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1. Introduction. In [1], we showed how a collection of physical operations or experiments
could be represented by a nonempty set si of nonempty sets satisfying certain conditions
(irredundancy and coherence) and we called such sets si manuals. We also introduced
" complete stochastic models " for the empirical universe of discourse represented by such a
manual si, namely, the so-called weight functions for si. These weight functions form a
convex set the extreme points of which are called pure weights. We also showed that there is a
so-called logic Il(si) affiliated with a manual si and that each weight function for si induces
a state on this logic.

In practice, physical operations are usually synthesized from " simpler " or more " primi-
tive " operations by iteration or compounding. In [8], we gave an indication of a mathe-
matical construction whereby such compound operations can be given a perspicuous repre-
sentation. Specifically, given a manual si, one can construct from it a new manual stc whose
elements represent compound operations built up from the operations in the parent manual si.
In [9], we gave an indication of how the weight functions on the parent manual si induce (by
means of so-called transition functions) weight functions on the compound manual sic.

We showed in [2] that the weight functions for the compound manual sic can be trans-
formed by certain natural conditioning maps into new weight functions for sic. In the present
paper, we shall concern ourselves with the investigation of the stability of pure weight functions
for sic under these conditioning maps. It will be convenient to deal with premanuals, which
are generalized manuals, rather than with manuals. Premanuals, which will shortly be defined,
were first studied (under a different name) by Greechie and Miller in [4].

2. Premanuals and weight functions. By a premanual we mean a nonempty set si of
nonempty sets. If si is such a premanual, the set X = U si is called the set of outcomes of si.
By a weight function for the premanual si we mean a real valued function co defined on the
outcome set X = U si and satisfying the following two conditions: (i) 0 ^ co(x) ^ 1 for all
xeX. (ii) For each Eesi, the unordered sum £ a>(x) converges to 1. In [3], Greechie has

xeE
given examples of premanuals affiliated with finite orthomodular lattices which admit no
weight functions whatsoever. We shall denote the set of all weight functions for the premanual
si by Sl(si).

If si is a premanual and if a, Pe£i(sf), we define, for each real number t, a mapping
-t)P from X = \Jsi to the real numbers by

for all x e X. Evidently, if 0 ^ / ^ 1, then /a+(1 - t)fi e O.(si); hence, in this case, we refer to
to. + (\—t)p as a convex combination of the weight functions a and /?. A weight function
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a>eQ.(si) is said to be pure if it cannot be written, nontrivially, as a convex combination of
weight functions a and p. Specifically, <o is a pure weight function if and only if at = to.+(1 — t)/?
with a, PeQ.(si) and 0 < / < 1 implies that a = /?. We denote by O.p(si) the set of all pure
weight functions for si.

If si is a premanual and if a, Peil(si), we define a real number r(<x,P) by the following:

a W — •• - - and

Evidently, 0 ^ r(aj). If 1 ^ r(a, jS), then j3(;c) ̂  a(x) for all xeX= \Jsf, from which it
easily follows that P = a and r(<x,/?) = 1 • In particular, then, if a # /?, 0 ^ r(a,/?) < 1. The
following theorem generalizes a result of Greechie and Miller [4].

THEOREM 1. Let ae£l(si), where si is any premanual. Then a is pure if and only if
r(a, P) = 0 holds for all PeCl(si) with P / a.

Proof. Suppose first that a is pure, but that there exists P e Sl(si) with P ̂  a and r(oc, P) > 0.
Put t = (l-r(<x,P))~1, noting that 1 < t. Put//= ta + (l-/)/?. If there existed y eX = \Jsf
with n(y) < 0, then we would have 0 g a(y) < P(y) and a.(y)IP(y) < r(<x,P), a contradiction.
It follows that n(x) ^ 0 for all xeX. If Eesi, then £ ^(x) = 1, from which it follows that

xeE

He£i(si). Put 5 = t'1, so that 0 < s < 1 and a = tyi + (l — s)p. Since a is pure, we conclude
that p = P, and hence that a = /?, a contradiction.

Conversely, suppose that r(a, /?) = 0 for all PeSl(si) with P ̂  a, but that a is not pure.
Then there exist fi, Pe£l(si) with n # /? and there exists a real number s with 0 < 5 < 1 such
that <x = s[i+(l—s)p. Evidently a#j? ; hence there exists yeX with /?O0 > a(y) ^ 0,
<x(y)IP(y) <l—s. However, this gives ihe immediate contradiction sn(y) < 0 and completes
the proof.

