
Can. J. Math., Vol. XXXII , No. 5, 1980, pp. 1140-1167 

A CHARACTERIZATION OF IDENTITIES IMPLYING 
CONGRUENCE MODULARITY I 

ALAN DAY AND RALPH FREESE 

0. In t roduc t ion . In his thesis and [24], J. B. Nation showed the 
existence of certain lattice identities, strictly weaker than the modular 
law, such that if all the congruence lattices of a variety of algebras J ^ 
satisfy one of these identities, then all the congruence lattices were even 
modular. Moreover Freese and Jônsson showed in [10] that from this 
"congruence modularity" of a variety of algebras one can even deduce 
the (stronger) Arguesian identity. 

These and similar results [3; 5; 9; 12; 18; 21] induced jônsson in 
[17; 18] to introduce the following notions. For a variety of algebras J^, 
Con( jT) = HSPG(JT) is the (congruence) variety of lattices gener
ated by the class B(J^) of all congruence lattices 9(^4), A C jtf. 
Secondly if e is a lattice identity, and 2 is a set of such, 2 t= c e holds if 
for any variety Jf, Con( jT) != 2 implies Con( jT) t e. 

In [2] and [16] characterizations of C o n ( J ^ ) t= mod and 
C o n ( J ^ ) t dist were found (mod (dist) is the modular (resp. distribu
tive) law). These statements express the so-called congruence modularity 
or congruence distributivity of a variety J^ . Furthermore in [11] it was 
shown that for a variety of semigroups J^, C o n ( J ^ ) t= e where e is any 
non-trivial lattice identity implies J ^ is congruence modular. 

The aforementioned results led to a conjecture that there existed no 
proper non-modular congruence varieties but this conjecture was 
shattered by a recent result of Polin [25], where a variety of algebras SP 
is produced that is not congruence modular and which has C o n ( ^ ) 7e ££ . 
A detailed analysis of this variety &P (and C o n ( ^ ) ) has allowed us to 
produce several complete characterizations of congruence modularity 
and to answer some related questions about congruence varieties and the 
congruence satisfaction relation 1= c. 

The main result (6.1) states that C o n ( ^ ) is the smallest non-modular 
congruence variety (of lattices). The proof of this fact involves showing 
that the lattices, 6(Fp(n)) {n < w), are in fact splitting lattices with con
jugate splitting equations fw. These results allow us to prove a very strong 
compactness result that 2 t= c mod if and only if ô t= c mod for some 
5 Ç 2. The splitting equations allow us to characterize "Ô t c mod" in 
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CHARACTERIZATION OF IDENTITIES 1141 

terms of the usual lattice satisfaction relation, viz: 8 f= c mod if and only 
if 8 t fw for some n < w. In Par t II , the second author sharpens this last 
result to a recursive s ta tement : if and only if 8 t= f/K5) where h is a suit
able function from the set of lattice equations into w. 

1. Pre l iminar ie s . We need two main results; one refers to generators 
of congruence varieties and the other to McKenzie 's splitting lattices. 
The first result appears explicitly in Nat ion 's thesis and is also a conse
quence of Wille's work on Mal 'cev conditions for lattice identities, [27]. 
See also [15]. 

(1.1) PROPOSITION. LetJf be a class of algebras closed under the forma
tion of subalgebras. Then a lattice identity e holds in C o n ( J ^ ) if and only 
if it holds in \Q(A): A Ç J T and A is finitely generated}. Moreover if J^ 
is also closed under products, C o n ( J ^ ) t= e if and only if e holds in 
{e(Fx(n)): n < co}. 

In [22], McKenzie developed the notions of a bounded homomorphism 
and a splitting lattice. These notions, and their subsequent development 
have had a profound effect on lattice theory. We recall the relevant 
definitions. 

A subdirectly irreducible lattice L is called a splitting lattice if there 
exists a lattice equation e (called the conjugate or splitting equation of L) 
such tha t for any v a r i e t y ^ of lattices either L Ç 7 ^ o r ^ t= e bu t not 
both. From Dean's result [7] t ha t the var iety of all lattices is generated 
by its finite members, one can easily show tha t all splitting lattices are 
finite. 

An epimorphism / : M -» L is upper bounded if there exists a function 
a: L —» M with f o a = lL and 1 M ^ a of. A finite lattice L is called an 
upper-bounded-lattice if there is an upper bounded epimorphism from 
some free lattice onto L. Lower bounded epimorphisms and lower-
bounded-lattices are defined dually. A finite lattice L is called bounded 
if it is both upper and lower bounded. 

Let L be a finite lattice and take a G L. A finite non-empty subset 
U C L is a cover of a if a ^ V U. U is a non-trivial cover of a if in addition 
a ^ u for all u Ç U. Define V « U to mean for all v Ç V, v ^ u for some 
u G U. A (non-trivial) cover U of a is called a minimal cover of a if, 
whenever F is a cover of a with V <$C £/, then [/ Ç F. Since L is finite, 
minimal covers exists and are easily seen to consist of join-irreducible 
members of L. 

Finally let 

D0(L) — {a (z L: a has no non-trivial covers}, Dk+i(L) 

= {a (z L: every non-trivial minimal cover of a is a subset of Dk (L)} 
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and 

D(L) = Uk<„Dk(L). 

Dk'{L) and D'(L) are denned dually. 

(1.2) THEOREM ([22] and [13]). For a finite subdirectly irreducible 
lattice L, the following are equivalent: 

(1) L is a splitting lattice 
(2) L is a bounded lattice 
(3)D(L) =L = D'(L). 

We refer the reader to [19] for historical notes on and the proof of this 
result. We note here that a splitting equation for L can be determined in 
the following way: Let p < q be a (prime) critical quotient in L (i.e., one 
that generates the least non-trivial congruence on L), and / : FL(X) -» L 
be a "suitable" epimorphism. Using D(L) = L(Df(L) = L) one can 
construct the lower-bound (resp. upper bound) function j3: L —• FL(X) 
(resp. a: L —•> FL(X)). This construction will depend on the join (resp. 
meet) irreducible elements and their minimal covers (resp. minimal co 
covers). A splitting equation for L is then given by /3(g) g a(p). 

2. Polin's variety, SP. Polin created his variety by using the variety 
of Boolean algebras, 38, in two ways, externally and internally. Intuitively 
he considered an * 'external" or skeletal Boolean algebra, A, e.g. 

and replaced: (i) each element a £ A, with another Boolean algebra, 
S (a), 

(ii) every order relation a ^ b, with a homomorphism £b
a: S (a) —» 

s(/>), 
(iii) assumed that the homomorphisms were "compatible" with the 

order relation, i.e., 

(a) a^b^c imply £c
s o{,« = £ / 

(b) fc,8 = id s ( a ) 
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e.g. the commutat ive diagram of Boolean algebras: 

S( l ) 

/ i\ 
S(d) S(e) S ( 0 

IXX1 
S(«) S(i) S(c) 

\l/ 
S(0) 

Category theoretists would recognize such entities as functors 
S: (A, è ) —> 38 \ we will need the set-theoretical description: 

P = P(S,A) = U „ M { « ! XS(a). 
P becomes an algebra of type (2, 0, 1, 1) via: 

(a,s)-(b,t) = ( a - 6 , ^ » a ( s ) - U 6 ( 0 ) 

1 = (1 ,1 ) 

(a, .?)' = (a, s') (internal complement) 

(a, s ) + = (a', 1) (external complement) 
where in both co-ordinates x-y is the meet of x and y. 

