A CHARACTERIZATION OF IDENTITIES IMPLYING GONGRUENCE MODULARITY I

ALAN DAY AND RALPH FREESE

0. Introduction. In his thesis and [24], J. B. Nation showed the existence of certain lattice identities, strictly weaker than the modular law, such that if all the congruence lattices of a variety of algebras \mathscr{K} satisfy one of these identities, then all the congruence lattices were even modular. Moreover Freese and Jonsson showed in [10] that from this "congruence modularity" of a variety of algebras one can even deduce the (stronger) Arguesian identity.

These and similar results $[\mathbf{3} ; \mathbf{5} ; \mathbf{9} ; \mathbf{1 2} ; \mathbf{1 8} ; \mathbf{2 1}]$ induced Jónsson in $[17 ; 18]$ to introduce the following notions. For a variety of algebras \mathscr{K}, $\operatorname{Con}(\mathscr{K})=\operatorname{HSP} \theta(\mathscr{K})$ is the (congruence) variety of lattices generated by the class $\Theta(\mathscr{K})$ of all congruence lattices $\theta(A), A \in \mathscr{K}$. Secondly if ϵ is a lattice identity, and Σ is a set of such, $\Sigma \vDash^{c} \epsilon$ holds if for any variety $\mathscr{K}, \operatorname{Con}(\mathscr{K}) \vDash \Sigma$ implies $\operatorname{Con}(\mathscr{K}) \vDash \epsilon$.

In [2] and [16] characterizations of $\operatorname{Con}(\mathscr{K}) \vDash \bmod$ and $\operatorname{Con}(\mathscr{K}) \vDash$ dist were found (mod (dist) is the modular (resp. distributive) law). These statements express the so-called congruence modularity or congruence distributivity of a variety \mathscr{K}. Furthermore in [11] it was shown that for a variety of semigroups $\mathscr{K}, \operatorname{Con}(\mathscr{K}) \vDash \epsilon$ where ϵ is any non-trivial lattice identity implies \mathscr{K} is congruence modular.

The aforementioned results led to a conjecture that there existed no proper non-modular congruence varieties but this conjecture was shattered by a recent result of Polin [25], where a variety of algebras \mathscr{P} is produced that is not congruence modular and which has $\operatorname{Con}(\mathscr{P}) \neq \mathscr{L}$. A detailed analysis of this variety \mathscr{P} (and $\operatorname{Con}(\mathscr{P})$) has allowed us to produce several complete characterizations of congruence modularity and to answer some related questions about congruence varieties and the congruence satisfaction relation \vDash_{c}.

The main result (6.1) states that $\operatorname{Con}(\mathscr{P})$ is the smallest non-modular congruence variety (of lattices). The proof of this fact involves showing that the lattices, $\Theta\left(F_{\mathscr{P}}(n)\right)(n<\omega)$, are in fact splitting lattices with conjugate splitting equations ζ_{n}. These results allow us to prove a very strong compactness result that $\Sigma \vDash_{c} \bmod$ if and only if $\delta \vDash_{c} \bmod$ for some $\delta \in \Sigma$. The splitting equations allow us to characterize " $\delta \vDash_{c}$ mod" in

[^0]terms of the usual lattice satisfaction relation, viz: $\delta \vDash_{c} \bmod$ if and only if $\delta \vDash \zeta_{n}$ for some $n<\omega$. In Part II, the second author sharpens this last result to a recursive statement: if and only if $\delta \vDash \zeta_{h(\delta)}$ where h is a suitable function from the set of lattice equations into ω.

1. Preliminaries. We need two main results; one refers to generators of congruence varieties and the other to McKenzie's splitting lattices. The first result appears explicitly in Nation's thesis and is also a consequence of Wille's work on Mal'cev conditions for lattice identities, [27]. See also [15].
(1.1) Proposition. Let \mathscr{K} be a class of algebras closed under the formation of subalgebras. Then a lattice identity ϵ holds in $\mathbf{C o n}(\mathscr{K})$ if and only if it holds in $\{\Theta(A): A \in \mathscr{K}$ and A is finitely generated $\}$. Moreover if \mathscr{K} is also closed under products, $\mathbf{C o n}(\mathscr{K}) \vDash \epsilon$ if and only if ϵ holds in $\left\{\theta\left(F_{\mathscr{K}}(n)\right): n<\omega\right\}$.

In [22], McKenzie developed the notions of a bounded homomorphism and a splitting lattice. These notions, and their subsequent development have had a profound effect on lattice theory. We recall the relevant definitions.

A subdirectly irreducible lattice L is called a splitting lattice if there exists a lattice equation ϵ (called the conjugate or splitting equation of L) such that for any variety \mathscr{V} of lattices either $L \in \mathscr{V}$ or $\mathscr{V} E \epsilon$ but not both. From Dean's result [7] that the variety of all lattices is generated by its finite members, one can easily show that all splitting lattices are finite.

An epimorphism $f: M \rightarrow L$ is upper bounded if there exists a function $\alpha: L \rightarrow M$ with $f \circ \alpha=1_{L}$ and $1_{M} \leqq \alpha \circ f$. A finite lattice L is called an upper-bounded-lattice if there is an upper bounded epimorphism from some free lattice onto L. Lower bounded epimorphisms and lower-bounded-lattices are defined dually. A finite lattice L is called bounded if it is both upper and lower bounded.

Let L be a finite lattice and take $a \in L$. A finite non-empty subset $U \subseteq L$ is a cover of a if $a \leqq \bigvee U . U$ is a non-trivial cover of a if in addition $a \neq u$ for all $u \in U$. Define $V \ll U$ to mean for all $v \in V, v \leqq u$ for some $u \in U$. A (non-trivial) cover U of a is called a minimal cover of a if, whenever V is a cover of a with $V \ll U$, then $U \subseteq V$. Since L is finite, minimal covers exists and are easily seen to consist of join-irreducible members of L.

Finally let

$$
\begin{aligned}
& D_{0}(L)=\{a \in L: a \text { has no non-trivial covers }\}, D_{k+1}(L) \\
& =\left\{a \in L: \text { every non-trivial minimal cover of } a \text { is a subset of } D_{k}(L)\right\}
\end{aligned}
$$

and

$$
D(L)=\bigcup_{k<\omega} D_{k}(L)
$$

$D_{k}{ }^{\prime}(L)$ and $D^{\prime}(L)$ are defined dually.
(1.2) Theorem ([22] and [13]). For a finite subdirectly irreducible. lattice L, the following are equivalent:
(1) L is a splitting lattice
(2) L is a bounded lattice
(3) $D(L)=L=D^{\prime}(L)$.

We refer the reader to [19] for historical notes on and the proof of this result. We note here that a splitting equation for L can be determined in the following way: Let $p<q$ be a (prime) critical quotient in L (i.e., one that generates the least non-trivial congruence on L), and $f: F L(X) \rightarrow L$ be a "suitable" epimorphism. Using $D(L)=L\left(D^{\prime}(L)=L\right)$ one can construct the lower-bound (resp. upper bound) function $\beta: L \rightarrow F L(X)$ (resp. $\alpha: L \rightarrow F L(X)$). This construction will depend on the join (resp. meet) irreducible elements and their minimal covers (resp. minimal co covers). A splitting equation for L is then given by $\beta(q) \leqq \alpha(p)$.
2. Polin's variety, \mathscr{P}. Polin created his variety by using the variety of Boolean algebras, \mathscr{B}, in two ways, externally and internally. Intuitively he considered an "external" or skeletal Boolean algebra, A, e.g.

and replaced: (i) each element $a \in A$, with another Boolean algebra, $\mathbf{S}(a)$,
(ii) every order relation $a \geqq b$, with a homomorphism $\xi_{b}{ }^{a}: \mathbf{S}(a) \rightarrow$ $\mathbf{S}(b)$,
(iii) assumed that the homomorphisms were "compatible" with the order relation, i.e.,
(a) $a \geqq b \geqq c$ imply $\xi_{c}{ }^{b} \circ \xi_{b}{ }^{a}=\xi_{c}{ }^{a}$
(b) $\xi_{a}{ }^{a}=\mathrm{id}_{\mathbf{S}(a)}$
e.g. the commutative diagram of Boolean algebras:

Category theoretists would recognize such entities as functors S: $(A, \geqq) \rightarrow \mathscr{B}$; we will need the set-theoretical description:

$$
P=P(\mathbf{S}, A)=\cup_{a \in A}\{a\} \times \mathbf{S}(a)
$$

P becomes an algebra of type $(2,0,1,1)$ via:

$$
\begin{aligned}
& (a, s) \cdot(b, t)=\left(a \cdot b, \xi_{a b}^{a}(s) \cdot \xi_{a b}^{b}(t)\right) \\
& 1=(1,1) \\
& (a, s)^{\prime}=\left(a, s^{\prime}\right) \text { (internal complement) } \\
& (a, s)^{+}=\left(a^{\prime}, 1\right) \text { (external complement) }
\end{aligned}
$$

where in both co-ordinates $x \cdot y$ is the meet of x and y.
Easy calculations show that $(P, \cdot, 1)$ is a meet-semilattice with unit $(1,1)$ in which $(a, s) \geqq(b, t)$ if and only if $a \geqq b$ and $\xi_{b}{ }^{a}(s) \geqq t$.

Polin showed that the (abstract) class of algebras having such a representation is equationally definable (in terms of $\left(\cdot, 1,{ }^{\prime},+\right)$) and in fact is a finitely based variety. His result is:
(2.1) Theorem (Polin). Con (\mathscr{P}) is a proper but non-modular variety of lattices.

Since we will require a detailed analysis of congruence lattices of algebras in \mathscr{P}, we need a full description of congruence relations on members of \mathscr{P}.
(2.2) Definition. For $P=P(\mathbf{S}, A) \in \mathscr{P}$, and $\theta \in \theta(P)$, define
(i) $\theta_{*}=\left\{(a, b) \in A^{2}:(a, 1) \theta(b, 1)\right\}$
(ii) $\theta_{a}=\left\{(s, t) \in \mathbf{S}(a)^{2}:(a, s) \theta(a, t)\right\},(a \in A)$.

It follows easily that the above are congruence relations on their respective Boolean algebras.
(2.3) Lemma. ($a, s) \theta(b, t)$ if and only if $a \theta_{*} b$ and $\xi_{a b}{ }^{a}(s) \theta_{a b} \xi_{a b}{ }^{b}(t)$.

Proof. If $(a, s) \theta(b, t)$ then clearly $(a, 1)=(a, s)^{++} \theta(b, t)^{++}=(b, 1)$ and furthermore

$$
\left(a b, \xi_{a b}^{a}(s)\right)=(a, s) \cdot(b, t)^{++} \theta(b, t) \cdot(a, s)^{++}=\left(a b, \xi_{a b}^{b}(t)\right)
$$

Conversely if $a \theta_{*} b$ and $\xi_{a b}{ }^{a}(s) \theta_{a b} \xi_{a b}{ }^{b}(t)$ we have

$$
(a, s)=(a, s)(a, 1) \theta(a, s)(b, 1)=\left(a b, \xi_{a b}^{a}(s)\right)
$$

and

$$
(b, t)=(b, t)(b, 1) \theta(b, t)(a, 1)=\left(a b, \xi_{a b}^{b}(t)\right)
$$

and therefore $(a, s) \theta(b, t)$ by transitivity.
(2.4) Lemma. Assume $a \geqq b$. If $s \theta_{a} t$ then $\xi_{b}{ }^{a}(s) \theta_{b} \xi_{b}{ }^{a}(t)$. Moreover if $a \theta_{*} b$ holds, the reverse implication is also true.

Proof. If $(a, s) \theta(b, t)$ then meeting with $(b, 1)$ and using the fact that $a b=b$ proves the required implication.

