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Abstract. Interferometric observations of binary stars have a profound
impact on many areas of stellar astrophysics. This article gives a brief
review of interferometric techniques applied to binaries, and of orbit de-
termination and binary surveys with optical and infrared interferometers.

1. Introduction

Observations of binary stars have been among the most important goals of opti-
cal interferometry ever since the first interferometric determination of a "visual"
orbit of a double-lined spectroscopic binary (SB2), namely Capella, by Anderson
(1920) and Merrill (1922). Their observations with the 20-foot interferometer
mounted on the 100-inch Hooker Telescope on Mt. Wilson clearly showed the
potential of this method for measuring stellar masses and distances. The tech-
nological advances at the end of the twentieth century were necessary, however,
to turn optical and infrared interferometry into productive research tools. The
new ground-based and space-borne instruments that will come into operation
during the first decade of the new millennium will bring about new capabilities
that can revolutionize many aspects of binary star research. This article gives a
brief introduction to the principles of interferometry applied to binaries, a short
summary of the observations that have been carried out during the past few
years, and a preview of some developments expected for the near future.

2. Observations with an Interferometer

Two types of observations are important in the context of binaries: interfero-
metric imaging and interferometric astrometry. The primary observable of an
imaging interferometer is the complex visibility r == V ei¢ , which is related to
the sky brightness distribution S(~, 'TJ) through a Fourier transform (the van
Cittert-Zernike Theorem, see e.g. Shao & Colavita 1992, Thompson et al. 1986):

(1)

where ~ and 'TJ are the coordinates in the tangent plane of the sky, and u and
v the two components of the baseline vector in the Fourier plane, measured
in units of the observing wavelength. The visibility function of a star can be
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approximated by
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I'(z) = 2J1(x) 1
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where J; denotes the Bessel function of first order, B is the baseline length, A
the observing wavelength, and OUD is the uniform disk equivalent diameter of
the star (for a discussion of limb darkening see Quirrenbach et al. 1996). The
squared visibility! of a binary is given by

; (3)

here R ~ 1 is the brightness ratio of the two stars, p their separation, and
'ljJ the angle in the uv plane between the interferometer baseline and the line
joining the two stars. To determine p, 'l/;, and the stellar parameters uniquely
from measurements of V 2 , data have to be obtained for many points in the
uv plane. This can be accomplished by observations with multiple baselines,
by Earth-rotation synthesis, by taking data at multiple wavelengths (since u
and v scale with the wavenumber), or by a combination of these techniques.
Repeated observations with good coverage of the orbital phases can then be
used to determine a "visual" orbit (Armstrong et al. 1992a). A better method
was developed by Hummel et al. (1993) and applied in most subsequent analyses.
Here the seven orbital elements and the stellar parameters are fitted directly to
the observed visibilities. This "global" approach has the advantage that fast
orbital motion of short-period binaries is taken into account properly.

An astrometric interferometer measures the position of stars with respect to
a reference frame, which can be defined either locally (narrow-angle astrometry)
or over the whole sky (wide-angle astrometry). If the star is an unresolved (i.e.,
p « B / A) binary system, the observed quantity is the position of the photo-
center. Again, observations covering a full revolution can be used to determine
the orbital elements. Wide-angle astrometry, which has to be done from space
(for the precision relevant in this context), gives the parallax in addition to the
photocenter motion. If the binary is resolved, the positions of both components
can be determined separately, but the data analysis can be quite complicated.