Easy calculations show tha t (P, -, 1) is a meet-semilattice with uni t 
(1, 1) in which (a, s) ^ (b, t) if and only if a ^ b and £&

a(s) ^ *. 
Polin showed tha t the (abstract) class of algebras having such a 

representation is equationally definable (in terms of (•, 1, ', + ) ) and in 
fact is a finitely based variety. His result is: 

(2.1) T H E O R E M (Polin). C o n ( ^ ) is a proper but non-modular variety 
of lattices. 

Since we will require a detailed analysis of congruence lattices of 
algebras in £P, we need a full description of congruence relations on 
members of SP. 

(2.2) Definition. For P = P(S,A) £ &, and 6 6 S(P), define 

( i )0* = {(a,b) G A": (a, 1)0(6,1)} 
(ii) $a = \(s,t) e S (a ) 2 : (a,s)d(a,t)}, (a k A). 

I t follows easily tha t the above are congruence relations on their respec
tive Boolean algebras. 

(2.3) LEMMA, (a, s)6(b, t) if and only if ad*b and ^a(s)Oa^ab
b(t). 

https://doi.org/10.4153/CJM-1980-087-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-087-6


1144 A. DAY AND R. FREESE 

Proof. If (a, s)6(b, t) then clearly (a, 1) = (a, s)++0(ft, * ) + + = (ft, 1) 
and furthermore 

( ^ , £ab
a(s)) = (a, 5) • (ft, 0++^(ft, 0 ' (a, s)^ = (aft, £fl6

6(*)). 

Conversely if a#*a and £a&
G(s)0«&£a&&(O we have 

(a ,5) = (a, 5) (a, l)d(a,s)(b, 1) = (aft, ?flft
fl(s)) 

and 

(bj) = (b,t)(b,l)d(b,t)(a,l) = (ab,U(t)) 

and therefore (a, s)0(ft, /) by transi t ivi ty. 

(2.4) LEMMA. Assume a ^ b. If sdj then £b
a(s)db£b

a(t). Moreover if 
ad*b holds, the reverse implication is also true. 

Proof. If (a, s)d(b, t) then meeting with (b, 1) and using the fact t ha t 
ab = b proves the required implication. 

Now if ad*b and £b
a(s)db£b

a(t) then s6nt follows from b = ab and the 
previous lemma. 

(2.5) Definition. Associated with each homomorphism %b
a: S (a)—»S(ft)> 

is a function *&
a: G(S(ft)) - * 9 ( S ( a ) ) defined by: 

*>"(*) = &a x ^a)-1W 
= { (M) G S(a)2:J6

fl(5)^6
fl(0}. 

Clearly K&
G preserves arb i t rary intersections ( = meets) and hence 

also preserves order. Moreover for a ^ b ^ c, Kb
a o KC

& = Kc
a. 

(2.6) Definition. For P = P ( S , 4 ) G ^ \ let R e p ( P ) be the set of all 
(0*; ( 0 « W ) G 0( i4) X n a € A 0 ( S ( a ) ) satisfying: 

( P I ) o H implies 0a g K&
a(0&) 

(P2) a H and ad*b imply 0a = *&
a(0&). 

T h e previous lemmata provide us with the following result: 

(2.7) T H E O R E M . ForP = P ( S , A) G SP, ( 0 ( P ) , g ) an^ ( R e p ( P ) , g ) 
are isomorphic lattices where ^ on R e p ( P ) is //^ product order and meets 
in R e p ( P ) are computed component-wise. 

Subsequently we will identify congruences on P(S,A) with their 
representations. One might note a t this t ime t ha t the Polin algebra, P : 

2 
1 
2 
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has as its congruence (= representation) lattice 

<V P = ( V ; V, V) 

\ ) ( A ; V , V) 

I 
p (A ; A, V) 

A P = (A ; A, A) 

where (a; 0, y) = (0*;0U00). 

(2.8) COROLLARY. The map 6 i—> B* is a lattice homomorphism from 
9(P) to G (A). 

Proof. By (2.7), the map preserves (arbitrary) meets. For 0, \f/ G O(P), 
(a, 1)0 V \p(b, 1) if and only if 3 n G N and (a, 1) = (c0, s0), (ci, Si), . . . 
(Cm sn) = (by 1) such that for i < n, 

(cu Si)6(Ci+i, si+i) (i even) 

and 

(cu Si)\f/(ci+1, si+1) (iodd). 

Using ( ) + + this is equivalent to: 3n £ N and a = c0, Ci, . . . , cn = b 
such that for i < n 

(ct, l)6(ci+h 1) (i even) 

(cif l ) iKc+ i , 1) ( iodd). 

But this is equivalent to ad* V yj/*b. 

The general formula for joins in 0(P) is messy and not of much use. If 
however the "external" Boolean algebra, A, is finite, a reasonable and 
very useful method exists. 

Firstly if A is finite, then every 0* is of the form con (6, 1) = con(0, br) 
for some b £ A. Secondly A/6* ^ [0, b] and by (R2), the set \6X: x ^ b] 
determines all other 6a by 

0a = Kab
a(6ab). 

This is the main content of the following two results. 

(2.9) LEMMA. For A finite, 6, \p G O(P) with 0* = con (6, 1) and 
\̂ * = con(c, 1) then 6 ^ \}/ if and only if c S b and 0X ̂  ^xfor all x ^ c. 

(2.10) LEMMA. If A finite, and 6 = (con (b, 1); (0a) at A) , ^ = (con(c, 1); 
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1146 A. DAY AND R. FREESE 

O / O ^ A ) £ Q(P), then 6 V \p is given by: 

(i) (0 V f)* = con(bc, 1) 
(ii) (d V t)a = Kabc

a(dabc V * f l6c). 

This representation of congruences also allows us to describe all 
subdirectly irreducible members of £P. 

(2.11) THEOREM. The subdirectly irreducible members of S? are (up to 
isomorphism) the following list: 
(1) A = 2, S(0) = S( l ) = 1 
(2) 4 = 1 , S(0) = 2(0 = linA) 
(3) A arbitrary, S( l ) = 2 and S(a) = 1, a < 1. 

(Note that the homomorphisms for all ^ algebras in the above list are 
uniquely defined and therefore need not be mentioned.) 

Proof. It is easily seen that all algebras in the given list are indeed 
subdirectly irreducible members of SP. Conversely let P = P(S , A) be 
subdirectly irreducible. 

If A = 1, then ( ) + is a constant unary operation and therefore 
S(0 = 1) must be the unique subdirectly irreducible Boolean algebra, 2. 

If A ^ 1 then for any b < 1 we define two congruence relations on 
P b y : 

«. = *;'• = { A ° l î 
* ' a { A, a $ b 

\p* = con(b, 1), \f/a = A, a ^ b. 
Since \p j* AP and 6 f\ \j/ ~ AP we must have 0 = A p. But this forces 
for all a S b, V = A and therefore S (a) = 1. Since & < 1 was arbitrary, 
S(6) = 1 forallfc< 1. 

