THE STABILITY OF PURE WEIGHTS
UNDER CONDITIONING

by D.J. FOULIS and C. H. RANDALL
(Received 27 June, 1972)

1. Introduction. In (1], we showed how a collection of physical operations or experiments
could be represented by a nonempty set &/ of nonempty sets satisfying certain conditions
(irredundancy and coherence) and we called such sets & manuals. We also introduced
** complete stochastic models ”” for the empirical universe of discourse represented by such a
manual &, namely, the so-called weight functions for &f. These weight functions form a
convex set the extreme points of which are called pure weights. We also showed that thereis a
so-called logic TI(«) affiliated with a manual « and that each weight function for & induces
a state on this logic.

In practice, physical operations are usually synthesized from ““ simpler »” or more ‘‘ primi-
tive ”’ operations by iteration or compounding. In [8], we gave an indication of a mathe-
matical construction whereby such compound operations can be given a perspicuous repre-
sentation. Specifically, given a manual &/, one can construct from it 2 new manual &/ whose
elements represent compound operations built up from the operations in the parent manual .
In {9], we gave an indication of how the weight functions on the parent manual & induce (by
means of so-called transition functions) weight functions on the compound manual /€.

We showed in [2] that the weight functions for the compound manual /¢ can be trans-
formed by certain natural conditioning maps into new weight functions for &/°. Inthe present
paper, we shall concern ourselves with the investigation of the stability of pure weight functions
for /¢ under these conditioning maps. It will be convenient to deal with premanuals, which
are generalized manuals, rather than with manuals. Premanuals, which will shortly be defined,
were first studied (under a different name) by Greechie and Miller in [4].

2. Premanuals and weight functions. By a premanual we mean a nonempty set &/ of
nonempty sets. If & is such a premanual, the set X = U & is called the set of outcomes of <.

By a weight function for the premanual &/ we mean a real valued function @ defined on the
outcome set X = .o and satisfying the following two conditions: (i) 0 £ w(x) £ 1 for all

xeX. (ii) For each Ee o, the unordered sum Y w(x) converges to 1. In [3], Greechie has
xekE

given examples of premanuals affiliated with finite orthomodular lattices which admit no
weight functions whatsoever. We shall denote the set of all weight functions for the premanual
o by Q().

If o is a premanual and if «, feQ(sf), we define, for each real number ¢, 2 mapping
ta+(1—1)p from X = U o to the real numbers by

(ta+ (1 - 0B)(x) = ra(x)+ (1 —1)B(x)

for all xe X. Evidently, if 0 £ ¢ < 1, then to+(1 —1)feQ(2); hence, in this case, we refer to
ta+(1—1)B as a convex combination of the weight functions « and B. A weight function
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weQ(s¥) is said to be pure if it cannot be written, nontrivially, as a convex combination of

weight functions e and f. Specifically, w is a pure weight function if and only if 0 = ra+(1— 1)

with a, feQ(#) and 0 <t < 1 implies that « = . We denote by Q,(«/) the set of all pure

weight functions for /.

If o is a premanual and if «, BeQ(s/), we define a real number r(, ) by the following:

. falx)

r(a, f) = inf< ——

P {ﬂ(X)

Evidently, 0 < r(a, B). If 1 £ r(a, B), then B(x) £ a(x) for all xeX = U, from which it

easily follows that f = « and r(a, f) = 1. In particular, then, if x # §, 0 < r(a, f) < 1. The
following theorem generalizes a result of Greechie and Miller [4].

eX=U« and ﬁ(x);éO}.

THEOREM 1. Let aeQ(), where of is any premanual. Then o is pure if and only if
r(a, B) = 0 holds for all BeQ(F) with B # a.

Proof. Suppose first that « is pure, but that there exists € Q(&#) with § # aand r(a, f) > 0.
Put t = (1 —r(a, 8)) !, noting that 1 < ¢. Put u = ta+(1 —¢)B. If there existed ye X = U/
with u(y) <0, then we would have 0 £ a(y) < B(y) and «(y)/f(y) < r(e, B), a contradiction.
It follows that u(x) 2 0 for all xe X. If Ees, then Y, u(x) =1, from which it follows that

xekE

peQ(ef). Puts=t"!, sothat 0 <s<1and a=su+(1—s)p. Since a is pure, we conclude
that u = B, and hence that « = f, a contradiction.

Conversely, suppose that r(a, ) = 0 for all feQ(of) with B # «, but that « is not pure.
Then there exist u, feQ(«) with u = § and there exists a real number s with 0 < 5 < 1 such
that a =su+(1—s)8. Evidently a# B; hence there exists yeX with B(y)>a(y) 20,
a(y)/f(y) < 1 —s. However, this gives the immediate contradiction su(y) < 0 and completes
the proof.