3. Combination of Interferometry with other Methods

The goal of binary star observations is normally the determination of fundamen-
tal parameters such as the masses, radii, and luminosities of the two components.
It is usually necessary to combine two or more techniques to achieve this goal,
since not all orbital elements can be determined with any single method alone
(with the notable exception of wide-angle astrometry of resolved binaries, see
entry "Vis + Ast + 1r" in Table 1). A particularly useful case are double-lined
spectroscopic binaries for which the visual orbit can also be obtained. However,
there is little overlap between the two classes, since spectroscopic binaries tend to

ISingle-baseline Interferometers normally measure V 2
, not I', see Shao & Colavita 1992.
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Example

RV planet

photometric planet
interferometer
TPF/DARWIN planet

SIM black-hole binary
RV + interferometer
SIM X-ray pulsar
HD 209458

SIM planet
VLTI /,Keck binary
SIM binary
RV + interferometer

Information

al sin i, m~ sirr' i/ (ml + m2)2
a sin i, m2 sin i
.. . 3· . 3·a SIns; ml sm 't, m2 sin 't

R 1/a, R2/a, i, LD
R 1 , R2 , a, i, LD
a", i, L 1 / L 2

a, i, L 1 , L 2

a, i, ml + m2, L 1 , L 2
i m] L2-m2Ll a"

, (ml +m2)(Ll +L2)
a, i, m2
a", i, ml/m2, L1/L2
a, i, ml, m2, L 1 , L 2
aI, i, m~/(ml + m2)2
a, i, ml, m2, L 1 , L 2
aI, i, m~/(ml + m2)2
a, i, ml, m2, at ; L 1 , L 2
a, i, ml, m2
a, i, m2, R 1, R 2
a, i, ml, m2, R 1 , R 2
a, i, trii ; m2, R 1 , R2, L 1, L 2
a, i, ml + m2, u; R2, L 1, L 2
a, i, ml, m2, R 1, R2, it, L 1, L 2

Table 1. Information that can be obtained from observations of bi-
nary stars. The abbreviations are as follows. SBl: spectroscopic binary
with only the primary spectrum. SB2: spectroscopic binary with both
spectra. Ecl: eclipsing binary. Vis: visual orbit. Ast: astrometric
orbit of the photocenter. 1r: Parallax. M: ml is assumed to be known,
ml » m2, and L 1/ L 2 »ml/m2. a: orbital semi-major axis in linear
units. a": semi-major axis in angular units. LD: limb darkening. RV:
radial velocity.

Input Data

SBI
SBI + M
SB2
Ecl
Ecl + M
Vis
Vis + M
Vis + 1r

Ast

Ast + M + 1r

Vis + Ast
Vis + Ast + 1r

SBI + Vis
SBI + Vis + 1r

SBI + Ast
SB2 + Vis
SB2 + Ast
Ecl + SBI + M
Ecl + SB2
Ecl + SB2 + 1r

Ecl + Vis + 1r

Ecl + SB2 + Vis

have small orbits that are difficult to resolve. Even orbits of SB2s obtained with
adaptive optics or speckle techniques are rarely precise enough to give masses
better than "-J 10% (Pourbaix 2000). This is one of the reasons why interfer-
ometric observations of SB2s are of great importance for the determination of
fundamental stellar parameters.

Table 1 gives a compilation of the information that can be obtained in
principle from the most important combinations of observational methods. The
period P and eccentricity e can be determined with any technique. (For eclipsing
binaries the determination of e is possible only if the secondary eclipse can also be
observed, and the separate determination of e and w is difficult.) The table lists
other parameters that can be obtained from first principles. The only exception
are the cases labeled "M" , which are applicable mostly to observations of planets
around main-sequence stars, when it can be assumed that the mass of the parent
star is known a priori with sufficient precision.
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Table 2. Interferometric determinations of orbits and component
masses for double-lined spectroscopic binaries.