Now if $a \theta_{*} b$ and $\xi_{b}{ }^{a}(s) \theta_{b} \xi_{b}{ }^{a}(t)$ then $s \theta_{a} t$ follows from $b=a b$ and the previous lemma.
(2.5) Definition. Associated with each homomorphism $\xi_{b}{ }^{a}: \mathbf{S}(a) \rightarrow \mathbf{S}(b)$, is a function $\kappa_{b}{ }^{a}: ~ \Theta(\mathbf{S}(b)) \rightarrow \theta(\mathbf{S}(a))$ defined by:

$$
\begin{aligned}
\kappa_{b}{ }^{a}(\psi) & =\left(\xi_{b}{ }^{a} \times \xi_{b}{ }^{a}\right)^{-1}[\psi] \\
& =\left\{(s, t) \in \mathbf{S}(a)^{2}: \xi_{b}{ }^{a}(s) \psi \xi_{b}{ }^{a}(t)\right\} .
\end{aligned}
$$

Clearly $\kappa_{b}{ }^{a}$ preserves arbitrary intersections ($=$ meets) and hence also preserves order. Moreover for $a \geqq b \geqq c, \kappa_{b}{ }^{a} \circ \kappa_{c}{ }^{b}=\kappa_{c}{ }^{a}$.
(2.6) Definition. For $P=P(\mathbf{S}, A) \in \mathscr{P}$, let $\operatorname{Rep}(P)$ be the set of all $\left(\theta_{*} ;\left(\theta_{a}\right)_{a \in A}\right) \in \Theta(A) \times \prod_{a \in A} \Theta(\mathbf{S}(a))$ satisfying:
$(R 1) a \geqq b$ implies $\theta_{a} \leqq \kappa_{b}{ }^{a}\left(\theta_{b}\right)$
$(R 2) a \geqq b$ and $a \theta_{*} b$ imply $\theta_{a}=\kappa_{b}{ }^{a}\left(\theta_{b}\right)$.
The previous lemmata provide us with the following result:
(2.7) Theorem. For $P=P(\mathbf{S}, A) \in \mathscr{P},(\Theta(P)$, $\leqq)$ and $(\operatorname{Rep}(P), \leqq)$ are isomorphic lattices where \leqq on $\operatorname{Rep}(P)$ is the product order and meets in $\operatorname{Rep}(P)$ are computed component-wise.

Subsequently we will identify congruences on $P(\mathbf{S}, A)$ with their representations. One might note at this time that the Polin algebra, P :
has as its congruence ($=$ representation) lattice

where $(\alpha ; \beta, \gamma)=\left(\theta_{*} ; \theta_{1}, \theta_{0}\right)$.
(2.8) Corollary. The map $\theta \mapsto \theta_{*}$ is a lattice homomorphism from $\theta(P)$ to $\theta(A)$.

Proof. By (2.7), the map preserves (arbitrary) meets. For $\theta, \psi \in \Theta(P)$, $(a, 1) \theta \vee \psi(b, 1)$ if and only if $\exists n \in \mathbf{N}$ and $(a, 1)=\left(c_{0}, s_{0}\right),\left(c_{1}, s_{1}\right), \ldots$ $\left(c_{n}, s_{n}\right)=(b, 1)$ such that for $i<n$,

$$
\left(c_{i}, s_{i}\right) \theta\left(c_{i+1}, s_{i+1}\right)(i \text { even })
$$

and

$$
\left(c_{i}, s_{i}\right) \psi\left(c_{i+1}, s_{i+1}\right)(i \text { odd })
$$

Using ($)^{++}$this is equivalent to: $\exists n \in \mathbf{N}$ and $a=c_{0}, c_{1}, \ldots, c_{n}=b$ such that for $i<n$

$$
\begin{aligned}
& \left(c_{i}, 1\right) \theta\left(c_{i+1}, 1\right)(i \text { even }) \\
& \left(c_{i}, 1\right) \psi\left(c_{i+1}, 1\right)(i \text { odd }) .
\end{aligned}
$$

But this is equivalent to $a \theta_{*} \vee \psi_{*} b$.
The general formula for joins in $\theta(P)$ is messy and not of much use. If however the "external" Boolean algebra, A, is finite, a reasonable and very useful method exists.

Firstly if A is finite, then every θ_{*} is of the form $\operatorname{con}(b, 1)=\operatorname{con}\left(0, b^{\prime}\right)$ for some $b \in A$. Secondly $A / \theta_{*} \cong[0, b]$ and by $(R 2)$, the set $\left\{\theta_{x}: x \leqq b\right\}$ determines all other θ_{a} by

$$
\theta_{a}=\kappa_{a b}{ }^{a}\left(\theta_{a b}\right) .
$$

This is the main content of the following two results.
(2.9) Lemma. For A finite, $\theta, \psi \in \Theta(P)$ with $\theta_{*}=\operatorname{con}(b, 1)$ and $\psi_{*}=\operatorname{con}(c, 1)$ then $\theta \leqq \psi$ if and only if $c \leqq b$ and $\theta_{x} \leqq \psi_{x}$ for all $x \leqq c$.
(2.10) Lemma. If A finite, and $\theta=\left(\operatorname{con}(b, 1) ;\left(\theta_{a}\right)_{a \in A}\right), \psi=(\operatorname{con}(c, 1)$;
$\left.\left(\psi_{a}\right)_{a \in A}\right) \in \Theta(P)$, then $\theta \vee \psi$ is given $b y$:
(i) $(\theta \vee \psi)_{*}=\operatorname{con}(b c, 1)$
(ii) $(\theta \vee \psi)_{a}=\kappa_{a b c}{ }^{a}\left(\theta_{a b c} \vee \psi_{a b c}\right)$.

This representation of congruences also allows us to describe all subdirectly irreducible members of \mathscr{P}.
(2.11) Theorem. The subdirectly irreducible members of \mathscr{P} are (up to isomorphism) the following list:
(1) $A=\mathbf{2}, \mathbf{S}(0)=\mathbf{S}(1)=\mathbf{1}$
(2) $A=\mathbf{1}, \mathbf{S}(0)=\mathbf{2}(0=1$ in $A)$
(3) A arbitrary, $\mathbf{S}(1)=\mathbf{2}$ and $\mathbf{S}(a)=\mathbf{1}, a<1$.
(Note that the homomorphisms for all \mathscr{P} algebras in the above list are uniquely defined and therefore need not be mentioned.)

Proof. It is easily seen that all algebras in the given list are indeed subdirectly irreducible members of \mathscr{P}. Conversely let $P=P(\mathbf{S}, A)$ be subdirectly irreducible.

If $A=\mathbf{1}$, then ()$^{+}$is a constant unary operation and therefore $\mathbf{S}(0=1)$ must be the unique subdirectly irreducible Boolean algebra, 2.

If $A \neq 1$ then for any $b<1$ we define two congruence relations on P by:

$$
\begin{aligned}
& \theta_{*}=\Delta ; \theta_{a}= \begin{cases}\nabla & a \leqq b \\
\triangle, & a \$ b\end{cases} \\
& \psi_{*}=\operatorname{con}(b, 1), \psi_{a}=\triangle, a \leqq b .
\end{aligned}
$$

Since $\psi \neq \triangle_{P}$ and $\theta \wedge \psi=\triangle_{P}$ we must have $\theta=\triangle_{P}$. But this forces for all $a \leqq b, \nabla=\triangle$ and therefore $\mathbf{S}(a)=1$. Since $b<1$ was arbitrary, $\mathbf{S}(b)=1$ for all $b<1$.

If $\mathbf{S}(1)=\mathbf{1}$, then ()$^{\prime}$ is the identity function and our algebra is isomorphic to $\left(A, \cdot, 1\right.$, id, $\left.{ }^{\prime}\right)$. Therefore $A=\mathbf{2}$.

If $\mathbf{S}(1) \neq \mathbf{1}$, then easy calculations show that it must be a subdirectly irreducible Boolean algebra. Therefore $\mathbf{S}(1)=\mathbf{2}$.

Note. Case (2) in our list is contained (vacuously) in Case (3).
(2.12) Corollary 1. \mathscr{P} is a locally finite variety. (Equivalently, finitely generated free \mathscr{P}-algebras are finite.)
3. Congruence lattices of finite members of . By (1.1), $\operatorname{Con}(\mathscr{K})=\operatorname{HSP}\left\{\theta\left(F_{\mathscr{K}}(n)\right): n \in \mathbf{N}\right\}$ for any variety of algebras \mathscr{K}. Therefore in order to determine $\operatorname{Con}(\mathscr{P})$, we need to know $\Theta\left(F_{\mathscr{P}}(n)\right)$ for every $n \in \mathbf{N}$. In the next section these will be described by means of a special representation for free \mathscr{P}-algebras. Most of the details however can be seen more clearly by examining arbitrary finite algebras.

Throughout this section, $P=P(\mathbf{S}, A)$ will be a finite algebra in Therefore A and all $\mathbf{S}(a), a \in A$, are finite.
(3.1) Definition. For $b \in A$ and $u \in \mathbf{S}(b)$ and $v \in \mathbf{S}(0)$ define congruences on P by:

$$
\begin{aligned}
& \phi_{b}:\left(\phi_{b}\right)_{*}=\operatorname{con}(b, 1) ;\left(\phi_{b}\right)_{a}=\nabla \\
& \theta_{b, u}:\left(\theta_{b, u}\right)_{*}=\operatorname{con}(b, 1) ;\left(\theta_{b, u}\right)_{a}=\left\{\begin{array}{cc}
\operatorname{con}(u, 1), & a=b \\
\nabla, & a<b
\end{array}\right. \\
& \psi_{v}=\theta_{0, v} .
\end{aligned}
$$

The characterization of the subdirectly-irreducibles in (2.11) provides the following result.
(3.2) Lemma. The meet-irreducible congruences are precisely the following:
(1) $\phi_{p}, \quad 0<p \in A$
(2) $\theta_{b, q}, 0<q \in \mathbf{S}(b)$
(3) $\psi_{s}, \quad 0<s \in \mathbf{S}(0)$
with their respective unique covers given by:
(1) ∇
(2) $\phi_{b}, b \in A$
(3) $\nabla=\phi_{0}$.
(3.3) Lemma. The only order relations between the meet-irreducibles congruences is given by:

$$
\theta_{b, q} \leqq \phi_{p} \text { if and only if } p \leqq b \text {. }
$$

Proof. A $\theta_{b, q}$ produces a factor algebra with either a trivial "external" Boolean algebra (if $b=0$) or one with only trivial "internal" Boolean algebras except at $\mathbf{S}(1)$. Therefore no such two can be comparable. Since $\left|P / \phi_{p}\right|=2$, all ϕ_{p} 's are maximal, and therefore the only comparabilities can be of the form $\theta_{b, q} \leqq \phi_{p}$. Now

$$
\left(\theta_{b, q}\right)_{*}=\operatorname{con}(b, 1) \text { and }\left(\phi_{p}\right)_{*}=\operatorname{con}(p, 1) .
$$

Since $\left(\phi_{p}\right)_{a}=\nabla$ for all $a \in A$

$$
\begin{aligned}
& \theta_{b, Q} \leqq \phi_{p} \Leftrightarrow\left(\theta_{b, q}\right)_{*} \leqq\left(\phi_{p}\right)_{*} \\
& \Leftrightarrow \operatorname{con}(b, 1) \subseteq \operatorname{con}(p, 1) \\
& \Leftrightarrow p \leqq b .
\end{aligned}
$$

(3.4) Lemma. For all $0<p \in A, \phi_{p}$ is meet-prime.

Proof. Define τ_{p} by

$$
\begin{aligned}
& \left(\tau_{p}\right)_{*}=\operatorname{con}\left(p^{\prime}, 1\right)=\operatorname{con}(0, p) \\
& \left(\tau_{p}\right)_{x}=\Delta\left(x \leqq p^{\prime}\right) .
\end{aligned}
$$

Now for $q>0$ in $A, q \neq p, q \leqq p^{\prime}$ and $\left(\tau_{p}\right)_{*} \leqq\left(\phi_{q}\right)_{*}$. For $b \in A$ and $0<q \in \mathbf{S}(b) \theta_{b, q}$ 本 $\phi_{p} \Leftrightarrow p$ 本 $b \Leftrightarrow b \leqq p^{\prime} \Leftrightarrow \tau_{p} \leqq \theta_{b, q}$.

Since $\theta(P)$ is generated by its meet-irreducibles,

$$
\Theta(P)=\left[\Delta, \phi_{p}\right] \cup\left[\tau_{p}, \nabla\right]
$$

and ϕ_{p} is meet-prime.
(3.5) Lemma. For $b \in A$ and $0<q \in \mathbf{S}(b), \theta_{b, q}$ is meet-prime if and only if for all $c<b, \xi_{c}{ }^{b}(q)=0$.