3. Compound premanuals. Let si be a given premanual and X = U si. Let T = T(X)
denote the free monoid (semigroup with unit 1) over the set X. An element of T (other than the
unit 1) is uniquely expressible in the form xlx2...xn with n a positive integer (called the length
of the element) and x1)x2,...,xneX. We define t he leng th of the unit 1 to be 0 and we denote
the length of an element a e T by | a \. The elements of F of length one are naturally identified
with the corresponding elements of X, so that X^T.

A subset A of F is said to be bounded if there is a non-negative integer » such that
\a\ ^ n for all aeA. If A and B are subsets of F, we naturally define the product AB by
AB= {ab\aeA,beB}. If aeT and 5 g F , we define aB= {a}Band Ba = B{a).

If E and Fare subsets of F and if there exists, for each esE, Geesi \J{{\}} such that
F = U eGe, we shall say that F is a (/irec/ successor of £. A set ^f of subsets of F will be called

e e E

an inductive class provided that it satisfies the following two conditions:

(ii) if Ee & and if F is a direct successor of E, then Fe Jf.
Notice that any Ge si is a direct successor of {1}; hence si is contained in any inductive class.
The set of all nonempty subsets of T is an inductive class, and the intersection of any family
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of inductive classes is again an inductive class. We shall denote by sic the intersection of the
family of all inductive classes of subsets of F, so that s/ £ sic and sfc is the smallest inductive
class of subsets of F. Since 0 $ s/c, s4c is a premanual called the compoundpremanual over s/.

Evidently, the collection of all bounded subsets of F is an inductive class; hence every
E e s/c is bounded. A subset K of F is called an abridged set provided that, if a, b e K and if
there exists ceT with a = be, then c = 1 (so that a = b). We shall now prove that every
EesJc is an abridged set.

THEOREM 2. Let si be any premanual and let Eesic. Then E is an abridged set.

Proof. Let X = \Jsf and let F be the free monoid over X. Let Jf denote the set of all
abridged subsets of F. It will suffice to prove that tf is an inductive class. Clearly, {1} e ^f.
Suppose that Ee Jf and that F is a direct successor of E, but that F$ 3V. For each eeE, there
exists Gees4 u {{1}} such that F = (J eGe. Since Ff JP, there exist a,beF and ceF, with

eeE

c # 1 and a = be. Since a,beF, there exist d,eeE, xeGd and yeGe such that a = dx and
b — ey. Thus we have dx = eye. Since E is abridged, * # 1, for otherwise d = e(yc), so that
yc = 1, c - 1, a contradiction. Since c # 1, we can write c = hz for some AeF, zeX. The
equation </x = eyhz, together with the facts that F is freely generated by A'and that x,zeX,
implies that z = x; hence we have d = eyh. Again, since £ is abridged, we must have yh = 1;
hence, d = e, y = 1. Thus we have e = ey = b, and so e e F. Also, ex = dx = aeF; soexeF,
with xeGe, x # 1. Since C?ee.£/u{{l}} and *£(/,, with * ^ 1, we have l$Ge; hence e$eGc.
But, since eeF, there must exist Are £ with eekGk. Hence e = kw for some weGk. Since £
is abridged, w = 1 and & = e; hence eeeGe, a contradiction. The proof is complete.

COROLLARY 3. Let si be a premanual and let Ees4c. For each eeE, let Geesfv {{1}}.
Then, if d,eeE with d=£e, it follows that dGdneGe = 0.

THEOREM 4. Let si be a premanual with X = U s/ and let F be the free monoid over X.
Then

Proof. It will suffice to show that each element aeT belongs to at least one set
We prove this by induction on |a|. If \a\ = 0, then a= le{\}esfc. Suppose that the
assertion is true for all aeF with \a\ = n. Let beT with \b\ = n+l. Then we can write
b = ax with |a | = n and xeX. By hypothesis, there exists Eesfc with aeE. Since xeX,
there exists Gesd with xeG. For each eeE, define Ge = G, and note that F= U eGees$c,

eeE

since J^C is an inductive class. Since 6 = axeaGa S F, the proof is complete.