System Types a" [mas] M1 [M0] M2 [M0] Instr. Ref.

a Vir B1III-IV+B3V: 1.5 10.9 ±0.9 6.8 ±0.7 Narrabri H71
8 Aql B9.5II1 +B9.5III 3.2 3.6 ±0.8 2.9 ±0.6 Mk III H95
{3 Aur A2V +A2V 3.3 2.41 ±0.03 2.32 ±0.03 Mk III H95
12 Boo F9IV +F9IV 3.4 1.435±0.023 1.408±0.020 PTI BOO
64 Psc F8V +F8V 6.5 1.223±0.021 1.170±0.018 PTI B99b
93 Leo G5II1 +A7V 7.5 2.25 ±0.29 1.97 ±0.15 MkIII H95
(1 UMa A2V +A2V 9.6 2.51 ±0.08 2.55 ±O.07 Mk III H95

9.8 2.43 ±0.07 2.50 ±0.07 NPOI H98
L Peg F5V +G8V 10.3 1.326±0.016 0.819±0.009 PTI B99a
TJ And G8II1 +G8III lOA 2.59 ±0.30 2.34 ±0.22 Mk III H93
a Equ G2III +A5V 12.0 2.13 ±0.29 1.86 ±0.21 Mk III A92b
( Aur K4Ib +B5V 16.2 5.8 ±0.2 4.8 ±0.2 MklII B96
82 Tau A7111 +A: 18.6 2.1 ±0.3 1.6 ±0.2 MkIII T95
4> Cyg KOIII +KOIII 23.7 2.536±0.086 2A37±0.082 Mk III A92a
a And B81V +A: 25.2 5.5: 2.3: Mk III P92,T95
{3 Ari A5V +GOV: 36.1 2.34 ±0.10 1.34 ±0.07 MkIII P90
a Aur G1111 +G8II1 55.7 2.56 ±0.04 2.69 ±0.06 Mk III H94a

References: A92a: Armstrong et al. 1992a; A92b: Armstrong et al. 1992b; B96: Bennett et al. 1996;
B99a: Boden et al. 1999a; B99b: Boden et al. 1999b; BOO: Boden et al. 2000; H71: Herbison-Evans et
al. 1971; H93: Hummel et al. 1993; H94: Hummel et al. 1994; H95: Hummel et al. 1995; H98: Hummel
et al. 1998; P90: Pan et al. 1990; P92: Pan et al. 1992; T95: Tomkin et al. 1995

It is clear that the precision with which the parameters listed in Table 1
can be determined varies widely between different classes of objects and different
observational techniques. In particular, orbital parallaxes from interferometric
observations of SB2s offer a significant improvement over currently available
parallaxes from ground-based astrometry or HIPPARCOS. A good example is
Spica, for which Herbison-Evans et al. (1971) derived a distance of (84±4) pc at
a time when trigonometric parallax estimates ranged from 34pc to 111 pc. The
HIPPARCOS measurement of (80 ± 6) pc has now confirmed the orbital parallax.
On the other hand, while the visibility function of binaries depends on the
component radii according to Equation 3, interferometrically determined radii
are in most cases not precise enough for critical tests of stellar models. Therefore
the radii are not listed as observables in the "Vis" entry in Table 1.

4. Stellar Masses and Tests of Evolutionary Models

As pointed out above, adding the inclination from the interferometric orbit to
the spectroscopic elements allows computation of the component masses, and
combining the angular diameter of the orbit with the physical scale set by the
spectroscopy yields the distance, or "orbital parallax". Because of the fun-
damental importance of these data, extensive observations of SB2s have been
carried out with the Mk III Interferometer, the Navy Prototype Optical Inter-
ferometer (NPOI), and the Palomar Testbed Interferometer (PTI). They are
summarized in Table 2 (adapted from Quirrenbach 2001). The orbital solutions
and error estimates are taken from the references cited, and are therefore not
uniform. The error bars refer formally to 1 a, but some authors may be more
conservative than others in assessing systematics in the data or in dealing with
discrepancies between different subsets of the data (e.g., different eccentricities
from the spectroscopic and interferometric orbits). It should also be pointed
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out that determining the scale of the orbit (in angular units), and the subse-
quent computation of the orbital parallax, requires knowledge of the effective
central wavelength of the interferometric observations, which depends on the
stellar color (Hummel et al. 1994). Systematic errors in this quantity may eas-
ily go unnoticed since they do not affect the X2 of the orbit fit. In many cases,
however, the precision of the mass determination is limited by the spectroscopic,
not by the interferometric orbit.