If S (1) = 1, then ( Y is the identity function and our algebra is iso
morphic to (̂ 4, -, 1, id, ')• Therefore A = 2. 

If S(1) 9^ 1, then easy calculations show that it must be a subdirectly 
irreducible Boolean algebra. Therefore S( l ) = 2. 

Note. Case (2) in our list is contained (vacuously) in Case (3). 

(2.12) COROLLARY 1. £P is a locally finite variety. (Equivalent ly, 
finitely generated free &-algebras are finite.) 

3. Congruence lattices of finite members of SP. By (1.1), 
Con(Jf) = H S P { e ( / v ( n ) ) : n £ Nj for any variety of algebras Jf\ 
Therefore in order to determine C o n ( ^ ) , we need to knowr Q(Fp(n)) for 
every n (z N. In the next section these will be described by means of a 
special representation for free ^-algebras. Most of the details however 
can be seen more clearly by examining arbitrary finite algebras. 

Throughout this section, P = P(S , A) will be a finite algebra in &. 
Therefore A and all S (a), a € /I, are finite. 
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(3.1) Definition. For b £ A and u £ S (6) and v £ S(0) define con
gruences on P by: 

4>b'-(<t>b)* = con(6, 1); (06)« = V 

/, //, \ /7 IN /fl x / c o n ( w , l ) , a = b 
Qb.u'- (Ob.u)* = con (6, 1); (db>u)a = | v ^ b 

$v = 0of*. 

The characterization of the subdirectly-irreducibles in (2.11) provides 
the following result. 

(3.2) LEMMA. The meet-irreducible congruences are precisely the fol
lowing: 

(1) <fe, 0 < p e A 

(2) eb,q, 0 < q Ç S(&) 

(3) * „ 0 < 5Ç S(0) 

with their respective unique covers given by: 

(1) V 

(2) **, b e A 

(3) V = 0o. 

(3.3) LEMMA. The only order relations between the meet-irreducible s 
congruences is given by: 

6biQ ^ (j>v if and only if p ^ b. 

Proof. A BbtQ produces a factor algebra with either a trivial "ex te rna l" 
Boolean algebra (if b = 0) or one with only trivial " in te rna l" Boolean 
algebras except a t S ( l ) . Therefore no such two can be comparable. Since 
\P/(j>p\ = 2, all 4>pS are maximal, and therefore the only comparabilities 
can be of the form 6brQ ^ <pp. Now 

(00.*)» = con(b, 1) and (<^,)* = con(p, 1). 

Since {4>v)a — V for all a £ A 

db,q S 4>v ^ (Qb,q)* â (<t>p)* 

<=>con(&, 1) C con(p, 1) 

<=> p S b. 

(3.4) LEMMA. For all 0 < p £ A, </>p is meet-prime. 

Proof. Define rv by 

(r„)» = c o n ( p M ) = con(0,/>) 

( r , ) x = A (* g £ ' ) . 

Now for q > 0 in A, q 5* p, q ^ p' and (?>)* ^ (0c)*. For b £ A and 
0 < q Ç S(&) 0»,, i ^ ^ ^ & ^ & ^ ' ^ r , ^ 06,,. 
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Since 9 (P) is generated by its meet-irredueibles, 

e (P ) = [ A , ^ ] U [ T „ v ] 

and <t>P is meet-prime. 

(3.5) LEMMA. For b £ A and 0 < q G S(b), dbiQ is meet-prime if and 
only if for all c < b,£c

b(q) = 0. 

Proof. Define p M £ 0(P) by: 

f c o n f e V ) , ! ) , 6 è a 
(Pb,q)* — A , (p&f(Z)r, — i ^ /; > a 

If £c&(^) = 0 for all c < b then only (pb<q)b is non-trivial. 
For meet-irreducible db>S} 0 < s £ S(b), s 5e q, s ^ #' implies 

con(g', 1) Ç con(s, 1) on S(6) and pbj(l g 0&,s. 
For meet-irreducible 0Ct7., 0 < r G S(c) and b ^ c, 

. /* c
6(con(r , l )) , 6 ^ 

V , & £ C. 
But b > c implies £c

h(q') = 1 hence 

(Oc,r)b è (pb,q)b 

and therefore p6i<? ^ 0c>r. 
For meet-irreducible 0P, clearly <f>p ^ pb>(2. Therefore 

e (P ) = [A,eb,q}KJ[Pb>q, v ] . 

Now suppose for some c < b, £c
b(q) ^ r > 0. Let 

MctT = {0c,r} U {<j>v: p g & A c'}. 

(AM C J )* = con(c, 1) A con(6c', 1) = con(6, 1) = (06)(Z)* 

(AAfCff)6 = Kc
6(con(r, 1)) A V = *c

B(con(r, 1)) g con(c, l) 
— (6b,<j)b-

Therefore /\MCiT S 0btQ and MCjT is clearly a non-trivial co-cover. 

The following result is straightforward. 

(3.6) LEMMA. If db:Q is not meet-prime, its minimal co-covers are given by 
Mc,r = {0C,T} W {<t>p:p g bcf) where c < b with 0 < r g £c

&(<?). 

(3.7) THEOREM. Z>'(0(P)) = 0(P) . 

Proof. We need only show that every meet-irreducible belongs to 
D' (G(P)). But we have easily by induction that if 0btQ is not meet-prime, 
then 

0b,Q £ Df
lbl(B(P)) 

where |6| is the number of atoms in A less than or equal to b. 

In §7, we will show that all 0 (P) satisfy (SD A) and (SZ>V). This 
implies (cf. [6]) that there is a bijective correspondence between the 
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join-irreducibles and the meet irreducibles of G(P) . The correspondence 
is given by: 

<t>P <-» TP, 0 < p G ^4 

0«u*->P&.„O < ? £ 5(6) , 6 G 4 . 

With this the reader can prove the following results. 

(3.8) LEMMA. TV is join-prime for all atoms p G A. 

(3.9) LEMMA. pbiQ is join-prime if and only if for all c < b, £c
6(<z) = 0. 

If Pi>,q is not join-prime, its minimal covers are given by 

Jc,r = {Pc.r} W {rp:p £ be'} 

where c < b and 0 < r g £/(<?). 

(3.10) T H E O R E M . P>(B(P)) = 9 ( P ) . 

(3.11) T H E O R E M . P / ^ congruence lattice of any finite algebra in & is a 
bounded lattice. 

Since the splitting lattices are precisely the subdirectly irreducible 
bounded lattices, we are interested in what finite algebras have such as 
their congruence lattices. 

(3.12) T H E O R E M . If 2 = S ( l ) g S(0) , then 9 ( P ) is subdirectly irredu
cible with critical quotient 0i,i < pi,i. 

Proof. Since (1 ,0) •< (1, 1) in P , we get 0i,i as the largest congruence 
not identifying (1, 0) and (1 ,1) and 

Pi.i = A { V - P a tom in ,4} = c o n P ( ( l , 0) , (1, 1)) . 