4. Weight functions for compound premanuals. For the remainder of this paper, we assume
that s/ is a premanual with Q(sJ) # 0 and we put X = U s/. We also denote by F the free
monoid over X. By a transition function for the premanual sfc we mean a function/: F x A' -» R
such that, for every eeF, / (e , - )en(^) . Thus, a transition function can be regarded as a
family of weight functions for sf indexed by the elements of F. If/is a transition function for
sJc, we define a real-valued function (of on F by recursion as follows:

(l)co/l) = l;
(2) if aeT and xeX, then wfax) — a>j-(a)f(a,x).
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In particular, we have (of(x) =f(l,x) for allxe^T. For xux2,...,xneX, n ^ 2, we will then
have

. . . Xn) = / ( l , Xt) Uf(XlX2 • • • Xj-

THEOREM 5. Iff is any transition function for s4c, then c

Proof. Evidently, ajy(a)^0 for all aeT. Thus it will suffice to show that, for any
Ee tfc, £ (o/e) = 1. Thus, let ^ denote the set of all sets Ees4c such that £ cof(e) = 1.

eeE eeE

It will be enough to show that tf is an inductive class. Clearly, {1} e &. Thus, let Ee Jtf, and
suppose that Fis a direct successor of E. Then, for every eeE, there exists Geest<u {{1}} such
that F = U eGe. By Corollary 3, the latter is a disjoint union. Let us temporarily fix an

eeE

eeE and put G = Ge. If G = {1}, then £ co/a) = co/e). On the other hand, if C # {1},
oecO

then Ges/ and we have
£ wy(a) = £ <os{ex) = £ «/(e)/(e,x) = w/e) £ /(e,x) = w/e).

aeeG xeG xeG xeC

It follows that Y, mf(a) — Z wf(e) = 1J hence ̂ f is an inductive class and the proof is
aeF eeE

complete.

LEMMA 6. Let o e Q ( # ) anrf /e/ aeF, Gest. Then £ a)(a;c) = co(a).
xeG

Proof. By Theorem 4, there exists £ e s£c with a e £. For e e E with e # a, define Ge = {1}.
Define Go = G. Put F = U eGe, noting that Fe s/c. Put i / = E\a. We now have

eeE

1 = X o(ft) = Y <»{e)+ E «(«*) = l-o»(fl)+ Z a>(flx),
6eF • ee / / xeG xeG

and the lemma is proved.
Suppose that/is a transition function for s4c and that d belongs to F. We then define a

new transition function//rf, called f conditioned by d, by the following prescription:

(fld)(ax)-lKd'x) if
UiaAa'X)~\Kda,x) if

for aeF, xeX.

THEOREM 7. Let J"be a transition function for s/candlet deF. Put g =fjd. Then, for any
aeT, we have (og(a)a>f(d) = a>f(da).

Proof The proof is by induction on | a |. If | a \ = 0, then a = 1 and the result is evidently
true. Suppose that the result holds for \a\ = n and let beT with \b\ = n + l. Then there
exists aeT and xeX, with \a\=n, b = ax. By hypothesis, a)g(a)(of(d) = o)f(da). Hence
<og(b)(os(d) = cog(ax)cof(d) = cog(a)g(a, x)cof(d) = cof(da)g(a, x). Hence, if a)f(da) # 0, we have
<og(b)<of(d) = a>f(da)f(da, x) = o)f(dax) = cof(db) as desired. Thus we can suppose that
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a>f(da) = 0. This gives o)g(b)cof(d) = 0, and we are obliged to prove that <of(db) = 0. Since
xeX, there exists Gesi with xeG. By Lemma 6,

0 = (of(da) = £ (of{day) ^ cof(dax) = co/db) £ 0;
G

hence co/sft) = 0 as desired.
A transition function/for sfc is said to be normalized if it satisfies the following condition:

For all aeT and all xeX, if cof(a) = 0, then/(a,*) =/(l ,x). Suppose that aeftCsT) and
define/: T x X-*U as follows. For aeT and xeX,

x) if o(fl) = 0,

As a consequence of Lemma 6, we see that / i s a transition function for $4C, and direct
calculation reveals that cof = a, from which it easily follows that / is normalized. A final
calculation shows that, if g is any normalized transition function for sic such that cag — a,
then g = / . Thus we have the following lemma.

LEMMA 8. The mapping f hKof provides a one-to-one correspondence between normalized
transition functions/for stc and the set £l(s#c) of all weight functions coffor stc.

Suppose that a e fl(j^c) and that de F. Let/be the unique normalized transition function
for sic such that cof = a. We can now form the conditioned transition function fid and thence
the weight function cof/d. We call cof/d the weight function obtained by conditioning a. by rfand
we introduce the notation ajd for cof/d. According to Theorem 7, we have the identity
(/rf)() • a(d) = a(da) for all aeT. In particular, if a(d) ? 0, we have

a formula which is analogous to the classical definition of conditional probability. An easy
calculation shows that the transition function fjd is normalized, so that fid is the unique
normalized transition function corresponding to atjd according to Lemma 8.