Proof. Define $\rho_{b, q} \in \Theta(P)$ by:

$$
\left(\rho_{b, q}\right)_{*}=\triangle, \quad\left(\rho_{b, q}\right)_{n}=\left\{\begin{array}{cl}
\operatorname{con}\left(\xi_{a}{ }^{b}\left(q^{\prime}\right), 1\right), & b \geqq a \\
\triangle, & b \not \geqq a .
\end{array}\right.
$$

If $\xi_{c}{ }^{b}(q)=0$ for all $c<b$ then only $\left(\rho_{b, q}\right)_{b}$ is non-trivial.
For meet-irreducible $\theta_{b, s}, \quad 0<s \in \mathbf{S}(b), \quad s \neq q, \quad s \leqq q^{\prime}$ implies $\operatorname{con}\left(q^{\prime}, 1\right) \subseteq \operatorname{con}(s, 1)$ on $\mathbf{S}(b)$ and $\rho_{b, 4} \leqq \theta_{b, s}$.

For meet-irreducible $\theta_{c, r}, 0<r \in \mathbf{S}(c)$ and $b \neq c$,

$$
\left(\theta_{c, r}\right)_{b}=\left\{\begin{array}{cl}
\kappa_{c}{ }^{b}(\operatorname{con}(r, 1)), & b \geqq c \\
\nabla, & b \not \geqq c .
\end{array}\right.
$$

But $b>c$ implies $\xi_{c}{ }^{b}\left(q^{\prime}\right)=1$ hence

$$
\left(\theta_{c, \tau}\right)_{b} \geqq\left(\rho_{b, q}\right)_{b}
$$

and therefore $\rho_{b, q} \leqq \theta_{c, r}$.
For meet-irreducible ϕ_{p}, clearly $\phi_{p} \geqq \rho_{b, q}$. Therefore

$$
\Theta(P)=\left[\triangle, \theta_{b, q}\right] \cup\left[\rho_{b, q}, \nabla\right]
$$

Now suppose for some $c<b, \xi_{c}{ }^{b}(q) \geqq r>0$. Let

$$
\begin{aligned}
& M_{c, r}=\left\{\theta_{c, r}\right\} \cup\left\{\phi_{p}: p \leqq b \wedge c^{\prime}\right\} \\
& \left(\bigwedge M_{c, r}\right)_{*}=\operatorname{con}(c, 1) \wedge \operatorname{con}\left(b c^{\prime}, 1\right)=\operatorname{con}(b, 1)=\left(\theta_{b, q}\right)_{*} \\
& \left(\bigwedge M_{c, r}\right)_{b}=\kappa_{c}^{b}(\operatorname{con}(r, 1)) \wedge \nabla=\kappa_{c}^{b}(\operatorname{con}(r, 1)) \leqq \operatorname{con}(q, 1) \\
& \quad=\left(\theta_{b, q}\right)_{b} .
\end{aligned}
$$

Therefore $\bigwedge M_{c, r} \leqq \theta_{b, q}$ and $M_{c, r}$ is clearly a non-trivial co-cover.
The following result is straightforward.
(3.6) Lemma. If $\theta_{b, q}$ is not meet-prime, its minimal co-covers are given by $M_{c, r}=\left\{\theta_{c, r}\right\} \cup\left\{\phi_{p}: p \leqq b c^{\prime}\right\}$ where $c<b$ with $0<r \leqq \xi_{c}{ }^{b}(q)$.
(3.7) Theorem. $D^{\prime}(\Theta(P))=\Theta(P)$.

Proof. We need only show that every meet-irreducible belongs to $D^{\prime}(\Theta(P))$. But we have easily by induction that if $\theta_{b, q}$ is not meet-prime, then

$$
\theta_{b, q} \in D_{|b|}^{\prime}(\Theta(P))
$$

where $|b|$ is the number of atoms in A less than or equal to b.
In $\S 7$, we will show that all $\Theta(P)$ satisfy $\left(S D_{\wedge}\right)$ and $\left(S D_{\vee}\right)$. This implies (c.f. [6]) that there is a bijective correspondence between the
join-irreducibles and the meet irreducibles of $\theta(P)$. The correspondence is given by:

$$
\begin{aligned}
& \phi_{p} \leftrightarrow \tau_{p}, 0<p \in A \\
& \theta_{b, q} \leftrightarrow \rho_{b, q}, 0<q \in S(b), b \in A .
\end{aligned}
$$

With this the reader can prove the following results.
(3.8) Lemma. τ_{p} is join-prime for all atoms $p \in A$.
(3.9) Lemma. $\rho_{b, q}$ is join-prime if and only if for all $c<b, \xi_{c}{ }^{b}(q)=0$. If $\rho_{b, q}$ is not join-prime, its minimal covers are given by

$$
J_{c, r}=\left\{\rho_{c, r}\right\} \cup\left\{\tau_{p}: p \leqq b c^{\prime}\right\}
$$

where $c<b$ and $0<r \leqq \xi_{c}{ }^{b}(q)$.
(3.10) Theorem. $D(\theta(P))=\theta(P)$.
(3.11) Theorem. The congruence lattice of any finite algebra in \mathscr{P} is a bounded lattice.

Since the splitting lattices are precisely the subdirectly irreducible bounded lattices, we are interested in what finite algebras have such as their congruence lattices.
(3.12) Theorem. If $\mathbf{2}=\mathbf{S}(1) \leqq \mathbf{S}(0)$, then $\theta(P)$ is subdirectly irreducible with critical quotient $\theta_{1,1}<\rho_{1,1}$.

Proof. Since $(1,0)<(1,1)$ in P, we get $\theta_{1,1}$ as the largest congruence not identifying $(1,0)$ and $(1,1)$ and

$$
\rho_{1,1}=\bigwedge\left\{\phi_{p}: p \text { atom in } A\right\}=\operatorname{con}_{p}((1,0),(1,1)) .
$$

If we collapse any meet-irreducible of the form $\theta_{b, q}$ with its unique upper cover ϕ_{b} then by meeting with $\rho_{1,1}$ the interval $\left[\theta_{b, a} \wedge \rho_{1,1}, \rho_{1,1}\right]$ must also be collapsed, and

$$
\theta_{b, \ell} \wedge \rho_{1,1} \leqq \theta_{1,1}<\rho_{1,1} .
$$

If we collapse a meet irreducible ϕ_{p} with its unique cover, ∇, then by considering the pentagon

for $r>0$ in $\mathbf{S}(p)$ with $\xi_{0}{ }^{p}(r)=q$ we must collapse $\theta_{p, r}$ with ϕ_{p} which again collapses $\theta_{1,1}$ with $\rho_{1,1}$. Since $\mathbf{2} \leqq \mathbf{S}(0)$, such a $\theta_{0, q}$ exists. Therefore $\theta(P)$ is subdirectly irreducible.
4. The congruence lattices of free algebras and their splitting equations. In this section, we will describe the algebras $F_{\mathscr{P}}(n)$, show that their respective congruence lattices $L_{n}=\theta\left(F_{\mathscr{P}}(n)\right)$ are subdirectly irreducible, and determine the respective splitting equations, ζ_{n}.

Since every algebra in \mathscr{P} has a representation $P=P(\mathbf{S}, A)$, we assume that $F_{\mathscr{P}}(n)$ has this form and is generated by $\left(x_{1}, r_{1}\right), \ldots$, $\left(x_{n}, r_{n}\right)$. By using $\left(x_{i}, r_{i}\right) \mapsto\left(x_{i}, r_{i}\right)^{++}=\left(x_{i}, 1\right)$ we see that the external Boolean algebra will be n-generated and therefore should be $F_{\mathscr{B}}(n)$. Because the morphisms go downwards ($a \geqq b$ gives $\left.\xi_{b}{ }^{a}: \mathbf{S}(a) \rightarrow \mathbf{S}(b)\right)$, no new elements will be added to $\mathbf{S}\left(x_{i}\right)$, that we do not get from $\left\{r_{i}\right\}$. This gives $\mathbf{S}\left(x_{i}\right)=F_{\mathscr{B}}\left(\left\{r_{i}\right\}\right)$. Continuing in this manner we see that for any $a \in A=F_{\mathscr{B}}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right), \mathbf{S}(a)$ contains $\left\{\xi_{a}^{x_{i}}\left(r_{i}\right): x_{i} \geqq a\right\}$ and should be freely generated by that set. This provides us with a complete description of $F_{\mathscr{P}}(n)=P(\mathbf{S}, A)$, namely:
(1) $A=F_{\mathscr{B}}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$.
(2) For $a \in A, \mathbf{S}(a)=F_{\mathscr{B}}\left(\left\{r_{i}: x_{i} \geqq a\right\}\right)$.
(3) For $a \geqq b$ in $A, \xi_{b}{ }^{a}$ is the embedding monomorphism given by the embedding on the generators.

The proof of this fact is left to the reader.
We require a reasonable representation of this algebra.
Consider the free Boolean algebra, $\mathbf{2}^{2^{n}}$, on free generators e_{1}, \ldots, e_{n}. Let U be the set of all maps from $\{1, \ldots, n\}$ into $\{1,-1\}$. For $T \subseteq U$ let

$$
\sigma(T)=\{i: \epsilon(i)=1 \text { for all } \epsilon \in T\}
$$

In particular $\sigma(\emptyset)=\{1, \ldots, n\}$. For each $\epsilon \in U$,

$$
\prod_{i=1}^{n} e_{i}^{\epsilon(i)} \in \mathbf{2}^{2^{n}}
$$

is an atom, where $e_{i}{ }^{1}=e_{i}$ and e_{i}^{-1} is the complement of e_{i}. Thus the elements of $2^{2^{n}}$ are in one-to-one correspondence with the subsets of U. Notice that $\left\{e_{i}: i \in \sigma(T)\right\}$ is the set of generators which lie above the element

$$
\sum_{\epsilon \in T} \prod_{j=1}^{n} e_{j}^{\epsilon(j)}
$$

which corresponds to T.
Consider the algebra $P(\mathbf{S}, A) \in \mathscr{P}$ with $A=\mathbf{2}^{2^{n}}$ and $\mathbf{S}(T)$ the free Boolean algebra with free generating set $\left\{r_{i}{ }^{T}: i \in \sigma(T)\right\}$ and if $T_{1} \supseteq T_{2}$

$$
\xi_{T_{2}}^{T_{1}}\left(r_{i}^{T_{1}}\right)=r_{i}^{T_{2}}
$$

(note that $T_{1} \supseteq T_{2}$ implies $\sigma\left(T_{1}\right) \subseteq \sigma\left(T_{2}\right)$). Subsequently we will drop
the superscript and let $r_{i}{ }^{T}=r_{i}$ and consider $\mathbf{S}\left(T_{1}\right)$ to be embedded in $\mathbf{S}\left(T_{2}\right)$ if $T_{1} \supseteq T_{2}$.

Notice that $e_{i_{0}}$ corresponds to the set $\left\{\epsilon \in U: \epsilon\left(i_{0}\right)=1\right\}$ and

$$
\sigma\left(\left\{\epsilon \in U: \epsilon\left(i_{0}\right)=1\right\}\right)=\left\{i_{0}\right\} .
$$

(4.1) Lemma. $P(\mathbf{S}, A)$ as described above is isomorphic to $F_{\mathscr{P}}(n)$ with free generators $\left(e_{i}, r_{i}\right), i=1, \ldots, n$.

We shall now describe the meet irreducible elements of L_{n}. For $\gamma \in L_{n}$ recall $\gamma_{*}=\left\{\left(T_{1}, T_{2}\right) \in\left(2^{U}\right)^{2}:\left(T_{1}, 1\right) \gamma\left(T_{2}, 1\right)\right\}$. We let the critical coordinates associated with $\gamma \in L_{n}$ be those $T \subseteq U$ which are least in their γ_{*} equivalence classes. By (2.9) $\gamma \in L_{n}$ is determined by γ_{*} and its values at its critical coordinates.