If we collapse any meet-irreducible of the form BbtQ with its unique 
upper cover </>6 then by meeting with p l f l the interval [BbtQ A pi,i, pi.il 
must also be collapsed, and 

Bb,q A P l . l ^ 01,1 < P l . l -

If we collapse a meet irreducible <£p with its unique cover, V , then by 
considering the pentagon 

0 4>P 

for r > 0 in S(p) with £op(r) = <7 we must collapse Bv<r with ^ which 
again collapses 0i,i with p l ti. Since 2 ^ S(0), such a Bo,q exists. Therefore 
9(P) is subdirectly irreducible. 
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4. The congruence lattices of free algebras and their splitting 
equations. In this section, we will describe the algebras F^n), show 
that their respective congruence lattices Ln = Q(F^(n)) are subdirectly 
irreducible, and determine the respective splitting equations, fn. 

Since every algebra in SP has a representation P = P(S , A), we 
assume that F&(n) has this form and is generated by (xi, n ) , . . . , 
(xn, rn). By using (xu rt) >—> {xu rt)

++ = (xu 1) we see that the external 
Boolean algebra will be w-generated and therefore should be F@(n). 
Because the morphisms go downwards (a ^ b gives £b

a: S (a) —>S(fr)), 
no new elements will be added to S(xz), that we do not get from {rf). This 
gives S(Xj) = Fm{{ri\). Continuing in this manner we see that for any 
a £ A = F«g({#i, . . . , xw}), S (a) contains (5a

I,'(^t): x* = a) a n d should 
be freely generated by that set. This provides us with a complete descrip
tion of F&(n) = P(S , A), namely: 

(1) A = Fm({xu • • • ,*»}). 

(2) For Û U , S (a) = ^ ( { r , : xf è a}). 

(3) For a ^ & in A, £b
a is the embedding monomorphism given by 

the embedding on the generators. 

The proof of this fact is left to the reader. 
We require a reasonable representation of this algebra. 
Consider the free Boolean algebra, 22", on free generators eu . . . , en. 

Let U be the set of all maps from {1, . . . , n) into {1, —1}. For T C U 
let 

a(T) = {i: e(i) = 1 for all e £ T). 

In particular a (id) = {1, . . . , n). For each e f [/, 

f i ^(i) e 22" 

is an atom, where e{
1 = ez- and gf1 is the complement of £*. Thus the 

elements of 22n are in one-to-one correspondence with the subsets of U. 
Notice that {ef. i £ v(T)} is the set of generators which lie above the 
element 

zrW°\ 
which corresponds to T. 

Consider the algebra P(S , A) G 0> with A = 22n and S (7) the free 
Boolean algebra with free generating set {rt

T: i Ç <r(T)\ and if 7*1 3 7̂ 2 

(note that 7\ 2 T2 implies <T(JTI) Ç O-(JP2)). Subsequently we will drop 
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the superscript and let rt
T = rt and consider S(7\) to be embedded in 

S ( r 2 ) if Tx 3 T2. 
Notice that ei0 corresponds to the set {e G U: e(io) = 1} and 

a({ee U:e(i0) = 1}) = {to}. 

(4.1) LEMMA. P(S, A) as described above is isomorphic to F&(n) with 
free generators (ei} r{), i = 1, . . . , n. 

We shall now describe the meet irreducible elements of Ln. For y £ Ln 

recall 7* = [(Tlf T2) £ (2e7)2: (T1, l)y(T2, 1)}. We let the critical co
ordinates associated with 7 £ Ln be those F Ç [/ which are least in their 
7* equivalence classes. By (2.9) 7 Ç Lw is determined by 7* and its 
values at its critical coordinates. 

Recall that a(e) = {i: e(i) = 1}. Let e, /x G t/ and co: o-(e) -» { ± 1 | . 
Following the results of § 3, we define ^M, </>e, and 8e>03 £ £w by 

GM* = con(l ,0) = con(tf, 0) = V 

(* , ) r = con ( l , n rf(i)), TQU. 

(«.)• = con(U, {e}) 

(<t>e)T = con(l ,0) = V,T Q U 

(0f,J* = con(U,U}) 

_ con(i, n rrU)) i f . e r 
\Pe,w)T — J \ tea-CD ' 

(con (1,0) = V if eg T 

More generally, for T Q U and 77: o-(T) —> {=blj we define <j>T and 
6T>V by 

</>r = A e ^ r </>€ 

so that 

(</>r)* = con(t/, T) 

(ci>T)s = con (1,0) = V , 5 Ç [ / 

(0r,,)» = con(U,T) 

_ c o n ( l , EI r / * ) i f 5 3 T 

( V if S £ T. 

We define 7r€M to be <£€ A i/v Note again that M̂ = 0#>M. 

(4.2) LEMMA. The meet irreducible elements of Ln are precisely the 
QT,VJ T ^ U, rj: a(T) —> {±1} and the <£€, e Ç [/. Moreover each <j>e is 
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uniquely covered by the greatest element of Ln and 6T,ri is uniquely covered 
by <t>T. 

(4.3) LEMMA. The 4>t and Q$itk are meet-prime. The non-trivial dual 
minimal covers of dT<J) are the sets 

{6sJ W {</>€: e G T-S] 

where S C T and co 3 V (i-e- ^\<J{T) = v)-

(4.4) COROLLARY. For each n} D1(Ln) = Ln. In fact 0Ti„ G D,/(Ln) 
where k = \T\} and 0 e G DQ'(Ln). 

(4.5) LEMMA. If T ^ id then 

Proof. First note tha t the *-coordinates of both BTi7) and (j>T A 6(œ 

are the same. Hence both sides of the equation have the same critical 
coordinates and it suffices to show tha t equali ty holds a t each of these 
coordinates. Notice t ha t the critical coordinates are precisely those S 
with 5 C T. Since co 2 r;, it follows from the definitions t ha t 

{OT,V)T = (4>T A deœ)T. 

Since joins a t critical coordinates are computed component-wise, the 
equation holds a t T. Let S Q T. Choose e G T — S. Then (0eû>)s = 1, 
for any co ^ 77. T h u s 

(</>r A 0e„)s = 1, 

from which the equation follows. 
Now we have from § 3 the join-irreducible elements of Ln. For T Ç U 

and co: a(T) —> { ± 1 } let r r and pT)W G £ n be defined by 

( r T ) * = con(0, T) 

(rT)s = con (0 ,0 ) = A 5 C [/ 

and 
(pr,«)* = con(0, 0) = A 

, , _ c o n ( 0 , I I riu{i)) i f S Ç T 
\PT,co)s — ) \ i€cr(71) / 

( A if S £ T. 
(4.6) LEMMA. The join-irreducible elements of Ln are precisely the T(, 

e G U, and pT f t 0 , T Ç. U and co: o-(T) —> { ± 1 } . 

(4.7) LEMMA. For e G £/, r6 is join-prime. Let T C [/ and ??: c^(7,) —> 

{ ± 1 } . 27^ non-trivial minimal covers of pTtV are the sets 

{T€} U { p s , w : co: c r ( 5 ) - > { ± l } f c o ^ri\forallSC T and e G r - 5 . 
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Recall t ha t 7T5,M = 4>Ô A i/v 

(4.8) LEMMA. 

(1) re = A A 7T«fM. 