3. Compound premanuals. Let &/ be a given premanual and X = U/, Let T =I'(X)
denote the free monoid (semigroup with unit 1) over the set X. An elementof T (other than the
unit 1) is uniquely expressible in the form x, x, ... x, with n a positive integer (called the length
of the element) and x,, x,,...,x,€ X. We define the length of the unit 1 to be 0 and we denote
the length of an element aeT" by | a | The elements of I" of length one are naturally identified
with the corresponding elements of X, so that X< T.

A subset A of I is said to be bounded if there is a non-negative integer n such that
|a| <nfor all ac 4. If A and B are subsets of I', we naturally define the product AB by
AB = {ab|aeA,beB}. If ael and B<T, we define aB = {a}B and Ba = B{a}.

If E and F are subsets of I and if there exists, for each e€ E, G,e & L {{1}} such that

F = UeG,, we shall say that Fis a direct successor of E. A set 3# of subsets of I" will be called
ecE

an inductive class provided that it satisfies the following two conditions:
() {1}est’;
(it) if EFe s and if Fis a direct successor of E, then Fe 3.

Notice that any G e & is a direct successor of {1}; hence & is contained in any inductive class.
The set of all nonempty subsets of T is an inductive class, and the intersection of any family
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of inductive classes is again an inductive class. We shall denote by /€ the intersection of the
family of all inductive classes of subsets of I, so that & = &€ and &€ is the smallest inductive
class of subsets of I'. Since Q¢ &/, &€ is a premanual called the compound premanual over o .

Evidently, the collection of all bounded subsets of I' is an inductive class; hence every
Ee g€ is bounded. A subset K of T is called an abridged set provided that, if a,be K and if
there exists ceI’ with a = bc, then ¢ =1 (so that a =b4). We shall now prove that every
Ee /€ is an abridged set.

THEOREM 2. Let o/ be any premanual and let E€ o/°. Then E is an abridged set.

Proof. Let X = U« and let T be the free monoid over X. Let 5 denote the set of all
abridged subsets of I'. It will suffice to prove that # is an inductive class. Clearly, {1}e .
Suppose that Ee 5# and that F is a direct successor of E, but that F¢ #. For each ecE, there
exists G.e &/ U {{1}} such that F = U eG,. Since F¢#, there exist a,be F and cel, with

ecE

c# 1 and a=bc. Since a,beF, there exist d,ec E, xe G, and yeG, such that a = dx and
b =ey. Thus we have dx = eyc. Since E is abridged, x # 1, for otherwise d = e(yc), so that
yc=1, ¢ =1, a contradiction. Since ¢ # 1, we can write ¢ = hz for some hel’,zeX. The
equation dx = eyhz, together with the facts that I' is freely generated by X and that x,z€e X,
implies that z = x; hence we have d = eyh. Again, since E is abridged, we must have yh = 1;
hence,d=e,y=1. Thus wehavee =ey =b,andsoeeF. Also,ex =dx =acF; soexeF,
with xeG,, x # 1. Since G.e #U{{1}} and xe G, with x # 1, we have 1¢G,; hence e¢eG,.
But, since e F, there must exist k€ E with eekG,. Hence e = kw for some weG,. Since E
is abridged, w = 1 and k = e; hence eeeG,, a contradiction. The proofis complete.

COROLLARY 3. Let of be a premanual and let Ec of°. For each e E, let G,e /U {{1}}.
Then, if d,ee E with d # e, it follows that dG;neG, = 0. .

THEOREM 4. Let &/ be a premanual with X = U of and let T be the free monoid over X.
Then U ot¢=T.

Proof. 1t will suffice to show that each element aeI" belongs to at least one set Ee &/“.
We prove this by induction on |a|. If |a| =0, then a=1e{1}es/°. Suppose that the
assertion is true for all aeT with |a| =n. Let bel with || =n+1. Then we can write
b = ax with |a| = n and xeX. By hypothesis, there exists Ee &/° with aeE. Since xeX,
there exists Ge o/ with xeG. For each ecE, define G, = G, and note that F= U eG, e &,

eeE
since &€ is an inductive class. Since & = axeaG, < F, the proof is complete.