Recall that $\sigma(\epsilon)=\{i: \epsilon(i)=1\}$. Let $\epsilon, \mu \in U$ and $\omega: \sigma(\epsilon) \rightarrow\{ \pm 1\}$. Following the results of $\S 3$, we define $\psi_{\mu}, \phi_{\epsilon}$, and $\theta_{\epsilon, \omega} \in L_{n}$ by

$$
\begin{aligned}
& \left(\psi_{\mu}\right)_{*}=\operatorname{con}(1,0)=\operatorname{con}(U, \emptyset)=\nabla \\
& \left(\psi_{\mu}\right)_{T}=\operatorname{con}\left(1, \prod_{i \epsilon \sigma(T)} r_{i}^{\mu(i)}\right), T \subseteq U \\
& \left(\phi_{\epsilon}\right)_{*}=\operatorname{con}(U,\{\epsilon\}) \\
& \left(\phi_{\epsilon}\right)_{T}=\operatorname{con}(1,0)=\nabla, T \subseteq U \\
& \left(\theta_{\epsilon, \omega}\right)_{*}=\operatorname{con}(U,\{\epsilon\}) \\
& \left(\theta_{\epsilon, \omega}\right)_{T}=\left\{\begin{array}{l}
\operatorname{con}\left(1, \prod_{i \epsilon \sigma(T)} r_{i}^{\omega(i)}\right) \text { if } \epsilon \in T \\
\operatorname{con}(1,0)=\nabla
\end{array} \text { if } \epsilon \notin T\right.
\end{aligned}
$$

More generally, for $T \subseteq U$ and $\eta: \sigma(T) \rightarrow\{ \pm 1\}$ we define ϕ_{T} and $\theta_{T, \eta}$ by

$$
\phi_{T}=\bigwedge_{\epsilon \in T} \phi_{\epsilon}
$$

so that

$$
\begin{aligned}
& \left(\phi_{\boldsymbol{T}}\right)_{*}=\operatorname{con}(U, T) \\
& \left(\phi_{T}\right)_{S}=\operatorname{con}(1,0)=\nabla, S \subseteq U \\
& \left(\theta_{T, \eta}\right)_{*}=\operatorname{con}(U, T) \\
& \left(\theta_{T, \eta}\right)_{S}=\left\{\begin{array}{l}
\operatorname{con}\left(1, \prod_{i \in \sigma(S)} r_{i}^{\eta(i)}\right) \quad \text { if } S \supseteq T \\
\nabla \\
\text { if } S \nsupseteq T .
\end{array}\right.
\end{aligned}
$$

We define $\pi_{\epsilon \mu}$ to be $\phi_{\epsilon} \wedge \psi_{\mu}$. Note again that $\psi_{\mu}=\theta_{\not, \mu}$.
(4.2) Lemma. The meet irreducible elements of L_{n} are precisely the $\theta_{T, \eta}, T \subseteq U, \eta: \sigma(T) \rightarrow\{ \pm 1\}$ and the $\phi_{\epsilon}, \epsilon \in U$. Moreover each ϕ_{ϵ} is
uniquely covered by the greatest element of L_{n} and $\theta_{T, \eta}$ is uniquely covered $b y \phi_{T}$.
(4.3) Lemma. The ϕ_{ϵ} and $\theta_{\notin, \mu}$ are meet-prime. The non-trivial dual minimal covers of $\theta_{T, \eta}$ are the sets

$$
\left\{\theta_{S, \omega}\right\} \cup\left\{\phi_{\epsilon}: \epsilon \in T-S\right\}
$$

where $S \subset T$ and $\omega \supseteq \eta$ (i.e. $\left.\omega\right|_{\sigma(T)}=\eta$).
(4.4) Corollary. For each $n, D^{\prime}\left(L_{n}\right)=L_{n}$. In fact $\theta_{T, \eta} \in D_{k}{ }^{\prime}\left(L_{n}\right)$ where $k=|T|$, and $\phi_{\epsilon} \in D_{0}{ }^{\prime}\left(L_{n}\right)$.
(4.5) Lemma. If $T \neq \emptyset$ then

$$
\theta_{T, \eta}=\bigvee_{\epsilon \in T} \bigvee_{\omega \supseteq \eta} \phi_{T} \wedge \theta_{\epsilon \omega}
$$

Proof. First note that the ${ }^{*}$-coordinates of both $\theta_{T, \eta}$ and $\phi_{T} \wedge \theta_{\epsilon \omega}$ are the same. Hence both sides of the equation have the same critical coordinates and it suffices to show that equality holds at each of these coordinates. Notice that the critical coordinates are precisely those S with $S \subseteq T$. Since $\omega \supseteq \eta$, it follows from the definitions that

$$
\left(\theta_{T, \eta}\right)_{T}=\left(\phi_{T} \wedge \theta_{\epsilon \omega}\right)_{T}
$$

Since joins at critical coordinates are computed component-wise, the equation holds at T. Let $S \subset T$. Choose $\epsilon \in T-S$. Then $\left(\theta_{\epsilon \omega}\right)_{S}=1$, for any $\omega \geqq \eta$. Thus

$$
\left(\phi_{T} \wedge \theta_{\epsilon \omega}\right)_{S}=1
$$

from which the equation follows.
Now we have from $\S 3$ the join-irreducible elements of L_{n}. For $T \subseteq U$ and $\omega: \sigma(T) \rightarrow\{ \pm 1\}$ let τ_{T} and $\rho_{T, \omega} \in L_{n}$ be defined by

$$
\begin{aligned}
& \left(\tau_{T}\right)_{*}=\operatorname{con}(0, T) \\
& \left(\tau_{T}\right)_{S}=\operatorname{con}(0,0)=\triangle S \subseteq U
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\rho_{T, \omega}\right)_{*}=\operatorname{con}(\emptyset, \emptyset)=\triangle \\
& \left(\rho_{T, \omega}\right)_{S}=\left\{\begin{array}{cl}
\operatorname{con}\left(0, \prod_{i \in \sigma(T)} r_{1}^{\omega(i)}\right) & \text { if } S \subseteq T \\
\triangle & \text { if } S \nsubseteq T
\end{array}\right.
\end{aligned}
$$

(4.6) Lemma. The join-irreducible elements of L_{n} are precisely the τ_{ϵ}, $\epsilon \in U$, and $\rho_{T, \omega}, T \subseteq U$ and $\omega: \sigma(T) \rightarrow\{ \pm 1\}$.
(4.7) Lemma. For $\epsilon \in U, \tau_{\epsilon}$ is join-prime. Let $T \subseteq U$ and $\eta: \sigma(T) \rightarrow$ $\{ \pm 1\}$. The non-trivial minimal covers of $\rho_{T, \eta}$ are the sets

$$
\left\{\tau_{\epsilon}\right\} \cup\left\{\rho_{S, \omega}: \omega: \sigma(S) \rightarrow\{ \pm 1\}, \omega \supseteq \eta\right\} \text { for all } S \subset T \text { and } \epsilon \in T-S
$$

Recall that $\pi_{\delta, \mu}=\phi_{\delta} \wedge \psi_{\mu}$.
(4.8) Lemma.
(1) $\tau_{\epsilon}=\bigwedge_{\substack{\delta \in U \\ \delta \neq \epsilon}}^{\bigwedge} \bigwedge_{\mu \in U} \pi_{\delta, \mu}$.
(2)

$$
\rho_{T, \eta}=\bigwedge_{\epsilon \in U} \bigwedge_{\mu \in U}^{\mu \neq \eta} \pi_{\epsilon, \mu} \wedge \bigwedge_{\epsilon \in U-T} \bigwedge_{\omega: \sigma(\epsilon \rightarrow\{ \pm 1\}} \theta_{\epsilon, \omega} .
$$

Proof. Let γ be the right hand side of (2). Then

$$
\gamma_{*} \leqq\left(\bigwedge_{\epsilon \in U} \bigwedge_{\mu \neq \eta} \pi_{\epsilon, \mu}\right)_{*} \leqq\left(\bigwedge_{\epsilon \in U} \phi_{\epsilon}\right)_{*}=\triangle .
$$

Also

$$
\left(\pi_{\epsilon, \mu}\right)_{S}=\operatorname{con}\left(1, \prod_{i \epsilon \sigma(S)} r_{i}^{\mu(i)}\right)
$$

Hence

$$
\left(\bigwedge_{\in \in U} \bigwedge_{\mu \neq \eta} \pi_{\epsilon, \mu}\right)_{S} \leqq \bigwedge_{\mu \neq \eta} \operatorname{con}\left(1, \prod_{i \in \sigma(S)} r_{i}^{\mu(i)}\right)=\operatorname{con}\left(1, \sum_{\mu \neq \eta} \prod_{i \in \sigma(S)} r_{i}^{\mu(i)}\right) .
$$

Now $\left(\rho_{T, \eta}\right)_{S}=\operatorname{con}\left(0, \prod_{i \in \sigma(T)} r_{i}{ }^{\eta(i)}\right)$ if $S \subseteq T$ and \triangle otherwise. If $S \subseteq T$ then $\sigma(S) \supseteq \sigma(T)$ and it is easy to see that

$$
\sum_{\mu \neq \eta} \prod_{i \in \sigma(S)} r_{i}^{\mu(i)}
$$

is just the sum of the atoms of $\theta(\mathbf{S}(S))$ which are not below

$$
\prod_{i \in G(T)} r_{i}^{\eta(i)} ;
$$

i.e., $\sum_{\mu \neq \eta} \prod_{\sigma(S)} r_{i}{ }^{\mu(i)}$ is the complement of $\prod_{i \in \sigma(T)} r_{i}{ }^{\eta(i)}$. Hence

$$
\operatorname{con}\left(0, \prod_{\sigma(T)} r_{i}^{\eta(i)}\right)=\operatorname{con}\left(1, \sum_{\mu \subset \eta} \prod_{\sigma(S)} r_{1}^{\mu(i)}\right) \geqq \gamma_{S} .
$$

If $S \nsubseteq T$ then there is a $\delta \in S-T$. Hence

$$
\left(\bigwedge_{\omega:(\delta) \rightarrow \pm 11} \theta_{\delta, \omega}\right)_{S}=\bigwedge_{\omega} \operatorname{con}\left(1, \prod_{\sigma(S)} r_{i}^{\omega(i)}\right)=\operatorname{con}\left(1, \sum_{\omega} \prod_{\sigma(S)} r_{i}^{\omega(i)}\right) .
$$

Since $\delta \in S, \sigma(S) \nsubseteq \sigma(\delta)$ and ω is defined on all of $\sigma(S)$. Thus

$$
\sum_{\omega} \prod_{\sigma(S)} r_{i}^{\omega(i)}
$$

is just the sum of all the atoms, and hence 1. It follows that $\gamma_{S}=\triangle=$ $\left(\rho_{T, \eta}\right)_{S}$. We have shown that $\gamma \leqq \rho_{T, \eta}$. Since $\rho_{T, \eta} \leqq \pi_{\epsilon, \mu}$ for all $\epsilon \in U$ and $\mu \nsupseteq \eta$ and $\rho_{T, \eta} \leqq \theta_{\epsilon, \omega}$ for all $\epsilon \in U-T$ and all ω, we have $\gamma=\rho_{T, \eta}$ proving (2). The proof of (1) is similar.
(4.9) Theorem. For each $n<\omega, L_{n}$ is a splitting lattice. L_{n} is generated by $\phi_{\epsilon}, \theta_{\epsilon, \omega}, \psi_{\mu}, \epsilon, \mu \in U$ and $\omega: \sigma(\epsilon) \rightarrow\{ \pm 1\}$. The prime quotient $\phi_{U}=$ $\rho_{U, \emptyset}>\theta_{U, \emptyset}$ is collapsed by every non-trivial lattice congruence on L_{n}. Moreover the equivalence relation generated by this prime quotient is the same as the congruence relation generated by $i t$.

