

then

(30) (l ^-) \\Dv\\l- ^-) \\Dvn\\l - e||*.||,.2Hi;,,||,,2 - Ua2ll2llu.il ,.2 < Pi\\vn\\h2

since on V we have \\Dv\\\ > -̂2IÎ III for all v e V; here X2 > 0 is the second
eigenvalue of ( - A , HQ(Z)) and k2 = A* (see (3)). Divide (30) by ||un||i,2 and use
Poincare's inequality to obtain

with c > 0. Now divide this last inequality by ||xn||ii2. We obtain

I I * . II 1.2 I I * . II 1.2 " I k . II 1.2

Since k\ < k2, we infer that

Let £ | 0 to conclude that

(31)

77— II Un II 1.2 k2

lim < £.
I k II 1,2 ~ C{k2-kx)

I "nil 1,2 n-oo

II ..2
0.

We also know that | |*J2
>2 = fn

2||M,||2,2 + II".II 1.2 = t + II"-II 1.2 ^ s o

, l l ^ l | , 2 , .
+ 7—rr- = 1 hencer II2 l l r II2

^f? I! 1,2 1 1 * * II 1,2 I k 11 ,,2
±1.

Suppose without loss of generality that fn/ |k | | i ,2 —? +1 (the analysis is the same if
Wlkili .2 ^ - 1 ) . Then tn " ^ +00 and if yn = *n | |*n | | i , 2 we have yn "-^% ux in
H£(Z). Forn > 1, let

hn(z) =

F(z,xn(z))
*.(z)

0

if *.(z) 56 0;

otherwise.
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Then we have

(32)

*;. y*) - T^T = f Mn(z)yn(z) dz- f wn(z)yn(z) dz
ll*nlll,2 JZ JZ

> [2hn(z)yn(z)dz- [ f2(z,xn(z))yn(z)dz

- f fi(z,xn(z))yn(z)dz
J(yn<0)

= f G2(z,xn(z))yn(z)dz- I Gfa

From the choice of the sequence {*„},,>i c //O'(Z) we have that (x*, yn) —*• 0 and
2<f>(xn)/\\xn\\i,2 5 M/ll-*nlli,2 —> 0. In addition, at least for a subsequence, we have
X{y.>o) "~+ Xz = 1 almost everywhere on Z. Thus by passing to the limit in (32), we
obtain

JJ
which contradicts hypothesis H(f)3 (iv). This proves the boundedness of {xn}n>i c
HQ(Z). SO we may assume that xn -^ x in //0' (Z) as n -*• oo and proceeding as in the
previous proofs, we have that JC,, ^-> x in //O'(Z) and so </>(•) satisfies the nonsmooth
PS-condition. D

CLAIM 2. </>(/«i) -*• —oo as \t\ -»• oo.

From the hypothesis H(f)3 (iv), given e > 0, we find M = M(e) > 0 such that for
almost all z e Z and all JC < — M we have

03,

Note also that from the definition of G\ (z, x), we have

2 fx

X3 J0

1
f(z,r)dr-—f(z,x)

X2
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Using this inequality in (33), we obtain

<±(JM) a.e. on Z, for a!l :,<-«.
dx \ x )dx

Integrating this inequality on [y, x], y < x < —M, we have

(34) _ ^ i ) + £ f c 3 0 < Z W + S?fe)>
x y x y

From (29) we know that for almost all z € Z and all r < 0 we have

f(z,x)<-er + ai (z), ax e L2(Z), then
If'.. w e , fli(z) . ,. F a - y ) e

— / / ( z , r)dr>-- + —— hence hm J— > - -
y2Jo 2 y2 ^_oo y2 2Let £ 4- 0 to conclude that

So, if in (34) we let y —> —oo, we obtain that for almost all z € A and all x < —M
we have

F(z,x) . — F(z,x) ,
<^£(z). then lim <#£(z) almost everywhere on Z.

X JC—»-—oo x

Letting e | 0, we have that

(35) lim : —<G7(z) almost everywhere on Z.
x-+—oo x

Similarly, we can show that

(36) lim :— > G^{z) almost everywhere on Z.
JT-»+O0 X

Suppose the claim was not true. Then we can find |/n| -*• +oo such that (j>(tnut) > — y
for some y > 0. First assume that tn -*• —oo. We have (l/tn)4>(tnui) < —y/tn.
Therefore,

— 1 If
lim -(f>(tnui) < 0, lim / F(z, tnui(z))dz < 0,

tn tn Jz

lim - / F(z, tnUl(z))dz > 0, / G7(z)«i(z)dz > 0 (see (35)),
'n JZ Jz

which contradicts H(f)3 (iv). Similarly, if tn -*• +oo, we obtain using (36)

G+(z)Ul(z)rfz<0,

which contradicts H(f)3(iv). Therefore, the claim is true and we have (j>(tu{) —• —oo.
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CLAIM 3. 4>(v) -> +00 as ||u||i,2 -> 00, v e V (hence (pw is bounded below).

Since for v e V, \\Dv\\j > X2\\v\\2
2, X2 > A., and using (29) we have for all v € V

<Hv) > ^||Z>v|ll - y I M I * - E-\\v\\2
2 - \\aA2\\v\\2

f ) \\D\\\> - 1 - — ) | |Du | | ; - / J | |D i / | | 2 for some p > 0. j
2 \ X 2 X 2 J j

Choose e > 0 so that Xt + e < k2. Then from the above inequality, it is clear that j

<p(v) —> +oo as ||u||i,2 - * oo. Hence <f>\v is bounded below. •

Claim 1, Claim 2 and Claim 3 permit the application of Theorem 7, which gives us •

x 6 HQ (Z) such that 0 e d<j>(x). As before we conclude that x solves (30). •

REMARK. We know that in this case there exist an orthonormal basis {«m}m>i of

L2{Z) and a sequence of positive real numbers {A.m}m>i with Xm —>• +oo such that

0 < X{ < X2 < X3 < ••• < Xm < ••• a n d u m e H*(Z) D C X ( Z ) , m > 1 , a r e
solutions of (1) with p = 2. Moreover, these higher eigenvalues have variational

characterizations similar to (2) (see Kesavan [13]). So, in this case, in contrast to the

case p > 2, we have full knowledge of the spectrum of (—A, Ho' (Z)). Thus what we

did for the resonant at X\ problem, we can do it for the problem which is resonant at

some higher eigenvalue, using the same approach with minor modifications.
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