(2) PT>V = A A A A *..„. 
eeU neu eeU-T co:cr(€)->{±l} 

Proof. Let 7 be the right hand side of (2). Then 

7* ^ (A A *•«,„) ^ A J = A. 

Also 

Or€iM)5 = c o n ( l , I l ^ ( i ) ) . 

Hence 

( A A * , „ ) è A c o n ( l , EI rf(i)) = c o n ( l , £ I I rt>
(i> 

Now (pT,v)s = con(0, Ylie*(T) riv(i)) if SQT and A otherwise. If 
S Q T then c (5) 2 <r(T) and it is easy to see t ha t 

Z II r4'<« 

is jus t the sum of the atoms of 6(8(6")) which are not below 

n u ; r 
i£<r(T) 

i.e., Yln£v TL°(S) rf{i) is the complement of I l ^ m r^K Hence 

con(o, I l r^) = con(l , £ U r^) è T.. 

US tjt T then there is a <5 G 5 — T. Hence 

( A e,„) =Acon(i !n^ ( i )) = con(i ) i :n^ ( i )) . 
\ W : < T ( Ô ) ^ Î ± 1 1 /S co \ ir(S) 1 \ w <T(S) / 

Since <5 Ç 5, o-(S) $£ o-(ô) and œ is defined on all of a(S). T h u s 

co (T^S) 

is jus t the sum of all the atoms, and hence 1. I t follows tha t y s = A = 
(PT,V) s- We have shown tha t 7 ^ pr>77. Since pTt1, S 7r6(M for all e 6 U 
and /u ̂  V a n d Pr,*? = #e,co for all e 6 U — T and all w, we have 7 = p r T ? 

proving (2). The proof of (1) is similar. 
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(4.9) T H E O R E M . For each n < w, Ln is a splitting lattice. Ln is generated 
by </>€, 0€iW, ^M, e, fj. £ U and cc: a(e) —> { ± 1 } . The prime quotient </>(7 = 
Pu,$ > &u,0 is collapsed by every non-trivial lattice congruence on Ln. More
over the equivalence relation generated by this prime quotient is the same as 
the congruence relation generated by it. 

Now let 

X = {x,: ^ [ / ) U \y€: e G £/) U {ze>œ: e 6 U, «: < r ( e ) - > { ± l | } 

be a set of variables. L e t / be the homomorphism from FL(X) onto L„ 

extending/(xM ) = \l/^f(yt) = </>e, and / (z e , w ) = 0«,w. 

(4.10) Definition. (1) Define maps a0 and « from the meet-irreducibles 
of Zw into FL(X) as follows: 

«oWv) = X M 

«o(0e,co) = 2e,co 

«o(<^e) = ^ e V Vw ;<r(0-»{±1} Se,o; 

«o(^ r , , ) = V e e r V ^ , [ ( A ^ r Fô) A ze,„] | T| è 2. 

Since the only order relations among the meet-irreducibles are 
07\ij < </>6 if and only if e G F, one can check t ha t ao preserves order. By 
(4.5), fao(7) = 7 for all meet-irreducible y. 

(2) Now let 

a(6Tt1l) = ao(07\,) V V s c r Vco^ <*(</>r-s) A a(0s,w) 

where 

a (0 : r - s ) = A eer-sa((t>e) = A «ç r - s «o(0«). 

Now define /30 and £ from the join-irreducible into FL(X) by: 

(3) ft, (re) = A A % A ^ 

Po(pT,v) = A A ^ A Je A A A 2e,w. 

Since the only comparabili t ies among the join-irreducibles are 
Ps,œ ^ Pr, , if 5 C r and co 2 rç, /3o preserves order. By Lemma 4.8 
/ 0 O ( T ) = 7 for all join-irreducibles 7. Now let 

(4) £(r<) = |8o(r€) 

P(f>T,,) = 0o(pr.,) A A S c r [ V e € T - S / 3 ( r e ) V V»^, |8 (ps .«) ] . 

I t follows from the remark a t the end of Section 1 t ha t the spli t t ing 
equation, f„, of LH is given by : 

(f») 0(pc^) ^ « ( W -
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For n = 0, it is easy to see that />(0) is given by the algebra 2 —• 2 
in Section 2 which produces L0 = N5. For n = 1, F&{\) and Lx are given 
in the following diagrams where U = { i l } 1 is identified with { ±1} and 
0 also denotes the empty function. 

S(U) 

U = G(F,(1)) 
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5. M a i n c o m p u t a t i o n s . In this section we show t h a t any var ie ty of 
algebras J ^ such t ha t 0 ( J O satisfies fn has modular congruence lattices. 
Let J ^ be a var ie ty of algebras with nonmodular congruence lattices. By 
[2, 4] , Q(Fyjr(a, b, c, d)) contains one of the following sublattices. 

>0 = con (ab)(cd) / im <l> = con (ab) (cd) 
\f/ = con(ac)(bd)4^ | ^ = con (ac)(bd)4{ I 

= con (ab) \ y ^ V 
Nw^ l i con (a6) 

FIGURE 5.1 FIGURE 5.2 

By considering A = F%-(a, b, c, d)/\p A 0 we may assume tha t the 
situation of Figure 5.1 applies and t h a t \p A <t> = 0. Our goal is to find 
B G J f with 0 ( 5 ) failing fw. If €, /* G £/ and w: <r(e) -> { db 1} then 
0É, ft,, and 0€>w generate a copy of 7V5, the five element nonmodular latt ice. 
T h u s Ln has several copies of N-0 "near the t o p " . T h e desired B is obtained 
by taking a subdirect power of A in such a way t ha t the iV5's of 6(^4) 
connect together in a manner similar to the way they connect in Ln. 

Let A G <# be the algebra described above with congruence </>, 6, \p 
as in Figure 5.1. T h a t is A is an algebra in jf. A contains elements 
a,b,c,d and has congruence 4>,d,\p such tha t 0 = con(a&)(cd), ^ = 
con(ac)(bd), (a, fc) G 0 and (c, d) g 0, and 0, 0, ^ generate Nh. We shall 
also assume tha t \p A <f> = A . Thus whenever (x, y) G \j/ A 0 we shall 
conclude tha t x = y. 

(5.1) Definition. Consider .422n = A^2 = {(a e x) : e, x G £/}. 
(1) Let 5 be the subalgebra of A22n whose elements satisfy 

(aex, a8x) G \// e, d, x G U 

(a€X, aev) G 0 e, x, v € U 

(«eX , « 6 . ) G 0 i f X|*(€) = v\*(€). 

(2) Let a = ( a ^ ) , b = (b€x) G .B and define congruences ft, 0a, #Ô,W, 
7f«>M G OB for M, 5 G U, co: cr(5) -> { ± 1 } , by 

(a, b ) G ft, if for all e G U (aeM, befi) G <A 

(a, b ) G 0Ô if for all x G U (a8x, b5x) G 0 

(a, b ) G 05,w if for all x with x 3 w (a5x, &«x) G 6 

TTô,n = 05 A ft. 

Notice tha t (a, b ) G ft if there exists an e G £7 such t ha t (aeM, b€fi) G ft 
Similarly, the "for al l" pa r t of the definition of 05 and 05>co may be re
placed by " there exists". These facts follow from the definition of B. 