Now let

$$
X=\left\{x_{\mu}: \mu \in U\right\} \cup\left\{y_{\epsilon}: \epsilon \in U\right\} \cup\left\{z_{\epsilon, \omega}: \epsilon \in U, \omega: \sigma(\epsilon) \rightarrow\{ \pm 1\}\right\}
$$

be a set of variables. Let f be the homomorphism from $F L(X)$ onto L_{n} extending $f\left(x_{\mu}\right)=\psi_{\mu}, f\left(y_{\epsilon}\right)=\phi_{\epsilon}$, and $f\left(z_{\epsilon, \omega}\right)=\theta_{\epsilon, \omega}$.
(4.10) Definition. (1) Define maps α_{0} and α from the meet-irreducibles of L_{n} into $F L(X)$ as follows:

$$
\begin{aligned}
& \alpha_{0}\left(\psi_{\mu}\right)=x_{\mu} \\
& \alpha_{0}\left(\theta_{\epsilon, \omega}\right)=z_{\epsilon, \omega} \\
& \alpha_{0}\left(\phi_{\epsilon}\right)=y_{\epsilon} \vee \bigvee_{\omega: \sigma(\epsilon) \rightarrow \mid \pm 1 ;} z_{\epsilon, \omega} \\
& \alpha_{0}\left(\theta_{T, \eta}\right)=\bigvee_{\epsilon \in T} \bigvee_{\omega \supseteq \eta}\left[\left(\bigwedge_{\delta \in T} Y_{\delta}\right) \wedge z_{\epsilon, \omega}\right]|T| \geqq 2 .
\end{aligned}
$$

Since the only order relations among the meet-irreducibles are $\theta_{T, \eta}<\phi_{\epsilon}$ if and only if $\epsilon \in T$, one can check that α_{0} preserves order. By (4.5), $f \alpha_{0}(\gamma)=\gamma$ for all meet-irreducible γ.
(2) Now let

$$
\begin{aligned}
& \alpha\left(\phi_{\epsilon}\right)=\alpha_{0}\left(\phi_{\epsilon}\right) \\
& \alpha\left(\theta_{T, \eta}\right)=\alpha_{0}\left(\theta_{T, \eta}\right) \vee \bigvee_{S \subset T} \bigvee_{\omega \geqq \eta} \alpha\left(\phi_{T-S}\right) \wedge \alpha\left(\theta_{S, \omega}\right)
\end{aligned}
$$

where

$$
\alpha\left(\boldsymbol{\phi}_{T-S}\right)=\bigwedge_{\epsilon \in T-S} \alpha\left(\boldsymbol{\phi}_{\epsilon}\right)=\bigwedge_{\epsilon \in T-S} \alpha_{0}\left(\boldsymbol{\phi}_{\epsilon}\right) .
$$

Now define β_{0} and β from the join-irreducible into $F L(X)$ by:

$$
\begin{align*}
& \beta_{0}\left(\tau_{\epsilon}\right)=\bigwedge_{\substack{\delta \in U \\
\delta \neq \epsilon}}^{\bigwedge_{\mu \in U}} x_{\mu} \wedge y_{\delta} \tag{3}\\
& \beta_{0}\left(\rho_{T, \eta}\right)=\bigwedge_{\epsilon \in U} \bigwedge_{\substack{\mu \in U \\
\mu \supset \eta}} x_{\mu} \wedge y_{\epsilon} \wedge \bigwedge_{\epsilon \in T} \bigwedge_{\omega: \sigma(\epsilon) \rightarrow\{ \pm 1\}} z_{\epsilon, \omega}
\end{align*}
$$

Since the only comparabilities among the join-irreducibles are $\rho_{S, \omega} \leqq \rho_{T, \eta}$ if $S \subseteq T$ and $\omega \supseteq \eta, \beta_{0}$ preserves order. By Lemma 4.S $f \beta_{0}(\gamma)=\gamma$ for all join-irreducibles γ. Now let
(4) $\beta\left(\tau_{\epsilon}\right)=\beta_{0}\left(\tau_{\epsilon}\right)$

$$
\beta\left(\rho_{T, \eta}\right)=\beta_{0}\left(\rho_{T, \eta}\right) \wedge \wedge_{S \subset T}\left[\bigvee_{\epsilon \in T-S} \beta\left(\tau_{\epsilon}\right) \vee \bigvee_{\omega \neq \eta} \beta\left(\rho_{S, \omega}\right)\right]
$$

It follows from the remark at the end of Section 1 that the splitting equation, ζ_{n}, of L_{n} is given by:
$\left(\zeta_{n}\right) \quad \beta\left(\rho_{U, \varnothing}\right) \leqq a\left(\theta_{U, \not \subset}\right)$.

For $n=0$, it is easy to see that $F_{\mathscr{P}}(0)$ is given by the algebra $\mathbf{2} \rightarrow \mathbf{2}$ in Section 2 which produces $L_{0}=N_{5}$. For $n=1, F_{\mathscr{P}}(1)$ and L_{1} are given in the following diagrams where $U=\{ \pm 1\}^{1}$ is identified with $\{ \pm 1\}$ and \emptyset also denotes the empty function.

$$
L_{1}=\theta\left(F_{\mathscr{P}}(1)\right)
$$

5. Main computations. In this section we show that any variety of algebras \mathscr{K} such that $\theta(\mathscr{K})$ satisfies ζ_{n} has modular congruence lattices. Let \mathscr{K} be a variety of algebras with nonmodular congruence lattices. By $[\mathbf{2}, \mathbf{4}], \Theta\left(F_{\mathcal{X}}(a, b, c, d)\right)$ contains one of the following sublattices.

Figure 5.1
Figure 5.2
By considering $A=F_{\mathscr{x}}(a, b, c, d) / \psi \wedge \phi$ we may assume that the situation of Figure 5.1 applies and that $\psi \wedge \phi=0$. Our goal is to find $B \in \mathscr{K}$ with $\theta(B)$ failing ζ_{n}. If $\epsilon, \mu \in U$ and $\omega: \sigma(\epsilon) \rightarrow\{ \pm 1\}$ then $\phi_{\epsilon}, \psi_{\mu}$, and $\theta_{\epsilon, \omega}$ generate a copy of $N_{\bar{j}}$, the five element nonmodular lattice. Thus L_{n} has several copies of N_{5} "near the top". The desired B is obtained by taking a subdirect power of A in such a way that the N_{5} 's of $\Theta(A)$ connect together in a manner similar to the way they connect in L_{n}.

Let $A \in \mathscr{K}$ be the algebra described above with congruence ϕ, θ, ψ as in Figure 5.1. That is A is an algebra in $\mathscr{K} . A$ contains elements a, b, c, d and has congruence ϕ, θ, ψ such that $\phi=\operatorname{con}(a b)(c d), \psi=$ $\operatorname{con}(a c)(b d),(a, b) \in \theta$ and $(c, d) \notin \theta$, and ϕ, θ, ψ generate N_{5}. We shall also assume that $\psi \wedge \phi=\triangle$. Thus whenever $(x, y) \in \psi \wedge \phi$ we shall conclude that $x=y$.
(5.1) Definition. Consider $A^{2^{2 n}}=A^{\left(2^{n}\right)^{2}}=\left\{\left(a_{\epsilon \chi}\right): \epsilon, \chi \in U\right\}$.
(1) Let B be the subalgebra of $A^{2 n}$ whose elements satisfy

$$
\begin{aligned}
& \left(a_{\epsilon \chi}, a_{\delta \chi}\right) \in \psi \quad \epsilon, \delta, \chi \in U \\
& \left(a_{\epsilon \chi}, a_{\epsilon \nu}\right) \in \phi \quad \epsilon, \chi, \nu \in U \\
& \left(a_{\epsilon \chi}, a_{\epsilon \nu}\right) \in \theta \text { if }\left.\chi\right|_{\sigma(\epsilon)}=\left.\nu\right|_{\sigma(\epsilon)} .
\end{aligned}
$$

(2) Let $\mathbf{a}=\left(a_{\epsilon \chi}\right), \mathbf{b}=\left(b_{\epsilon \chi}\right) \in B$ and define congruences $\bar{\psi}_{\mu}, \bar{\phi}_{\delta}, \bar{\theta}_{\delta, \omega}$, $\bar{\pi}_{\delta, \mu} \in \Theta B$ for $\mu, \delta \in U, \omega: \sigma(\delta) \rightarrow\{ \pm 1\}$, by
$(\mathbf{a}, \mathbf{b}) \in \bar{\psi}_{\mu}$ if for all $\epsilon \in U\left(a_{\epsilon \mu}, b_{\epsilon \mu}\right) \in \psi$
$(\mathbf{a}, \mathbf{b}) \in \bar{\phi}_{\delta}$ if for all $\chi \in U\left(a_{\delta \chi}, b_{\delta \chi}\right) \in \phi$
$(\mathbf{a}, \mathbf{b}) \in \bar{\theta}_{\delta, \omega}$ if for all χ with $\chi \supseteq \omega\left(a_{\delta \chi}, b_{\delta_{\chi}}\right) \in \theta$ $\bar{\pi}_{\delta, \mu}=\bar{\phi}_{\delta} \wedge \bar{\psi}_{\mu}$.
Notice that $(\mathbf{a}, \mathbf{b}) \in \bar{\psi}_{\mu}$ if there exists an $\epsilon \in U$ such that $\left(a_{\epsilon \mu}, b_{\epsilon \mu}\right) \in \psi$. Similarly, the "for all" part of the definition of $\bar{\phi}_{\delta}$ and $\bar{\theta}_{\delta, \omega}$ may be replaced by "there exists". These facts follow from the definition of B.

Recall that

$$
X=\left\{x_{\mu}: \mu \in U\right\} \cup\left\{y_{\epsilon}: \epsilon \in U\right\} \cup\left\{z_{\epsilon, \omega}: \epsilon \in U, \omega: \sigma(\epsilon) \rightarrow\{ \pm 1\}\right\} .
$$

Let g be the homomorphism from $F L(X)$ into $\theta(B)$ which extends the $\operatorname{map} g\left(x_{\mu}\right)=\bar{\psi}_{\mu}, g\left(y_{\epsilon}\right)=\bar{\phi}_{\epsilon}$, and $g\left(z_{\epsilon, \omega}\right)=\bar{\theta}_{\epsilon, \omega}$. We shall eventually show that

$$
g\left(\beta\left(\rho_{U, \emptyset}\right)\right) \nsubseteq g\left(\alpha\left(\theta_{U, \emptyset}\right)\right),
$$

proving that ζ_{n} fails in $\Theta(B)$.
(5.2) Lemma. Fix $T \subseteq U$. Let $\mathbf{a} \in B$ such that $a_{\epsilon, \chi}=a_{\delta, \chi}$ for all $\epsilon, \delta \in T$ and all $\chi \in U$. Then $\left(a_{\epsilon, \chi}, a_{\delta, \mu}\right) \in \theta$ for all $\epsilon, \delta \in T$ and all χ and μ such that $\left.\chi\right|_{\sigma(T)}=\left.\mu\right|_{\sigma(T)}$.

Proof. Suppose $\epsilon, \delta \in T$ and $\left.\chi\right|_{\sigma(T)}=\left.\mu\right|_{\sigma(T)}$. We induct on $|\{k: \chi(k) \neq \mu(k)\}|$. If this is zero the lemma holds. Suppose $\chi(k) \neq \mu(k)$ for some k. Then

$$
k \notin \sigma(T)=\{i: \epsilon(i)=1 \text { for all } \epsilon \in T\}
$$

Hence there is a $\gamma \in T$ with $\gamma(k)=-1$. Let χ_{1} be defined by $\chi_{1}(i)=$ $\chi(i), i \neq k$ and $\chi_{1}(k)=-\chi(k)=\mu(k)$. By (5.1), $\mathbf{a} \in B$ implies

$$
\left(a_{\gamma, \chi}, a_{\gamma, \chi_{1}}\right) \in \theta
$$

Thus

$$
a_{\epsilon, \chi}=a_{\gamma, \chi} \theta a_{\gamma, \chi_{1}} .
$$

Since χ_{1} and μ differ in one less place, the proof is complete.
(5.3) Lemma. Fix $\emptyset \neq T \subseteq U$. Let $\mathbf{a}, \mathbf{b} \in B$ be such that $a_{\epsilon, \chi}=a_{\delta, \chi}$ and $b_{\epsilon, \chi}=b_{\delta, \chi}$ for all $\epsilon, \delta \in T$ and all $\chi \in U$. Suppose that $(\mathbf{a}, \mathbf{b}) \in$ $g\left(\alpha\left(\theta_{T, \eta}\right)\right)$. Then $\left(a_{\epsilon, \chi}, b_{\epsilon, \chi}\right) \in \theta$ for all $\epsilon \in T$ and for all χ with $\chi \supseteq \eta$.