4. Weightfunctionsfor compound premanuals. Fortheremainder of this paper, we assume
that & is a premanual with Q(s/) # 0 and we put X = U/. We also denote by I the free
monoid over X. Bya transition function for the premanual &/° we mean a functionf: T'x X - R
such that, for every eeT’, fle,")eQ(s). Thus, a transition function can be regarded as a
family of weight functions for &/ indexed by the elements of I". If fis a transition function for
/¢, we define a real-valued function w, on I' by recursion as follows:

(1) w,(1)=1;

(2) if aeT and xe X, then w (ax) = w(a)f(a, x).
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In particular, we have o (x) =f(1,x) for all xe X. For x,,x,,...,x,€X, n 2 2, we will then
have

@ (X% - .- %) = f(1, xy) Hf(xlxz Xj- 15 X))

THEOREM 5. If fis any transition function for o€, then w,eQ(H°).

Proof. Evidently, w,(a) 2 0 for all aeI'. Thus it will suffice to show that, for any
Eest®, Y we)=1. Thus, let # denote the set of all sets E€ o/ such that Z we)=1.

ecE

It will be enough to show that 5# is an inductive class. Clearly, {1}e5#. Thus, let Ees#,and
suppose that Fis a direct successor of E. Then, for every e€ E, there exists G,e U {{1}} such
that F= U eG,. By Corollary 3, the latter is a disjoint union. Let us temporarily fix an

ecE

eeEandput G=G,. IfG= {1}, then } wga)=wye). On the other hand, if G # {1},
aceG
then Ge o and we have

2 wia)= 3 wgex)= Zwa(e)f (e, x) = wy(e) Zcf (e, x) = wy(e).

aceG xeG Xe

It follows that ) wg(a) = Z wg(e) =1; hence s is an inductive class and the proof is
acF
complete.

LEMMA 6. Let weQ(€) and let acT, Ge L. Then ) w(ax) = w(a).
xeG
Proof. By Theorem 4, there exists Ee #/° withae E. ForeeE withe # a, define G, = {1}.
Define G, = G. Put F= U ¢G,, noting that Fe&#°. Put H = E\a. We now have

ecE

1= bZF o(b) = ZH ole)+ ZG w(ax) = | —aw(a)+ ZG w(ax),

e€

and the lemma is proved.
Suppose that f'is a transition function for &/° and that d belongs to I'.  We then define a
new transition function f/d, called f conditioned by d, by the following prescription:

_[fd,x) if wgfda)=0,
(fld)(a, %) _{f(da,x) if wj(da)aéo,

for ael, xe X.

THEOREM 7. Let f be a transition function for o/ and letde'. Put g =f|d. Then, for any
aeT’, we have o (a)w (d) = w(da).

Proof. The proofis by induction on |a|. If|a| =0, thena = 1 and the result is evidently
true. Suppose that the result holds for |a|=n and let beT with |6| =n+1. Then there
exists ael” and xeX, with |a |— n, b=ax. By hypothesis, w(a)w(d) = w/(da). Hence

0, (b)w(d) = w(ax)w,(d) = v (a)g(a, x)w(d) = w(da)g(a, x). Hence, if w/(da) # 0, we have
w,(b)o(d) = w/da)f(da, x) = w,(dax) = w(db) as desired. Thus we can suppose that
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w/(da) = 0. This gives w,(b)w(d) =0, and we are obliged to prove that w(db) =0. Since
x€ X, there exists Ge o/ with xeG. By Lemma 6,
0=wgda)= ) wlday) 2 wldax) = w(db) 2 0;
yeG

hence w/(db) = 0 as desired.

A transition function f for &/° is said to be normalized if it satisfies the following condition:
For all aeI" and all xeX, if wy(a) =0, then f(a,x) =f(1,x). Suppose that aeQ(=/) and
define f: I' x X—R as follows. For ael and xeX,

a(x) if afa) =0,

f(a,x) = a(ax)

o(a)

As a consequence of Lemma 6, we see that £ is a transition function for &/, and direct
calculation reveals that o, = «, from which it easily follows that f is normalized. A final

calculation shows that, if g is any normalized transition function for &/ such that o, = «,
then g = f. Thus we have the following lemma.

if afa) #0.

LEMMA 8. The mapping [+ w, provides a one-to-one correspondence between normalized
transition functions f for /¢ and the set Q(A°) of all weight functions w, for s/°.

Suppose that e (/) and that deT.  Let f'be the unique normalized transition function
for o7¢ such that w, = a. We can now form the conditioned transition function f/d and thence
the weight function w,,;. We call w4 the weight function obtained by conditioning « by d and
we introduce the notation af/d for w;, According to Theorem 7, we have the identity
(a/d)(a) - a(d) = a(da) for all aeT. In particular, if a(d) # 0, we have

a(da)
a(d) ’

(afd)(a) =

a formula which is analogous to the classical definition of conditional probability. An easy
calculation shows that the transition function f/d is normalized, so that f/d is the unique

normalized transition function corresponding to a/d according to Lemma 8.