Recall t ha t 

X = {*„: M G U)\J {yt: e G U\ U {ze,w: e G c/, co: <r(e)-> { ± 1 } } . 
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Let g be the homomorphism from FL(X) into 9(B) which extends the 
map g(xiJL) = $n, g(yt) = #e,andg(£6><„) =Ôe,œ. We shall eventually show that 

g(P{pus)) S g(<*(Ou,0)), 

proving tha t fn fails in 0(B). 

(5.2) LEMMA. Fix T Ç U. Let a G B such that attX = a5>x for all 

e, <5 G T and all x £ U. Then (a€,x, aStll) G 0/tfr a// e, 5 € T a n d a// % and M 
such that X\<T(T) = M U D -

Proof. Suppose e, <5 G T and X U D = M U D - We induct on 
\{k: x(k) 9^ \x(k)\ |. If this is zero the lemma holds. Suppose x(k) ^ n(k) 
for some &. Then 

* g <r(r) = {t: e(i) = 1 for all ^ T | . 

Hence there is a 7 G T with y(k) = — 1. Let %i be defined by x i W = 
x( i ) , i ^ fe and xi(k) = — x(&) = /*(&)• By (5.1), a f 5 implies 

(a7fX, a7iXl) G 0. 

Thus 

Since xi and /x differ in one less place, the proof is complete. 

(5.3) LEMMA. Fix 0 ?± T Ç1 U. Let a,b £ B be such that atyX = aSa 

and b(tX = b&tX for all e, <5 G T and all x £ U. Suppose that (a, b ) G 
g(a(6TtV)). Then (aea, b€jX) G 6 for all e (z T and for all x with X 2 77. 

Proof. Induct on | T\. If T = {e} then by Lemma 4.3 the only nontrivial 
dual minimal covers of 0€;7? are {</>e, 60,»} = {</>*, fa} for /x 3 ??. Now 

£a(0e,,) = #*o(0«,,) V V ^ , (#*(«<) A #*(*„)) 

= gfce.l) V V / o J g ^ e V Vw:<r(0-»{±1}2«,«) A g(x»)] 

= 0e,, V V M 2 , [ (0 e V V„0€,„) A ft,] 

- e*,, v VM=>, (0 € A fa) = 0«,„. 

In the last step we used the fact tha t if \x 2 77 then 

0 , A M̂ g 0€,„. 

Thus we obtain (a, b ) G ££,ij from which it follows tha t (tfe>x, bftX) G 0 for 
all x 3 77, by the definition of 0ti7?. 

Now let TQU,\T\^ 2. Then 

g<x(6Tt1l) = gOLo(eTt1l) V V s c r V„=>„ g ( a ( 0 r - s ) A a(0s,u)) 

(*) = [ V € G r V U , (<?r A 0e,„)] V V s c r V „ 3 , g a ( * r - s ) 

A ga(0s,w) 

= [ V e € r Vwp, (0 r A 0e.„)] 

V V s c r VM 3 , («Jr-s A ff*(0s.«)) 
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where $T = A e^r </>*• Since (a, b ) 6 g^(0T,v) there is a finite sequence 
a, a (1), a(2), . . . , b in B with each (a ( f ) , a ( ' + 1 ) ) in one of the summands of 
(*). Since the map goa is order preserving and ga(<t>s) = 0 s, we have 

got(0s.») S «s-

From this it follows tha t each of the summands of (*) is less than or 
equal to 0 T . 

Let 8 and e be in T. By hypothesis a€tX = agiX. Since (a, a ( 1 )) G 0 r , 

a€)X0ae,.r
(1) and a^x<j>a^x

{l). 

Since a(1) G 5 , 

a . . x ( 1 ) ^ ,x ( 1 ) . 

Hence 

a e > x^V A 0 a 5 , x ^ . 

Thus cie,x
{l) = ^5,x

(1 )- Hence each a ( '} also satisfies the hypothesis of the 
lemma. 

Suppose (a(1"\ a (*+1)) G 4>T A ga(6SlU) for 0 ^ 5 C r . Since 5 C ? ' 
a^" and a ( / + 1 ) satisfy the hypothesis of the lemma with 5 in place of T. 
Hence by induction 

(«e .x^ ) ,ae>x<<+1)) G 6 

for all e G 5 and all x 3 w. If e G 7' choose 5 G 5, then 

aeiX<*> = a«fX<*> and aeiX<<+1> = a« l X
( i + 1 ) . 

T h u s (a e x
( ? ) , a€>x

(2'+1)) G 6 for e £ T and x 3 w. Suppose /x is such that 
/ i 2 i . Choose any x 2 w. Then x 2 <o 2 ??, and by Lemma 5.2 

T h u s (a€fM<*\ ae,M
(<+1)) € 0 for all e G T and n 2 77. 

If 5 = 0 then (a<*\ a<i+1>) G g«(0r A 0w) = 0 r A &. T h u s 

ae,Ji} = de,Ji+l) for e G 7\ 

Again by Lemma 5.2 

( a ê ; « , a 6 i /
i + 1 ) ) G B for all € G T and all ^ i ? . 

T h e final case is (a (*\ a ( ï + 1 ) ) G 0r A #e)W for some e G 7 , co 2 ??. This is 
handled in a same manner . This completes the proof. 

(5.4) T H E O R E M . Let c be the element of B each of whose coordinates is c, 
and let d be the element each oj whose coordinates is d. Then (c, d ) G ga.(du$). 

Proof. If (c, d ) G g<x(Qu,i) then by Lemma 5.3 we would have 
(c, d) G 0, a contradiction. 
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(5.5) LEMMA. Fix T C U and rj: a(T) —> { ± 1 } . Let a, b 6 B be such 

that for each co: a(T) —> { ± 1 } , co ^ ?7 either 

(1) ae>x = bttX — c \/e (z T V x 2 co and 

<*«,* = be,x
 = # Ve $ T Vx 2 w 

or 

(2) 0«,x = &«,X = d V< i e T V x 2 CO 

« € , X = b*,x = b V E g 7̂  V x 2 CO. 

Moreover assume 

(3) « € , X = £> be,x = d Ve G r Vx 3 

and 

two7 

attX = a, ^e,x = 6 Ve $ T Vx 2 17. 

rftew (a, b ) e gP(pT,v)-

Proof. T h e hypothesis of the lemma parti t ions the rows of the ' 'ma
tr ices" a and b into two blocks, T a n d U — T. I t part i t ions the columns 
of a and b according to their restriction to <r(T); i.e., x ^ M if xl*(r) = 

MI^CD- This situation is represented in the following figure. 

Z> 

T 

2L = 

U - T 

x 2 7̂ 

x 3 co x 2 w x =d rç 

b = 

U - T 

c d d 

a b b 
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To prove the lemma, induct on T. Suppose T = 0. Then 

gP(j>ln) = 20O(PO.J = A A TP€>M A A A 0e,tt. 
t£U n£U e^T«:<r(e)->{±l) 

Recall that (a, b) G 7r€|M if and only if a€iM = &€iMand that (a, b) G 0ÉiW 

if and only if (a€,M> &e,/i) £ 0 for all /x 2 <*>. From this it is easy to check 
that for a, b satisfying 1), 2), and 3), (a, b) G g/3(Po>i)-

Let r Ç [/ be arbitrary. Since J3(T6) = /30(re) we have 

gP(pT,v) = gPo(pT,r,) A A SCT [ V e G T - S ( A Me A e £ t 7 ^Ô,M) 

V Vw3,g/3(p.s,w)]. 