Proof. Induct on $|T|$. If $T=\{\epsilon\}$ then by Lemma 4.3 the only nontrivial dual minimal covers of $\theta_{\epsilon, \eta}$ are $\left\{\phi_{\epsilon}, \theta_{0, \mu}\right\}=\left\{\phi_{\epsilon}, \psi_{\mu}\right\}$ for $\mu \supseteq \eta$. Now

$$
\begin{aligned}
g \alpha\left(\theta_{\epsilon, \eta}\right) & =g \alpha_{0}\left(\theta_{\epsilon, \eta}\right) \vee \bigvee_{\mu \supseteq \eta}\left(g \alpha\left(\phi_{\epsilon}\right) \wedge g \alpha\left(\psi_{\mu}\right)\right) \\
& =g\left(z_{\epsilon, \eta}\right) \vee \vee_{\mu \supseteq \eta}\left[g\left(y_{\epsilon} \vee \bigvee_{\omega: \sigma(\epsilon) \rightarrow\left(\pm 1 \mid z_{\epsilon, \omega}\right.}\right) \wedge g\left(x_{\mu}\right)\right] \\
& =\bar{\theta}_{\epsilon, \eta} \vee \vee_{\mu \supseteq \eta}\left[\left(\bar{\phi}_{\epsilon} \vee \bigvee_{\omega} \bar{\theta}_{\epsilon, \omega}\right) \wedge \bar{\psi}_{\mu}\right] \\
& =\bar{\theta}_{\epsilon, \eta} \vee \vee_{\mu \supseteq \eta}\left(\bar{\phi}_{\epsilon} \wedge \bar{\psi}_{\mu}\right)=\bar{\theta}_{\epsilon, \eta} .
\end{aligned}
$$

In the last step we used the fact that if $\mu \supseteq \eta$ then

$$
\phi_{\epsilon} \wedge \bar{\psi}_{\mu} \leqq \bar{\theta}_{\epsilon, \eta}
$$

Thus we obtain (\mathbf{a}, \mathbf{b}) $\in \bar{\theta}_{\epsilon, \eta}$ from which it follows that $\left(a_{\epsilon, \chi}, b_{\epsilon, \chi}\right) \in \theta$ for all $\chi \supseteq \eta$, by the definition of $\bar{\theta}_{\epsilon, \eta}$.

Now let $T \subseteq U,|T| \geqq 2$. Then

$$
\begin{aligned}
g \alpha\left(\theta_{T, \eta}\right)= & g \alpha_{0}\left(\theta_{T, \eta}\right) \vee \vee_{S \subset T} \bigvee_{\omega \supset \eta} g\left(\alpha\left(\phi_{T-S}\right) \wedge \alpha\left(\theta_{S, \omega}\right)\right) \\
= & {\left[\bigvee_{\epsilon \in T} \bigvee_{\omega \supseteq \eta}\left(\bar{\phi}_{T} \wedge \bar{\theta}_{\epsilon, \omega}\right)\right] \vee \bigvee_{S \subset T} \vee_{\omega \supset \eta} g \alpha\left(\phi_{T-S}\right) } \\
& \wedge g \alpha\left(\theta_{S, \omega}\right) \\
= & {\left[\bigvee_{\epsilon \in T} \bigvee_{\omega \supseteq \eta}\left(\bar{\phi}_{T} \wedge \bar{\theta}_{\epsilon, \omega}\right)\right] }
\end{aligned}
$$

where $\bar{\phi}_{T}=\bigwedge_{\epsilon \in T} \bar{\phi}_{\epsilon}$. Since $(\mathbf{a}, \mathbf{b}) \in g \alpha\left(\theta_{T, \eta}\right)$ there is a finite sequence $\mathbf{a}, \mathbf{a}^{(1)}, \mathbf{a}^{(2)}, \ldots, \mathbf{b}$ in B with each $\left(\mathbf{a}^{(i)}, \mathbf{a}^{(i+1)}\right)$ in one of the summands of ${ }^{(*)}$. Since the map go α is order preserving and $g \alpha\left(\phi_{S}\right)=\bar{\phi}_{S}$, we have

$$
g_{\alpha}\left(\theta_{S, \omega}\right) \leqq \bar{\phi}_{S}
$$

From this it follows that each of the summands of $\left({ }^{*}\right)$ is less than or equal to $\bar{\phi}_{T}$.

Let δ and ϵ be in T. By hypothesis $a_{\epsilon, \chi}=a_{\delta, x}$. Since $\left(\mathbf{a}, \mathbf{a}^{(1)}\right) \in \bar{\phi}_{T}$,

$$
a_{\epsilon, \chi} \phi a_{\epsilon, x^{(1)}} \text { and } a_{\delta, \chi} \phi a_{\delta, x}{ }^{(1)} .
$$

Since $\mathbf{a}^{(1)} \in B$,

$$
a_{\epsilon, \chi}{ }^{(1)} \psi a_{\delta, \chi}{ }^{(1)} .
$$

Hence

$$
u_{\epsilon, \chi}{ }^{(1)} \psi \wedge \phi a_{\delta, \chi^{(1)}} .
$$

Thus $a_{\epsilon, \chi}{ }^{(1)}=a_{\delta, \chi}{ }^{(1)}$. Hence each $\mathbf{a}^{(i)}$ also satisfies the hypothesis of the lemma.
Suppose $\left(\mathbf{a}^{(i)}, \mathbf{a}^{(i+1)}\right) \in \bar{\phi}_{T} \wedge g \alpha\left(\theta_{S, \omega}\right)$ for $\emptyset \neq S \subset T$. Since $S \subset T$ $\mathbf{a}^{(i)}$ and $\mathbf{a}^{(i+1)}$ satisfy the hypothesis of the lemma with S in place of T. Hence by induction

$$
\left(u_{\epsilon, \chi^{(i)}}, u_{\epsilon, \chi^{(i+1)}}\right) \in \theta
$$

for all $\epsilon \in S$ and all $\chi \supseteq \omega$. If $\epsilon \in T$ choose $\delta \in S$, then

$$
a_{\epsilon, \chi^{(i)}}=a_{\delta, \chi}{ }^{(i)} \text { and } a_{\epsilon, \chi^{(i+1)}}=a_{\delta, \chi}{ }^{(i+1)} .
$$

Thus ($\left.a_{\epsilon, \chi}{ }^{(i)}, a_{\epsilon, \chi}{ }^{(i+1)}\right) \in \theta$ for $\epsilon \in T$ and $\chi \supseteq \omega$. Suppose μ is such that $\mu \supseteq \eta$. Choose any $\chi \supseteq \omega$. Then $\chi \supseteq \omega \supseteq \eta$, and by Lemma 5.2

$$
a_{\epsilon, \mu}^{(i)} \theta a_{\epsilon, \chi^{(i)}} \theta a_{\epsilon, \chi}{ }^{(i+1)} \theta a_{\epsilon, \mu}{ }^{(i+1)} .
$$

Thus $\left(a_{\epsilon, \mu}{ }^{(i)}, a_{\epsilon, \mu}{ }^{(i+1)}\right) \in \theta$ for all $\epsilon \in T$ and $\mu \supseteq \eta$.
If $S=\emptyset$ then $\left(\mathbf{a}^{(i)}, \mathbf{a}^{(i+1)}\right) \in g \alpha\left(\phi_{T} \wedge \psi_{\omega}\right)=\bar{\phi}_{T} \wedge \bar{\psi}_{\omega}$. Thus

$$
a_{\epsilon, \omega}{ }^{(i)}=a_{\epsilon, \omega}{ }^{(i+1)} \text { for } \epsilon \in T \text {. }
$$

Again by Lemma 5.2

$$
\left(a_{\epsilon, \mu}{ }^{(i)}, a_{\epsilon, \mu}{ }^{(i+1)}\right) \in \theta \text { for all } \epsilon \in T \text { and all } \mu \supseteq \eta .
$$

The final case is $\left(\mathbf{a}^{(i)}, \mathbf{a}^{(i+1)}\right) \in \bar{\phi}_{T} \wedge \bar{\theta}_{\epsilon, \omega}$ for some $\epsilon \in T, \omega \supseteq \eta$. This is handled in a same manner. This completes the proof.
(5.4) Theorem. Let c be the element of B each of whose coordinates is c, und let \mathbf{d} be the element each of whose coordinates is d. Then $(\mathbf{c}, \mathbf{d}) \notin g \alpha\left(\theta_{U, \beta}\right)$.

Proof. If $(\mathbf{c}, \mathbf{d}) \in g \alpha\left(\theta_{U, \phi}\right)$ then by Lemma 5.3 we would have $(c, d) \in \theta$, a contradiction.
(5.5) Lemma. Fix $T \subseteq U$ and $\eta: \sigma(T) \rightarrow\{ \pm 1\}$. Let $\mathbf{a}, \mathbf{b} \in B$ be such that for each $\omega: \sigma(T) \rightarrow\{ \pm 1\}, \omega \neq \eta$ either
(1)

$$
\begin{array}{llll}
a_{\epsilon, \chi}=b_{\epsilon, \chi}=c & \forall \epsilon \in T & \forall \chi \supseteq \omega & \text { and } \\
\alpha_{\epsilon, \chi}=b_{\epsilon, \chi}=a & \forall \epsilon \notin T & \forall \chi \supseteq \omega &
\end{array}
$$

or
(2) $a_{\epsilon, \chi}=b_{\epsilon, \chi}=d \quad \forall \epsilon \in T \quad \forall \chi \supseteq \omega \quad$ and $a_{\epsilon, \chi}=b_{\epsilon, \chi}=b \quad \forall \epsilon \notin T \quad \forall \chi \supseteq \omega$.
Moreover assume

$$
\begin{array}{llll}
a_{\epsilon, x}=c, b_{\epsilon, x}=d & \forall \epsilon \in T & \forall \chi \supseteq \eta & \text { and } \tag{3}\\
a_{\epsilon, x}=a, b_{\epsilon, x}=b & \forall \epsilon \notin T & \forall \chi \supseteq \eta .
\end{array}
$$

Then $(\mathbf{a}, \mathbf{b}) \in g \beta\left(\rho_{T, \eta}\right)$.
Proof. The hypothesis of the lemma partitions the rows of the "matrices" \mathbf{a} and \mathbf{b} into two blocks, T and $U-T$. It partitions the columns of \mathbf{a} and \mathbf{b} according to their restriction to $\sigma(T)$; i.e., $\chi \sim \mu$ if $\left.\chi\right|_{\sigma(T)}=$ $\left.\mu\right|_{\sigma(T)}$. This situation is represented in the following figure.

To prove the lemma, induct on T. Suppose $T=\emptyset$. Then

$$
g \beta\left(\rho \hat{\phi}, \eta^{)}\right)=g \beta_{0}\left(\rho_{0 . \eta}\right)=\bigwedge_{\epsilon \in U} \bigwedge_{\substack{\mu \in U \\ \mu \neq \eta}} \bar{\pi}_{\epsilon, \mu} \wedge \bigwedge_{\epsilon \notin T} \bigwedge_{\omega: \sigma(\epsilon \rightarrow \rightarrow \pm 1\}} \bar{\theta}_{\epsilon, \omega} .
$$

Recall that $(\mathbf{a}, \mathbf{b}) \in \bar{\pi}_{\epsilon, \mu}$ if and only if $a_{\epsilon, \mu}=b_{\epsilon, \mu}$ and that $(\mathbf{a}, \mathbf{b}) \in \bar{\theta}_{\epsilon, \omega}$ if and only if $\left(a_{\epsilon, \mu}, b_{\epsilon, \mu}\right) \in \theta$ for all $\mu \supseteq \omega$. From this it is easy to check that for \mathbf{a}, \mathbf{b} satisfying 1$), 2)$, and 3$),(\mathbf{a}, \mathbf{b}) \in g \beta\left(\rho_{0}, \eta\right)$.