Continuing with the above notation, we notice that from the equation a.{da) = (a/J)(a) • a(d)
we can deduce that, if a.(d) = 0, then a(da) = 0 holds for all aeT. From this we see that, if
a(d) = 0, then we have

...xn) = a(x>(x2). . . <x(xn),

for xl,x2,...,xneX,n^. 1. This suggests a slight extension of the above notation. Given
any normalized transition function / for s4c, we define a transition function //* for s/c by
(fl*)(a,x) =f(\,x) for all aeT and all xeX. Evidently,//* is normalized. Given any weight
function aen(jj/c), we now define a/* as follows. Let / b e the unique normalized transition
function for which a = (of, and define a/* = coj-,,. Evidently,

(a/*)(xt x2... xn) = a^
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holds for * , ,x 2 , . . . , xneX, n ^ 1. In particular, (<xl*)(ab) = (<x/*)(a)• (a/*)(fc) holds for all
a, b e F and we have the result that, if deT with a(d) = 0, then aid = a/*.

5. The stability of pure weights under conditioning. In the present section, we shall prove
the main theorem of this paper, namely that, if a belongs to Q.p{s4c) and if d is any element of
F, then the conditioned weight function ajd also belongs to fip(.s/c).

LEMMA 9. Let aeQp(.s/e) and let deT with a(d) # 0. Define a real-valued function /J on
X=\Js/by P(x) = a(dx)la(d) for all xeX. Then J3 e flpO0.

Proof. Suppose that fS$np(s/). By Theorem 1, there exists neCl(s/), with \x ± ft and
r(/J, fi) > 0. Let / be the unique normalized transition function for sfc such that a = u>j.
Define a transition function g for s/c as follows.

for aeT, xeX.
Suppose that cog = a. Then, for any xeX, x(d)f(d, x) = cof(d)f(d, x) = <of(dx) =a(dx) =

(og(dx) = cog(d)g(d,x) = a(d)n(x); hence, since <x(d) #0, f(d,x) = n(x) holds for all xeX.
However, since a(d) # 0, f(d,x) = P(x) holds for all xeX, and we obtain the contradiction
H = P. Thus cog # a.

Since aefip(rfc) and (ogeGl(s#c) with a ^ o)g, Theorem 1 gives r(a,<og) = 0. It follows
that there exists an element ceF with 0 ^ a(c) < a>g(c), a(c)/co9(c) < r(P,(i). Evidently, c # 1;
hence we can write c = xix2...xn with n ^ 1 and xux2,...,xneX. For 1 £j^n, define
c,- = 1 if j = 1 and c,- = x1x2..- Jc;_ x if 2 ̂ j:^ n. We have

<*(c) =f(cuxi)f(c2, x2).. .f(cn, xn)
and

Since a(c) ^ co9(c), there must exist a positive integer i with 1 ^Li^n and/(c,,x,) ^ 5(Ci,x,).
From the definition of #(<:,•, *,) it follows that ci = d and #(<:,•, *,-) = /*(*,). We also have
f(cj,Xj) =f(d, Xj) = j?(xj), since a(d)^0. For l ^ y ^ n wi thy#/ , we have Cj-^ci = d;
hence g{cj,Xj) =f(cpXj). From the condition 0 g a(c) < co9(c) we deduce that g(Cj,Xj) > 0
for 1 < / < n and that

M*i) »B(c)

an immediate contradiction.

COROLLARY 10. Let aeQ.p(sfc) and let f be the unique normalized transition function for
stc for which cof = a. Then, for every element aeT, f(a, •)eQp(sf).

Proof. If a(a) # 0, then/(a,x) = a(ax)}tx{a) for all xeX; sof(a,-)eQp{j^), by Lemma 9.
On the other hand, if a{a) = 0, then/(a, x) =f(l,x) = a(x) = a(lx)/a(l) for all xeX, so that,
again by Lemma 9,f(a,-)eQp(sf), and the corollary is proved.

A normalized transition function/for sic will be called pure iff(a,)e£lp(sf) holds for
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every aeT. Corollary 10 says that, if cof is a pure weight function for s4c, then/is pure. In
the following theorem we shall establish the converse.