Calculations similar to those above show that (a, b) G g0o(pT,v)-
Let a(1) G 5 be defined by aCjX

(1) = a for all e G r — S and x 2 y\ 
for each co:o-(7")—>{=±=1},COT£^ and each e £ T — S and each % 2 w, 
a«,X(1) = a if a€>x = c and a€,x

(1) = b if a€>x = d, and aÉ)X
(1) = aÉ>x for all 

other e and % (see Figure 5.4). Similarly b (1 ) is defined by &ejX
(1) = b if 

e G T — S and x 3 i , and for co 7e rç and each e G T — S and each 
X 2 to, ^e,x(1) = « if &e,x = c a n d fr*,x(1) = ^ if ^€>x = d ; fre,x

(1) = ^.x 
otherwise. The reader can verify that a, b, a(1), b (1 ) are actually in B. 
Moreover it is straightforward to check that (a, a1) and (b, b{l)) are in 
Ve£T-S ( A Me A M € £ 7 ^ S , M ) -

x 3 w x 3 w ' • • • x3» i 

c d c 

a b a 

a b a 

FIGURE 5.4 

Since S d T, a(S) "3. cr(T). Thus if we partition the columns x according 
to their restriction to <r(S) we get a finer partition than when we partition 
them according to their restriction to a(T). 

Let vi, . . . , vm be all the maps a (S) —» { =fc 1} such that Pi^y. Let a(2) be 
defined by a€fX

(2) = 6 if e G 5 and x 2 ^i ; and a€)X
(2) = 6 if e $ 5 and x S ^ i , 

and aC)X
(2) = <2«,x

(1) otherwise (see Figure 5.5). By the inductive hypothesis 

(a ( 1 | ,a i») G 2 |8(PS .M). 

Continuing in this way we see that 

(o<»,&<») e V,2,/s(ps.,). 
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Thus (a, b ) Ç gj8(pr,„), proving the lemma. 

x 3 w x 3 c o ' • • • X ^t vi Z) y 
r" - i 

C d d c 

a b b a 

a b b a 

J 
FIGURE 5.5 

(5.6) T H E O R E M . Let c and d be as in Theorem 5.4. Then (c, d ) Ç 

gP(pu,o)- Thus Çn fails in Q(B). 

Proof. This theorem follows immediately from Lemma 5.5 and 
Theorem 5.4. 

6. T h e m a i n resu l t s . Now tha t all calculations have been completed 
we can state our main results. The first theorem and its corollaries 
follow directly. 

(6.1) T H E O R E M . Let Jf be an arbitrary variety of algebras; then Jf is 
not congruence modular if and only if C o n ( ^ ) Ç C o n ( J T ) . 

(6.2) COROLLARY. C o n ( ^ ) is the least non-modular congruence variety. 

(6.3) COROLLARY. For a variety of algebras, J T , the following are 
equivalent: 

(1) J ^ is congruence modular 
(2) C o n ( J ^ ) t= Çn for some n < œ 
(3) C o n ( ^ ) £ C o n ( j f ) 
(4) Ln (}_ C o n ( J ^ ) for some n < co. 

The second main result shows us tha t a t least u t = c mod" is (very 
strongly) compact. 

(6.4) T H E O R E M . Let 2 be a set of lattice identities; then the following are 
equivalent: 

(1) L t c m o d 
(2) 35 £ So i= c mod 
( 3 ) 3 6 € S 3 » < w Oh f» 
(4) 3 ô G S 3 » < co L„ £ 6 
(5) C o n ( ^ ) £ 2 
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Proof. By our previous results we have (5) <=$ (4) <=$ (3) => (2) => (1). 
Now if C o n ( ^ ) t 2 then P is a var ie ty of algebras whose congruence 
lattices satisfy 2 bu t not mod. Therefore 2 fit c mod. 

Note tha t in (2), (3) and (4) the ô (and n) remain the same so tha t we 
can also s ta te the result for 2 = {<$}. 

(6.5) COROLLARY. For a lattice identity <5, the following are equivalent: 

(1) ô t= c mod 
(2) ô l= Çnfor some n < œ 
(3) Ln \fz ô for some n < œ. 

7. E q u a t i o n s satisfied by B ( ^ ) . In view of the theorems of § 6 a 
bet ter unders tanding of the lattices G ( ^ ) is impor tant . In this section 
we investigate lattice identities holding in G ( ^ ) and give some applica
tions. Equat ion (7.1.1) below is from [20]. Equat ions (7.1.2)-(7.1.5) are 
McKenzie 's splitting equations for NQ, ( V , Qu Q± [22]. 

(7.1) T H E O R E M . The following hold in 9(SP) and thus in C o n ( ^ ) = 
H S P G ( ^ ) . 

(1) x A (y V z) S y V (x A (z V (x A y))). 

(2) y A l(x A (w V (x A z))) V (2 A (w V (x A z)) ) ] 

g x V {[x V 3/ V (w A (x V z))] A [z V (w A (x V y))]}. 

(3) y A ([x A (z V (x A y))] V (y A z)) 

^ [x A (y V (z A (x V ? ) ) ) ] V (z A (x V y)). 

(4) x A [(x A y) V (z A (w V (x A y A z)))] 

^ (x A 3O V [(z V w) A (x V (w A (x V y)))]. 

(5) 3/ A [z V (y A (x V (3; A z)))] 

^ x V [(x V 3O A (z V (x A Cy V z)))] . 

77^ (/wft/ 0/ (7.1.3) fails in Q(&). However, the duals of all of the other 
equations hold in G ( ^ ) . 

Proof. As we saw in Section 1 it suffices to show these identities hold 
in B(P(S, A)) when A is finite. Hence let x, y, z be congruences of 
P ( S , A), A finite. Let x = (x*;x a , a £ A), y = (y*\ ya, a £ A) and 
z = (z*; z„, a Ç ^4) be the congruence representat ions of x, 3/, and z. 

(7.2) LEMMA. Le£ fx: A -^ A by letting fx(a) be the least element of A 
congruent to a modulo x*. Then 

(1) fxvv(a>) =fx(a) Afy(a) 

(2) fxAy(a) =fx(a) Vfy(a) 

(3) fx(fy(a)) =fv(fx(a)) =fxvv(a) = fx(a) A fy(a) 

(4) fxAivWz) = f(xAy)VixAz) 
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T o see this notice tha t since A is a finite Boolean algebra, there is a 
unique ax £ A such tha t x* = 6(ax, 1). Since 

(x V 3>)* = x* V y* = 6(ax A ayi 1), 

by elementary properties of Boolean algebras, we have 

ttxVy — CLx A CLy. 

Similarly 

&X f\V = ^x V &y. 