Let $T \subseteq U$ be arbitrary. Since $\beta\left(\tau_{\epsilon}\right)=\beta_{0}\left(\tau_{\epsilon}\right)$ we have

$$
\begin{aligned}
& g \beta\left(\rho_{T, \eta}\right)=g \beta_{0}\left(\rho_{T, \eta}\right) \wedge \bigwedge_{S \subset T}\left[\bigvee_{\epsilon \in T-S}\left(\bigwedge_{\delta \neq \epsilon} \bigwedge_{\epsilon \in U} \bar{\pi}_{\delta, \mu}\right)\right. \\
&\left.\vee \bigvee_{\omega \supseteq \eta} g \beta\left(\rho_{S, \omega}\right)\right] .
\end{aligned}
$$

Calculations similar to those above show that $(\mathbf{a}, \mathbf{b}) \in g \beta_{0}\left(\rho_{T, \eta}\right)$.
Let $\mathbf{a}^{(1)} \in B$ be defined by $a_{\epsilon, \chi}^{(1)}=a$ for all $\epsilon \in T-S$ and $\chi \supseteq \eta$; for each $\omega: \sigma(T) \rightarrow\{ \pm 1\}, \omega \neq \eta$ and each $\epsilon \in T-S$ and each $\chi \supseteq \omega$, $a_{\epsilon,} \chi^{(1)}=a$ if $a_{\epsilon, \chi}=c$ and $a_{\epsilon, \chi}^{(1)}=b$ if $a_{\epsilon, \chi}=d$, and $a_{\epsilon, \chi}^{(1)}=a_{\epsilon, \chi}$ for all other ϵ and χ (see Figure 5.4). Similarly $\mathbf{b}^{(1)}$ is defined by $b_{\epsilon} \chi^{(1)}=b$ if $\epsilon \in T-S$ and $\chi \supseteq \eta$, and for $\omega \neq \eta$ and each $\epsilon \in T-S$ and each $\chi \supseteq \omega, b_{\epsilon, \chi}^{(1)}=a$ if $b_{\epsilon, \chi}=c$ and $b_{\epsilon, \chi}^{(1)}=b$ if $b_{\epsilon, \chi}=d ; b_{\epsilon, \chi}^{(1)}=b_{\epsilon, \chi}$ otherwise. The reader can verify that $\mathbf{a}, \mathbf{b}, \mathbf{a}^{(1)}, \mathbf{b}^{(1)}$ are actually in B. Moreover it is straightforward to check that $\left(\mathbf{a}, \mathbf{a}^{1}\right)$ and $\left(b, b^{(1)}\right)$ are in $\bigvee_{\epsilon \in T-S}\left(\bigwedge_{\delta \neq \epsilon} \bigwedge_{\mu \in U} \bar{\pi}_{\delta, \mu}\right)$.

Figure 5.4
Since $S \subset T, \sigma(S) \supseteq \sigma(T)$. Thus if we partition the columns χ according to their restriction to $\sigma(S)$ we get a finer partition than when we partition them according to their restriction to $\sigma(T)$.

Let ν_{1}, \ldots, ν_{m} be all the maps $\sigma(S) \rightarrow\{ \pm 1\}$ such that $\nu_{i} \supseteq \eta$. Let $\mathbf{a}^{(2)}$ be defined by $a_{\epsilon, \chi}{ }^{(2)}=b$ if $\epsilon \in S$ and $\chi \supseteq \nu_{1}$; and $a_{\epsilon, \chi}{ }^{(2)}=b$ if $\epsilon \nexists S$ and $\chi \supseteq \nu_{1}$, and $a_{\epsilon, \chi^{(2)}}=a_{\epsilon, \chi}{ }^{(1)}$ otherwise (see Figure 5.5). By the inductive hypothesis

$$
\left(\mathbf{a}^{(1)}, \mathbf{a}^{(2)}\right) \in g \beta\left(\rho_{S, \nu_{1}}\right) .
$$

Continuing in this way we see that

$$
\left(a^{(1)}, b^{(1)}\right) \in \bigvee_{\nu \supseteq \eta} \beta\left(\rho_{S, \nu}\right) .
$$

Thus $(\mathbf{a}, \mathbf{b}) \in g \beta\left(\rho_{T, \eta}\right)$, proving the lemma.

Figure 5.5
(5.6) Theorem. Let \mathbf{c} and \mathbf{d} be as in Theorem 5.4. Then $(\mathbf{c}, \mathbf{d}) \in$ $g \beta\left(\rho_{U, 0}\right)$. Thus ζ_{n} fails in $\theta(B)$.

Proof. This theorem follows immediately from Lemma 5.5 and Theorem 5.4.
6. The main results. Now that all calculations have been completed we can state our main results. The first theorem and its corollaries follow directly.
(6.1) Theorem. Let \mathscr{K} be an arbitrary variety of algebras; then \mathscr{K} is not congruence modular if and only if $\mathbf{C o n}(\mathscr{P}) \subseteq \operatorname{Con}(\mathscr{K})$.
(6.2) Corollary. Con (\mathscr{P}) is the least non-modular congruence variety.
(6.3) Corollary. For a variety of algebras, \mathscr{K}, the following are equivalent:
(1) \mathscr{K} is congruence modular
(2) $\operatorname{Con}(\mathscr{K}) \vDash \zeta_{n}$ for some $n<\omega$
(3) $\operatorname{Con}(\mathscr{P}) \nsubseteq \operatorname{Con}(\mathscr{K})$
(4) $L_{n} \not \operatorname{Con}(\mathscr{K})$ for some $n<\omega$.

The second main result shows us that at least " \vdash_{c} mod" is (very strongly) compact.
(6.4) Theorem. Let Σ be a set of lattice identities; then the following are equivalent:
(1) $\sum \vdash_{c} \bmod$
(2) $\exists \delta \in \Sigma \delta F_{c} \bmod$
(3) $\exists \delta \in \Sigma \exists n<\omega \delta \vdash \zeta_{n}$

(5) $\operatorname{Con}(\mathscr{P}) \not \not \nmid \Sigma$

Proof. By our previous results we have (5) $\Leftrightarrow(4) \Leftrightarrow(3) \Rightarrow(2) \Rightarrow(1)$. Now if $\operatorname{Con}(\mathscr{P}) \vDash \Sigma$ then P is a variety of algebras whose congruence lattices satisfy Σ but not mod. Therefore $\Sigma \nvdash_{c} \bmod$.

Note that in (2), (3) and (4) the δ (and n) remain the same so that we can also state the result for $\Sigma=\{\delta\}$.
(6.5) Corollary. For a lattice identity δ, the following are equivalent:
(1) $\delta \vDash{ }_{c} \bmod$
(2) $\delta \vDash \zeta_{n}$ for some $n<\omega$
(3) L_{n} 牛 δ for some $n<\omega$.
7. Equations satisfied by $\Theta(\mathscr{P})$. In view of the theorems of $\S 6 \mathrm{a}$ better understanding of the lattices $\theta(\mathscr{P})$ is important. In this section we investigate lattice identities holding in $\theta(\mathscr{P})$ and give some applications. Equation (7.1.1) below is from [20]. Equations (7.1.2)-(7.1.5) are McKenzie's splitting equations for $N_{6}, Q_{0}{ }^{d}, Q_{1}, Q_{4}[\mathbf{2 2}]$.
(7.1) Theorem. The following hold in $\Theta(\mathscr{P})$ and thus in $\mathbf{C o n}(\mathscr{P})=$ HSP $\theta(\mathscr{P})$.
(1) $x \wedge(y \vee z) \leqq y \vee(x \wedge(z \vee(x \wedge y)))$.
(2) $y \wedge[(x \wedge(w \vee(x \wedge z))) \vee(z \wedge(w \vee(x \wedge z)))]$

$$
\leqq x \vee\{[x \vee y \vee(w \wedge(x \vee z))] \wedge[z \vee(w \wedge(x \vee y))]\}
$$

(3) $y \wedge([x \wedge(z \vee(x \wedge y))] \vee(y \wedge z))$

$$
\leqq[x \wedge(y \vee(z \wedge(x \vee y)))] \vee(z \wedge(x \vee y))
$$

(4) $x \wedge[(x \wedge y) \vee(z \wedge(w \vee(x \wedge y \wedge z)))]$

$$
\leqq(x \wedge y) \vee[(z \vee w) \wedge(x \vee(w \wedge(x \vee y)))] .
$$

(5) $y \wedge[z \vee(y \wedge(x \vee(y \wedge z)))]$

$$
\leqq x \vee[(x \vee y) \wedge(z \vee(x \wedge(y \vee z)))]
$$

The dual of (7.1.3) fails in $\Theta(\mathscr{P})$. However, the duals of all of the other equations hold in $\theta(\mathscr{P})$.

Proof. As we saw in Section 1 it suffices to show these identities hold in $\Theta(P(\mathbf{S}, A))$ when A is finite. Hence let x, y, z be congruences of $P(\mathbf{S}, A), A$ finite. Let $x=\left(x_{*} ; x_{a}, a \in A\right), y=\left(y_{*} ; y_{a}, a \in A\right)$ and $z=\left(z_{*} ; z_{u}, a \in A\right)$ be the congruence representations of x, y, and z.
(7.2) Lemma. Let $f_{x}: A \rightarrow A$ by letting $f_{x}(a)$ be the least element of A congruent to a modulo x_{*}. Then
(1) $f_{x \vee y}(a)=f_{x}(a) \wedge f_{y}(a)$
(2) $f_{x \wedge y}(a)=f_{x}(a) \vee f_{y}(a)$
(3) $f_{x}\left(f_{y}(a)\right)=f_{y}\left(f_{x}(a)\right)=f_{x \vee y}(a)=f_{x}(a) \wedge f_{y}(a)$
(4) $f_{x \wedge(y \vee z)}=f_{(x \wedge y) \vee(x \wedge z)}$

To see this notice that since A is a finite Boolean algebra, there is a unique $a_{x} \in A$ such that $x_{*}=\theta\left(a_{x}, 1\right)$. Since

$$
(x \vee y)_{*}=x_{*} \vee y_{*}=\theta\left(a_{x} \wedge a_{y}, 1\right),
$$

by elementary properties of Boolean algebras, we have

$$
a_{x \vee y}=a_{x} \wedge a_{y} .
$$

Similarly

$$
a_{x \wedge y}=a_{x} \vee a_{y} .
$$

Now (1), (2), (3) follow easily from the fact that $f_{x}(a)=a_{x} \wedge a$. To see (4) notice that f_{x} only depends on x_{*}. Now using the distributivity of $\Theta(A)$ and (2.7)

$$
\begin{aligned}
{[x \wedge(y \vee z)]_{*} } & =x_{*} \wedge\left(y_{*} \vee z_{*}\right) \\
& =\left(x_{*} \wedge y_{*}\right) \vee\left(x_{*} \wedge z_{*}\right)=[(x \wedge y) \vee(x \wedge z)]_{*}
\end{aligned}
$$

Hence (4) holds, i.e., we can use the distributive law on the subscript of f.

In order to prove (7.1.1)-(7.1.5) we must show that the a-component of the left-hand side is less than or equal to the a-component of the right-hand side for $a \in A$ and that the same holds for the ${ }^{*}$-component. The latter is easy: $x \rightarrow x_{*}$ is a lattice homomorphism from $\theta(P(\mathbf{S}, A))$ to $\theta(A)$ and $\Theta(A)$ is distributive.

In what follows we use plus and juxtaposition or dot in place of join and meet in order to simplify the notation. Let $a \in A$. Then

$$
\begin{aligned}
(x(y+z))_{a} & =x_{a}(y+z)_{a} \\
& =x_{a} \kappa_{b}{ }^{a}\left(y_{b}+z_{b}\right) \\
& =x_{a} \cdot \kappa_{b}{ }^{a}\left(x_{b}\right) \cdot \kappa_{b}{ }^{a}\left(y_{b}+z_{b}\right) \\
& =x_{a} \cdot \kappa_{b}{ }^{a}\left(x_{b}\left(y_{b}+z_{b}\right)\right) \\
& =x_{a} \cdot \kappa_{b}{ }^{a}{ }_{b}\left(x_{b} y_{b}+x_{b} z_{b}\right)
\end{aligned}
$$

where

$$
b=f_{y+z}(a)=f_{y}(a) \cdot f_{z}(a),
$$

and we have used $x_{a} \leqq \kappa_{b}{ }^{a}\left(x_{b}\right)$ by ($R 1$), and the distributivity of $\theta(\mathbf{S}(b))$. Now

$$
\begin{aligned}
{[y+x(z+x y)]_{a} } & =\kappa_{c}{ }^{a}\left(y_{c}+(x(z+x y))_{c}\right) \\
& =\kappa_{c}{ }^{a}\left(y_{c}+x_{c}(z+x y)_{c}\right) \\
& =\kappa_{c}{ }^{a}\left(y_{c}+x_{c} \cdot \kappa_{d}{ }^{c}\left(z_{d}+x_{d} y_{d}\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& c=f_{y+x(z+x y)}(a)=f_{y+x z}(a) \text { and } \\
& d=f_{z+x y}(c)=f_{z+x y+y+x y}(a)=f_{z+y}(a)=b,
\end{aligned}
$$