Continuing with the above notation, we notice that from the equation a(da) = (¢/d)(a) - o(d)
we can deduce that, if a(d) = 0, then a(da) = 0 holds for all aeT. From this we see that, if
a(d) = 0, then we have

(afd)(xy % . . . x,) = a(xJo(x3) . . . 0(X,),
for x,,x,,...,x,eX,n=1. This suggests a slight extension of the above notation. Given
any normalized transition function f for /¢, we define a transition function f/* for /¢ by
(f/*)(a,x) =f(1,x) for all ae T and all xeX. Evidently, f/* is normalized. Given any weight
function o e Q(s7¢), we now define a/+ as follows. Let f be the unique normalized transition
function for which @ = w,, and define a/* = w;,. Evidently,

(/#)(xy X2 .. X,) = a(xJo(x3) . - - lx,)

https://doi.org/10.1017/50017089500002020 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500002020

10 D. J. FOULIS AND C. H. RANDALL

holds for xy,x,,...,x,€X,n= 1. In particular, («/+)(ab) = (a/*)(a) - (/*)(b) holds for all
a,beT and we have the result that, if de " with a(d) = 0, then a/d = a/=.

5. The stability of pure weights under conditioning. In the present section, we shall prove
the main theorem of this paper, namely that, if « belongs to Q,(+/°) and if 4 is any element of
I, then the conditioned weight function «/d also belongs to Q(°).

LEMMA 9. Let aeQ(€) and let deT with a(d) # 0. Define a real-valued function B on
X = U« by B(x) = a(dx)/a(d) for all xe X. Then BeQ, (/).

Proof. Suppose that f¢Q,(«#). By Theorem 1, there exists ueQ(s), with u # g and
r(B,u) > 0. Let f be the unique normalized transition function for &/ such that « = w,.
Define a transition function g for &€ as follows.

fla,x) if a#d,
9(a, x) = {u(x) if a=d,
for ael, xeX.

Suppose that w, = . Then, for any xe X, a(d)f(d, x) = 0 (d) f(d, x) = w (dx) =a(dx) =
w,(dx) = w,(d)g(d, x) = a(d)u(x); hence, since a(d) #0, f(d, x) = u(x) holds for all xeX.
However, since a(d) # 0, f(d, x) = f(x) holds for all xe X, and we obtain the contradiction
p=p. Thus o, # .

Since a€Q,(#°) and w,eQ(°) with « # @, Theorem 1 gives r(x,w,) = 0. It follows
that there exists an element ce T with 0 £ a(c) < w (c), a(c)/w (c) < r(f,p). Evidently,c # 1;
hence we can write ¢ = x,x,...x, with n 2 1 and x,x,,...,x,€X. For 1 £j=<n, define
c;=lifj=land¢;=x,x,...x;_, if2<j<n. We have

a(c) = fley, X,)f (€2, X3) - .. S (€ %)

and
wg(c) = g(ch xl)g(cb x2) v g(c,,, xn)'

Since a(c) # w,(c), there must exist a positive integer i with 1 <i < n and f(c;, x;) # g(c;, x;).
From the definition of g(c,, x;) it follows that ¢; = d and g(c;, x;) = u(x;). We also have
fenx)=s(d x)=f(x), since a(d)#0. For 1 <j<n with j#i, we have ¢c;#c¢;=d;
hence g(c;, x;) = f(c;, x;). From the condition 0 < a(c) < w,(c) we deduce that g(c;, x;) >0
for 1 £j £ n and that

B _ o)

ﬂ(x l') G)g(C)

<r(B,u),

an immediate contradiction.

CoROLLARY 10. Let aeQ, () and let f be the unique normalized transition function for
&€ for which w; = a.  Then, for every element acT, f(a, )eQ, ().

Proof. If a(a) # 0, then f(a, x) = a(ax)/a(a) for all xe X; so f(a,")eQ,(s#), by Lemma 9.
On the other hand, if «(a) = 0, then f(a, x) = (1, x) = a(x) = a(1x)/a(1) for all xe X, so that,
again by Lemma 9, f(a,*)€Q,(#), and the corollary is proved.

A normalized transition function f for &€ will be called pure if f(a, )eQ, (<) holds for
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every aeT'. Corollary 10 says that, if @, is a pure weight function for &/¢, then f'is pure. In
the following theorem we shall establish the converse.