It is instructive to compare Table 2 to the masses of eclipsing binaries com-
piled by Andersen (1991). Only a handful of the interferometrically determined
masses meet Andersen's accuracy criterion for being useful for critical tests of
main-sequence stellar models, which he set at 2%. Furthermore, the baselines
used in the observations compiled in the table are too short to give good stellar
radii (with the exception of Capella). On the other hand, the agreement for the
component masses of f3 Aur, the only system in common between the two sam-
ples, is encouraging. Furthermore, analyses of pairs with evolved components
such as Capella, ¢ Cyg, and a Equ provide useful tests of post-main-sequence
evolutionary models (e.g. Armstrong et al. 1992b). The availability of orbital
parallaxes giving good luminosities is a clear advantage in this respect. Further
improvements can be expected from the next generation of ground-based inter-
ferometers (NPOI, CHARA array, VLT Interferometer, Keck Interferometer),
which will provide long baselines (;G 100 m) in the visible and increased sensitiv-
ity compared to the Mk III. This will make many more SB2s amenable to precise
interferometric orbit determination. Revisiting binaries with visible orbits from
speckle or adaptive optics observations can improve the derived masses consider-
ably (e.g., G1570BC, see Segransan et al. 1999). The key to noticeable progress
will be observations of stars with well-determined spectroscopic elements and
state-of-the-art determination of the metal abundance. Comprehensive tests of
stellar models require covering all regions of the HR diagram. Many of the
eclipsing systems in Andersen (1991) are also accessible to the new instruments,
which could provide improved distances and better luminosity ratios for partially
eclipsing systems. The good instantaneous coverage of the uv plane afforded by
the multiple baselines and wavelength channels of the new arrays will allow de-
termination of orbits from snapshot observations, making them very efficient
instruments for binary programs.

5. Low-Mass and Sub-Stellar Companions

Observations of low-mass companions with imaging interferometers are difficult
because a large magnitude difference between the primary and secondary re-
quires excellent calibration of the visibility. The calibration uncertainty induced
by atmospheric turbulence can be mitigated by spatial filtering of the wave-
front with single-mode fibers (see Quirrenbach 2001 and references therein).
Optimistic extrapolations of the current state of the art imply that it might be
feasible to detect companions as faint as "hot Jupiters" (i.e., about 10-3 to 10-4

fainter than the parent star in the near-IR) with this method (Conde du Foresto
2000). It may be easier, however, to use the phase rather than the amplitude
of the visibility for the detection of faint companions. This may sound surpris-
ing in view of the phase fluctuations introduced by atmospheric turbulence, but
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these variations are largely achromatic and can thus be eliminated by differential
measurements between two wavelengths. For example, the photocenter of a star
+ planet system shifts with wavelength across molecular absorption bands in
the planetary atmosphere. The visibility phase can be used as a proxy for the
.brightness ratio; measurements with r-..J 0.1 milliradian accuracy could therefore
be used to perform infrared spectroscopy of "hot Jupiters" (Akeson & Swain
1999, Quirrenbach 2000a).

The steep dependence of luminosity on mass suggests looking for dynamic
effects of low-mass companions rather than for the photons emitted by them.
This is the basis for radial-velocity and astrometric searches for extrasolar plan-
ets (see Marcy & Butler 1998 and Quirrenbach 2000b for recent reviews). As-
trometry is complementary to the successful radial velocity technique in many
respects. Interferometric observations of stars with planets known from the ra-
dial velocity surveys can yield the planet's mass m without the sin i ambiguity.
This is important in the context of binary stars because it clarifies the inci-
dence of objects with masses above the deuterium burning limit (r-..J 0.013 M 8 ) ,

which appear to be rare as companions of r-..J 1M 8 stars. This "brown dwarf
desert" is clearly important for our understanding of planet formation as well as
binary star formation. An astrometric survey with the VLTI or Keck Interfer-
ometer could also perform a census of brown dwarfs in orbit around M dwarfs
(Quirrenbach 2000a).