using this and ($R 1$) we have

$$
\begin{aligned}
{[y+x(z+x y)]_{a} } & =\kappa_{c}{ }^{a}\left(y_{c}+x_{c} \cdot \kappa_{b}{ }^{c}\left(z_{b}+x_{b} y_{b}\right)\right) \\
& =\kappa_{c}{ }^{a}\left(y_{c}+x_{c} \cdot \kappa_{b}{ }^{c}\left(x_{b}\right) \cdot \kappa_{b}{ }^{c}\left(z_{b}+x_{b} y_{b}\right)\right) \\
& =\kappa_{c}{ }^{a}\left(y_{c}+x_{c} \cdot \kappa_{b}{ }^{c}\left(x_{b} z_{b}+x_{b} y_{b}\right)\right) \\
& \geqq \kappa_{c}{ }^{a}\left(y_{c}\right)+\kappa_{c}{ }^{a}\left(x_{c}\right) \cdot \kappa_{c}{ }^{a}\left(\kappa_{b}{ }^{c}\left(x_{b} z_{b}+x_{b} y_{b}\right)\right) \\
& \geqq x_{a} \cdot \kappa_{b}{ }^{a}\left(x_{b} z_{b}+x_{b} y_{b}\right)
\end{aligned}
$$

proving (7.1.1).
To see (7.1.3) note

$$
\begin{aligned}
{[y(x(z+x y)} & +y z)]_{a} \\
& =y_{a} \cdot \kappa_{b}{ }^{a}\left(x_{b} \cdot \kappa_{c}^{b}\left(z_{c}+x_{c} y_{c}\right)+y_{b} z_{b}\right) \\
& \leqq \kappa_{b}{ }^{a}\left(y_{b}\right) \cdot \kappa_{b}{ }^{a}\left(x_{b} \cdot \kappa_{c}{ }^{b}\left(z_{c}+x_{c} y_{c}\right)+y_{b} z_{b}\right) \\
& =\kappa_{b}{ }^{a}\left(y_{b} x_{b} \cdot \kappa_{b}{ }^{a}\left(z_{c}+x_{c} y_{c}\right)+y_{b} z_{b}\right) \\
& \leqq \kappa_{b}{ }^{a}\left(y_{b} x_{b}+y_{b} z_{b}\right)
\end{aligned}
$$

where $b=f_{x z+x y+y z}(a)$ and $c=f_{z+x y}(b)=f_{z+x y}(a)$. Now letting $d=$ $f_{y+x z}(b)=f_{y+x y}(a)$ and $e=f_{x+y}(a)=f_{x+y}(d)=f_{x+y}(b)$ we have

$$
\begin{aligned}
{[x(y} & +z(x+y)+z(x+y)]_{a} \\
& =\kappa_{b}{ }^{a}\left(x_{b} \cdot \kappa_{d}{ }^{b}\left(y_{d}+z_{d} \cdot \kappa_{e}{ }^{d}\left(x_{e}+y_{e}\right)\right)+z_{b} \cdot \kappa_{e}{ }^{b}\left(x_{e}+y_{e}\right)\right) \\
& \geqq \kappa_{b}{ }^{a}\left(x_{b} \cdot \kappa_{d}{ }^{b}\left(y_{d}\right)+z_{b} \kappa_{e}{ }^{b}\left(y_{e}\right)\right) \\
& \geqq \kappa_{b}{ }^{a}\left(x_{b} y_{b}+z_{b} y_{b}\right)
\end{aligned}
$$

proving (7.1.3).
The proofs of (7.1.2), (7.1.4), (7.1.5), their duals and the dual of (7.1.1) are similar. The dual of (7.1.3) is the splitting equation for Q_{0} [22] pictured in Figure 7.1.

Figure 7.1

Figure 7.2
Q_{0} is a sublattice of the lattice diagrammed in Figure 7.2. This lattice is the congruence lattice of $P(\mathbf{S}, A)$ where A is the four element Boolean
algebra and $\mathbf{S}(a)=\mathbf{2}$ for each $a \in A$. Hence $Q_{0} \in \operatorname{Con}(\mathscr{P})$. Thus the dual of (7.1.3) must fail in Con (\mathscr{P}), completing the proof.

A lattice is semidistributive if it satisfies the following law and its dual.
$\left(S D_{\wedge}\right): x \wedge y=x \wedge z$ implies $x \wedge y=x \wedge(y \vee z)$.
(7.3) Corollary. All the lattices of $\operatorname{Con}(\mathscr{P})=\mathbf{H S P} \Theta(\mathscr{P})$ are semidistributive.

Proof. The proof follows from the fact that (7.1.1) implies $\left(S D_{\wedge}\right)$, which is easy to verify (cf. [20]).
(7.4) Corollary. Those covers of the variety generated by N_{5} which give rise to covers of $\operatorname{Con}(\mathscr{P})$ are precisely the varieties generated by M_{3}, $L_{1}-L_{6}$, and $L_{8}-L_{12}$ in the notation of $[\mathbf{2 0}]$.

Proof. By Jonsson's Theorem [16] it suffices to show $M_{3}, L_{1}-L_{6}$, $L_{8}-L_{12}$ are not in $\operatorname{Con}(\mathscr{P})$ while $L_{7}, L_{13}-L_{15}$ are. M_{3} and $L_{1}-L_{5}$ are not semidistributive and hence are not in $\operatorname{Con}(\mathscr{P})$ by Corollary 7.3. By [22] the splitting equation of L_{6} is (7.1.2), of L_{8} is (7.1.3), of L_{9} is (7.1.4), of L_{11} is (7.1.5). The splitting equations of L_{10} and L_{12} are the duals of (7.1.4) and (7.1.5) respectively. The corollary now follows from Theorem 7.1.
(7.5) Corollary. Con (\mathscr{P}) is not self-dual. Moreover its dual is not a congruence variety.

Proof. Since $\operatorname{Con}(\mathscr{P})$ satisfies (7.1.3) but not its dual, it is not self dual. If its dual were a congruence variety, by our main result we would have
$\operatorname{Con}(\mathscr{P}) \subseteq \operatorname{Con}(\mathscr{P})^{\text {dual }}$.
This would make $\operatorname{Con}(\mathscr{P})$ self-dual, a contradiction.
The next result shows that \mathscr{P} has 4 -permutable congruences (cf. [14]), i.e., its congruence lattices have type III joins (cf. [1]).
(7.6) Theorem. \mathscr{P} has 4-permutable congruences.

Proof. Let q_{1}, q_{2}, q_{3} be the following polynomials in the language of \mathscr{P}.

$$
\begin{aligned}
q_{1}(x, y, z) & =x\left(y z^{+}\right)^{+} \\
q_{2}(x, y, z) & =\left(x y^{\prime}\right)^{\prime}\left(z y^{\prime}\right)^{\prime}(x z)^{\prime} \\
q_{3}(x, y, z) & =z\left(y x^{+}\right)^{+}
\end{aligned}
$$

By [14] it suffices to show that the following identities hold in \mathscr{P} :

$$
\begin{aligned}
q_{1}(x, z, z) & =x \\
q_{1}(x, x, z) & =q_{2}(x, z, z) \\
q_{2}(x, x, z) & =q_{3}(x, z, z) \\
q_{3}(x, x, z) & =z .
\end{aligned}
$$

Let $x, z \in P(\mathbf{S}, A) \in \mathscr{P}$. Let $x=(a, s)$ and $z=(b, t)$. Then

$$
\begin{aligned}
q_{1}(x, z, z) & =(a, s)\left((b, r)(b, t)^{+}\right)^{+} \\
& \left.=(a, s)(b, t)\left(b^{\prime}, 1\right)\right)^{+} \\
& =(a, s)(0, t)^{+} \\
& =(a, s)(1,1)=(a, s)=x
\end{aligned}
$$

The verification of the other identities is similar.
(7.7) Theorem. There are $2^{\mathbf{N}_{0}}$ nonmodular congruence varieties.

Proof. If \mathscr{V}_{1} and \mathscr{V}_{2} are varieties of algebras, possibly of different similarity types, let $\mathscr{V}_{1} \otimes \mathscr{V}_{2}$ be their product as defined in Definition 1.7 of [26]. It follows easily from Corollary 1.13 of [26] that

$$
\operatorname{Con}\left(\mathscr{V}_{1} \otimes \mathscr{V}_{2}\right)=\operatorname{Con}\left(\mathscr{V}_{1}\right) \vee \operatorname{Con}\left(\mathscr{V}_{2}\right)
$$

Thus congruence varieties are closed under finite joins (but not under intersections, see $[\mathbf{8}]$). There are $2^{\mathbf{N}_{0}}$ modular congruence varieties, e.g. [15]. By (7.3) Con (\mathscr{P}) contains no modular nondistributive lattices. Joining the modular congruence varieties with $\operatorname{Con}(\mathscr{P})$ gives $2^{\mathrm{X}_{0}}$ nonmodular congruence varieties which are all distinct by the above remarks and Jónsson's Theorem.

References

1. P. Crawley and R. P. Dilworth, Algebraic theory of lattices (Prentice-Hall, Englewood Cliffs, N.J., 1973).
2. A. Day, A characterization of modularity for congruence lattices of algebras, Canl. Math. Bull. 12 (1969), 167-173.
3. - p-modularity implies modularity in equational classes, Algebra Universalis 3 (1973), 398-399.
4. -Lattice conditions implying congruence modularity, Algebra Universalis 6 (1976), 291-302.
5. -_Splitting lattices and congruence modularity, Coll. Math. Soc. János Bolyai 17 . Contributions to Universal Algebra, Szeged (1975), 57-71.
6. Characterizations of finite lattices that are bounded-homomorphic images or sublattices of free lattices, Can. J. Math. 31 (1979), 69-78.
7. R. A. Dean, Component subsets of the free lattice on n generators, Proc. Amer. Math. Soc. 7 (1956), 220-226.
8. R. Freese, Minimal modular congruence varieties, Amer. Math. Soc. Notices 2.3 (1976).
9. - The class of Arguesian lattices is not a congruence variety, Amer. Math. Soc. Notices 23 (1976).
10. R. Freese and B. Jónsson, Congruence modularity implies the Arguesian identity, Algebra Universalis 6 (1976), 225-228.
11. R. Freese and J. B. Nation, Congruence lattices of semilattices, Pacific J. Math. 4.9 (1973), 51-58.
12. -3-3 lattice inclusions imply congruence modularity, Algebra Universalis γ (1977), 191-194.
13. H. Gaskill and C. Platt, Sharp transferability and finite sublattices of a free lattice, Can. J. Math. 27 (1975), 1036-1041.
14. J. Hagemann and A. Mitschke, On n-permutable congruences, Algebra Universalis 3 (1973), 8-12.
15. G. Hutchinson and Gábor Czédli, A test for identities satisfied in lattices of submodules, Algebra Universalis 8 (1978), 269-309.
16. B. Jónsson, Algebras whose congruence lattice is distributive, Math. Scad. 21 (1967), 110-121.
17. -_Varieties of algebras and their congruence varieties, Proceedings of the International Congress of Mathematicians, Vancouver (1974), 315-320.
18. -_Identities in congruence varieties, Lattice Theory (Proc. Colloq. Szeged, 1974), Colloq. Math. Soc., János Bolyai 14 (1976), 195-205.
19. B. Jónsson and J. B. Nation, A report on sublattices of a free lattice, Coll. Math. Soc. János Bolyai 17. Contributions to Universal Algebra, Szeged (1975).
20. B. Jónsson and I. Rival, Lattice varieties covering the smallest non-modular variety, to appear.
21. P. Mederly, Three Mal'cev type theorems and their applications, Math. Časopis Sloven. Akad. Vied. 25 (1975), 83-95.
22. R. McKenzie, Equational bases and non-modular lattice varieties, Trans. Amer. Math. Soc. 174 (1972), 1-43.
23. - Some unresolved problems between lattice theory and equational logic, Proc. Houston Lattice Theory Conference (1973), 564-573.
24. J. B. Nation, Varieties whose congruences satisfy certain lattice identities, Algebra Universalis 4 (1974), 78-88.
25. S. V. Polin, On identities in congruence lattices of universal algebras, Mat. Zametki 22 (1977), 443-451. Translated in Mathematical Notes.
26. W. Taylor, Characterizing Mal'cev conditions, Algebra Universalis 3 (1973), 351-397.
27. R. Wille, Kongruenzklassengeometrien, Lecture notes in mathematics 113 (SpringerVerlag, Berlin, 1970).

Lakehead University, Thunder Bay, Ontario; University of Hawaii, Honolulu, Hawaii

[^0]: Received January 2, 1979 and in revised form June 12, 1979.