Now (1), (2), (3) followr easily from the fact tha t fx(a) = ax A a. To 
see (4) notice tha t fx only depends on x*. Now using the distr ibutivi ty 
of 0 ( 4 ) and (2.7) 

[x A (y V z)]* = x* A (;y* V 2*) 

= 0 * A y*) V (x* A 2*) = [(x A y) V (x A z)]*. 

Hence (4) holds, i.e., we can use the distributive law on the subscript 

of/. 
In order to prove (7.1.1)—(7.1.5) we must show tha t the a-component 

of the left-hand side is less than or equal to the a-component of the 
right-hand side for a £ A and tha t the same holds for the *-component. 
The lat ter is easy: x —> x# is a lattice homomorphism from 0 ( P ( S , A)) 
to 0(A) and G (A) is distributive. 

In what follows we use plus and juxtaposition or dot in place of join 
and meet in order to simplify the notation. Let a £ A. Then 

(x(y + z))a = xa(y + z)a 

= xaKb
a(yb + zb) 

= xa-Kb
a(xb) -Kb

a(yb + zb) 

= xa-Kb
a(xb(yb + zb)) 

= Xa'Kb \Xbyb I XbZb) 

wrhere 

b = fy+z(a) = fy(a)-fz(a), 

and we have used xa S Kb
a(xb)by (Rl), and the distr ibutivi ty of 0 ( S ( 6 ) ) . 

Now 

[y + x(z + xy)]a = Kc
a(yc + (x(z + xy))c) 

= Kc
a(yc + xc(s + xy)e) 

= Kc
a(yc + xc-Kd

c(z(l + xdyd)) 

where 

c = /*+*<*+**) (fl) = fv+xz(a) and 

" = Jz+xy\C) = J z+xy+y+xyW = fz+v(a) ~ »̂ 
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using this and (Rl) we have 

[y + x(z + xy)]a =Kc
a(yc + xc-Kb

c(zb + xbyb)) 

= Kc
a(yc + xc-Kb

c(xb)'Kb
c(zb + x6;y6)) 

= ««"(ye + Xc'Kb
c(%bZb + X ^ ) ) 

^ «Stye) + Kc
a(xc)-Kc

a(/<&
C(X6S& + X6V6)) 

^ Xa-KfiXtfi, + X&yô) 
proving (7.1.1). 

T o see (7.1.3) note 

[y(x(z + ay) + yz)]fl 

= ya'Kba(xb'Kc
b(zc + xcyc) + y&b) 

^ K&a(y&) -/<&a(x&-Kc
6(sc + xcyc) + 3>&zft) 

= Kba(ybXb-Kba(zc + xcyc) + 3>63&) 

g Kb
a(ybxb + y&2&) 

where ^ = fxz+xy+yz(a) and c = f2+xy(b) = fz+xv(a). Now lett ing d -
fv+zz(b) = fy+xv(a) and e = fx+y(a) = fx+v(d) = fx+y(b) we have 

[x(y + z{x + y) + z(x + y)]a 

= Kb
a(xb-Kd

b(yd + zd-Ke
d(xe + ye)) + zb-Ke

b(xe + ye)) 

^ Kb
a(xb-Kd

b(yd) +zbKe
b(ye)) 

^ Kb
a(xbyb + zbyb) 

proving (7.1.3). 
T h e proofs of (7.1.2), (7.1.4), (7.1.5), their duals and the dual of 

(7.1.1) are similar. T h e dual of (7.1.3) is the split t ing equation for Q{) 

[22] pictured in Figure 7.1. 

FIGURE 7.1 FIGURE 7.2 

Ço is a sublatt ice of the latt ice diagrammed in Figure 7.2. This latt ice is 
the congruence latt ice of P ( S , A) where A is the four element Boolean 
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algebra and S (a) = 2 for each a Ç A. Hence Ço G Con (0). Thus the dual 
of (7.1.3) must fail in C o n ( ^ ) , completing the proof. 

A lattice is semidistributive if it satisfies the following law and its dual. 

(SDA): x A y = x A z implies x A y = x A (y V z). 

(7.3) COROLLARY. All the lattices of C o n ( ^ ) = H S P B ( ^ ) are semi-
distributive. 

Proof. T h e proof follows from the fact tha t (7.1.1) implies (SD A ) , 
which is easy to verify (cf. [20]). 

(7.4) COROLLARY. Those covers of the variety generated by N5 which 
give rise to covers of C o n ( ^ ) are precisely the varieties generated by M%, 
L\ — L6 , and L8 — L\2 in the notation of [20]. 

Proof. By Jonsson's Theorem [16] it suffices to show M3 , L\ — L6, 
Z 8 — Lu are not in C o n ( ^ ) while L7, Lu — Lu are. M% and L\ — L5 are 
not semidistributive and hence are not in C o n ( ^ ) by Corollary 7.3. By 
[22] the splitting equation of L6 is (7.1.2), of L8 is (7.1.3), of L9 is (7.1.4), 
of Ln is (7.1.5). The splitting equations of Lw and Li2 are the duals of 
(7.1.4) and (7.1.5) respectively. The corollary now follows from Theorem 
7.1. 

(7.5) COROLLARY. C o n ( ^ ) is not self-dual. Moreover its dual is not a 
congruence variety. 

Proof. Since C o n ( ^ ) satisfies (7.1.3) but not its dual, it is not self 
dual. If its dual were a congruence variety, by our main result we would 
have 

Con(^) ç C o n ^ r 1 . 
This would make Con(0) self-dual, a contradiction. 

The next result shows tha t 0 has 4-permutable congruences (cf. [14]), 
i.e., its congruence lattices have type III joins (cf. [1]). 

(7.6) T H E O R E M . 0 has ^-permutable congruences. 

Proof. Let §i, q2, g 3 be the following polynomials in the language of 0 . 

qi(x, y, z) = x(yz+)+ 

q2(x,y,z) = (xy'y(zy')'(xzy 

qz(x, y, z) = z(yx+)+. 

By [14] it suffices to show tha t the following identities hold in 0: 

qi(x, z, z) = x 

qi(x, x, z) = q2(x, z, z) 

q2(x, x, z) = q3(x, z, z) 

q3(x, x, z) = z. 
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Let x, z e P (S , A) e &. Let x = (a, s) and z = (6, /). Then 

gi(*,z,z) = (a, 5) ((6, r ) ( M ) + ) + 

= ( a ,5 ) (6 ,0 (6M)) + 

= (a,s)(0,/)+ 

= (a, s)( l , 1) = (a, 5) - x. 

The verification of the other identities is similar. 

(7.7) THEOREM. There are 2X° nonmodular congruence varieties. 

Proof. If T^i and 7^2 are varieties of algebras, possibly of different 

similarity types, l e t ^ i ® / 2 be their product as defined in Definition 

1.7 of [26]. It follows easily from Corollary 1.13 of [26] that 

Con(3^i (g>^2) = Confl^i) V Con(^ 2 ) . 

Thus congruence varieties are closed under finite joins (but not under 

intersections, see [8]). There are 2X° modular congruence varieties, e.g. 

[15]. By (7.3) C o n ( ^ ) contains no modular nondistr ibut ive lattices. 

Joining the modular congruence varieties with C o n ( ^ ) gives 2*° non-

modular congruence varieties which are all dist inct by the above remarks 

and Jônsson's Theorem. 
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