For stars with multiple planets, astrometric measurements can determine
whether their orbits are co-planar, an important clue to the dynamical history of
the system. The different detection biases of the radial velocity method (signal
ex a-1/ 2 ) and astrometry (signal ex a) imply sensitivity to different architec-
tures of the planetary system. The radial velocity surveys favor systems with
masses increasing with orbital semi-major axis such as v And (Butler et al. 1999),
whereas astrometric searches should preferentially detect systems in which the
masses decrease with orbital radius. Interferometric astrometry will also enable a
census of planets around stars of all spectral types, including pre-main-sequence
objects, an important step towards the understanding of planetary system for-
mation.

6. Pre-Main Sequence Binaries

The VLTI and Keck Interferometer will provide sufficient sensitivity and angular
resolution for studies of binaries in star-forming regions. They will complement
the current surveys for pre-main-sequence binaries by providing access to smaller
orbital separations and thus giving a more complete picture about the binary
frequency (e.g., Richichi & Leinert 2000). A significant first step in this direction
has already been done with the Infrared Optical Telescope Array (IOTA); a new
binary (MWC 361-A) was found in a sample of 15 Herbig Ae/Be stars observed
with this instrument (Millan-Gabet et al. 2001).

Interferometry at mid-infrared wavelengths will allow the determination of
the binary frequency at an even earlier evolutionary stage, thus shedding com-
pletely new light on the process of binary star formation. 10 Jjm surveys of
embedded sources in Orion with the VLTI or the Keck Interferometer will de-
tect binaries down to separations of r-..J 10 AU, comparable to the limit of near-IR
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surveys in nearby star-forming regions with speckle methods or adaptive optics.
Mid-infrared interferometry will further help to clarify the relation between bi-
naries and circumstellar disks.

Determining masses of pre-main-sequence stars is important for constrain-
ing evolutionary models of these objects. Unfortunately most known double-
lined pre-main-sequence binaries have orbital radii (~ 0.1 AU) too small to be
resolvable with current interferometers, although that situation may change with
new spectroscopic surveys sensitive to periods of up to several hundred days
(Guenther et al. 2001, these proceedings). A major improvement is expected
from the astrometric capabilities of the VLTI and Keck Interferometer, which
will enable measurements of the inclination and thus the component masses of
many pre-main-sequence SB2s with orbits as small as ~ 0.01 AU at the distance
of the Taurus-Auriga region. The only caveat is that the astrometric signal is
proportional to m 1L2 - m2Ll (see entry "Ast" in Table 1), which makes this
technique insensitive to pairs of nearly equal stars.

7. Conclusions

Optical and infrared interferometry can make important contributions to a large
variety of important questions about binary stars. In conjunction with other
techniques, interferometry can supply the data necessary to determine stellar
masses with a precision sufficient to test evolutionary models jn many regions
of the HR diagram. In the next few years, interferometry will help establish a
precise mass-luminosity relation for the whole main sequence, and enable criti-
cal tests of pre-main-sequence evolution. By pushing binary surveys to smaller
separations and younger ages, infrared interferometry will enhance our under-
standing of the processes that govern binary star formation. Interferometric
astrometry will enable dynamical studies of planetary systems and the detec-
tion of binaries with extremely large luminosity ratios. Many other applications
of interferometry to binary stars can be foreseen, from imaging of interacting sys-
tems to measuring the masses of black holes and neutron stars in X-ray binaries.
The unique capabilities of optical and infrared interferometry for observations
with milliarcsecond resolution and microarcsecond precision will have a profound
impact on virtually all aspects of binary star research, and thus on many areas
at the forefront of stellar astrophysics.
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