THEOREM 11. Let f be a normalized transition function for /€. Then f is pure if and only if
(I)f € Qp(dc).

Proof. We know already that, if w, is pure, then so is f. Suppose, then, that fis pure,
but that w, is not pure. Then, by Theorem 1, there exists a normalized transition function
g # fsuch that 0 < r(w,,w,). Suppose that f(1,-) # g(1,-). Since f(1,+)eQ (=), Theorem 1
gives r(f(1,-),9(1,-)) =0; hence there exists xeX such that 0 <f(1,x) <g(l,x) and
S, 2)/9(1,x) < r(ws,@,). Since wy(x)=f(1,x) and w,(x) = g(l,x), the latter inequality
cannot be true; hence we conclude that f(1,-) = g(1,-).

Choose beT with |5| minimal such that f(b,") # g(b,*). Since b+# 1, we can write
b=x,x;...x, with n21 and x,,x,,...,x,€X. Put ¢;=1 and ¢;=x,x,...x;-, for
2<j=n. Wehave

w0, 6) = T1 SGex) = T olesx) = 0, (0),

since | ¢c;| <n=|b|forallj=1,2,...,n. Suppose that w,(b) = w,(b) = 0. Then, since fand
g are normalized,
f(b’) =f(]’) = g(l’) = g(b")’
a contradiction. We conclude that w(b) = w,(b) # 0.
Since f(b,") # g(b,") and f(b,-)eQ, (&), then, by Theorem 1, r(f(b,),g(b,")) =0.

Hence there exists xe X such that

J(b,x) wy(bx) _ o, (0)f(b,x)

g(b, x) w, (bx)  w,(b)g(b,x)’

yielding the contradiction that f(b, x)/g(b, x) is less than itself. This contradiction proves the
theorem.

<rw;,w,) <

THEOREM 12. Let acQ (4€) and let deT. Then the conditioned weight function a/d, as
well as af+, belong to Q (7°).

Proof. Let fbe the unique normalized transition function for &¢ such that &, = a. By
Theorem 11, fis pure. From the definitions of f/d and f]*, we see immediately that f/d and f/*
are pure; hence, by Theorem 11, o/d = w;,,€Q,(#°) and a/* = w,;, €Q,(F€) as desired.

6. Concluding remarks. There are many known examples of ‘‘ conditioning > processes
which preserve the * purity ” of * stochastic models . Indeed, the classical example is
obtained as follows: Let & denote any Boolean algebra. From £, we construct a premanual

& = {E< B|E is a finite set of pairwise disjoint nonzero elements of # and ) e =1}.
ecE

Evidently, the weight functions in Q(&/) are in a natural one-to-one correspondence with the
finitely additive probability measures on 2. We shall identify a weight function weQ(%/)
with the corresponding probability measure. The pure weights now correspond to the points
in the Stone space affiliated with . Suppose that w e Q(s?) and that ae & with w(a) # 0. By
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*“ conditioning ” w by a, we can define a new weight function w,eQ(s) by w,(b) = w(ab)/w(a)
for all be . It is easy to see that, if w is pure, 50 is @,.

A second example arises in conventional non-relativistic quantum mechanics. To
construct this example, let # be a complex, separable, infinite-dimensional Hilbert space and
let 2 be the set of all von Neumann density operators on . Let the premanual &/ consist of
all countable sets {P,, P,,...} of pairwise orthogonal nonzero projection operators on 3#
such that }' P, = 1. For each De 9, define the weight function w, by w,(P) = Tr(DP) for all

nonzero projection operators P on 5. These weight functions are now in a natural one-to-
one correspondence with the quantum mechanical states. Furthermore, the weight function
wp corresponds to a pure state if and only if D = D?. Evidently, w), is a pure weight if and only
if it corresponds to a pure quantum mechanical state. Suppose that De @ and that P is a
projection operator on s such that 7r(DP)# 0. The usual quantum mechanical *“con-
ditioning by P > [6, p. 333; 5] converts D into Dp = (Tr(DP))"1PDP. It is easy to check that
this conditioning preserves pure weights.

In Pool’s work on the logic of quantum mechanics, it is shown that (under suitable
hypotheses on the event-state-operation structures under consideration) pure states are stable
under conditioning by operations precisely when the quantum logic is semimodular [7].

Our Theorem 12 provides still another example of the “ stability of purity under con-
ditioning . However, it can be shown that, if the weight functions on a compound premanual
are conditioned not by outcomes, but by so-called *“ events , the purity of the weight functions
is not generally preserved.
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