THEOREM 11. Let jbe a normalizedtransition function for s/c. Then f is pure if and only if

Proof. We know already that, if eof is pure, then so is/. Suppose, then, that/is pure,
but that (of is not pure. Then, by Theorem 1, there exists a normalized transition function
g / /such that 0 < r(cof, wg). Suppose that/(I, •) / g(\, •). Since/(1, •) e Clp(s/), Theorem 1
gives r(f(\,-),g(l,)) = 0; hence there exists xeX such that 0^f(l,x) <g(l,x) and
f(\,x)lg(l,x) <r((Of,(og). Since u>f(x)=f(l,x) and a>g(x) = g(\,x), the latter inequality
cannot be t rue ; hence we conclude t h a t / ( I , •) = g(\, •)•

Choose beT with \b\ minimal such tha t f(b,•) / g(b,•). Since 6 / 1 , we can write
b = x1x2...xn with n 2; 1 and xux2,...,xneX. Put ct = 1 and Cj = xlx2...xj-l for
2gyg« . We have

°>Ab) = ft /(<**;) = 11 9(cj,xj) = cog(b),
j = i J = i

since | Cj | < n = 161 for ally = 1,2,..., n. Suppose that coy(i) = wg(b) = 0. Then, since/and
g are normalized,

/<*,•) =/(! , • ) = fl(l,-) = «(*.•),

a contradiction. We conclude that cof(b) = aog{b) / 0.
Since/ (* , - ) /5(6 , ) and f(b,-)eilp(s/), then, by Theorem 1, r(f(b,),g(b,-)) = 0.

Hence there exists xeZsuch that

g(b,x) K "P""'* K cog(bx) ~ cog(b)g(b,Xy

yielding the contradiction that/(6, x)lg(b, x) is less than itself. This contradiction proves the
theorem.

THEOREM 12. Let <xe£lp(sfc) and let de T. Then the conditioned weight function ctjd, as
well as a/*, belong to Clp(s/C).

Proof. Let/be the unique normalized transition function for stfc such that cof = a. By
Theorem 11 ,/ is pure. From the definitions off/d and//*, we see immediately that fjd and//*
are pure; hence, by Theorem 11, v.\d= a>f/de£lp(sfc) and a/* = a>f/,eClp(sfc) as desired.

6. Concluding remarks. There are many known examples of " conditioning " processes
which preserve the " purity " of " stochastic models ". Indeed, the classical example is
obtained as follows: Let 3S denote any Boolean algebra. From 38, we construct a premanual
si = {E £ 381E is a finite set of pairwise disjoint nonzero elements of 3d and £ e = 1}.

Evidently, the weight functions in Cl(sf) are in a natural one-to-one correspondence with the
finitely additive probability measures on 33. We shall identify a weight function (oeil(s/)
with the corresponding probability measure. The pure weights now correspond to the points
in the Stone space affiliated with 38. Suppose that co e Q(jtf) and that ae38 with co(a) / 0. By

https://doi.org/10.1017/S0017089500002020 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002020


12 D. J. FOULIS AND C. H. RANDALL

" conditioning " a> by a, we can define a new weight function a>ae0{&f) by (Oa{b) = co(qb)l(o(a)
for all be@. It is easy to see that, if (o is pure, so is coa.

A second example arises in conventional non-relativistic quantum mechanics. To
construct this example, let 3tf be a complex, separable, infinite-dimensional Hilbert space and
let Qs be the set of all von Neumann density operators on tf. Let the premanual si consist of
all countable sets {Pl,P2,...} of pairwise orthogonal nonzero projection operators on Jf?
such that £ Pi = 1. For each D e 9, define the weight function coD by coD(P) = Tr{DP) for all

i

nonzero projection operators P on Jtf. These weight functions are now in a natural one-to-
one correspondence with the quantum mechanical states. Furthermore, the weight function
a>D corresponds to a pure state if and only if D = D2. Evidently, <oD is a pure weight if and only
if it corresponds to a pure quantum mechanical state. Suppose that De Q> and that P is a
projection operator on 3/e such that Tr{DP) =£ 0. The usual quantum mechanical " con-
ditioning by P " [6, p. 333; 5] converts D into DP = (Tr(DP))~1PDP. It is easy to check that
this conditioning preserves pure weights.

In Pool's work on the logic of quantum mechanics, it is shown that (under suitable
hypotheses on the event-state-operation structures under consideration) pure states are stable
under conditioning by operations precisely when the quantum logic is semimodular [7].

Our Theorem 12 provides still another example of the " stability of purity under con-
ditioning ". However, it can be shown that, if the weight functions on a compound premanual
are conditioned not by outcomes, but by so-called " events ", the purity of the weight functions
is not generally preserved.
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