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CONTINUOUS CHAOTIC FUNCTIONS OF AN INTERVAL
HAVE GENERICALLY SMALL SCRAMBLED SETS

IVAN MIZERA

It is shown that continuous self-mappings of a compact interval, chaotic in the sense of
Li and Yorke, have generically, in the uniform topology, only scrambled sets which are
nowhere dense and of zero Lebesgue measure.

Let / be a continuous function from a compact interval / into itself. A set S is
called scrambled, if for every x,y £ S, x ^ y , and for every periodic point p of /

(1) l imsuP|r(x)-r(2/) |>0,
n—*oo

(2) liminf|/"(*)-/"(»)! = 0,
n—>-oo

(3) Umsup|r(x)-nP)|>0,
n—>oo

where fn denotes the n-th iterate of / (see [9]). A function / is called chaotic in
the sense of Li and Yorke when it has an uncountable scrambled set. This property
is equivalent to the existence of a non-empty perfect "uniformly" scrambled set ([6],
[14]). The property "being chaotic" is generic ([1], [2], [8], [11]). There are known
examples of functions with scrambled sets of the first and of the second Baire category
([5]). If a scrambled set has the Baire property, it must be first category - hence it
cannot be residual ([3], [4]). A scrambled set can have a positive Lebesgue measure
arbitrarily close to the measure of the whole interval ([7], [12], [13]). It can even have
a full measure ([10]).

The size of the scrambled set - in the sense of the category or of the measure -
reflects somehow the degree of "chaos". However, in this paper we show that large
scrambled sets are not typical for chaotic functions. We consider the space C°(I,I)
of continuous functions of an interval into itself, endowed with the usual topology of
uniform convergence. We prove the following
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THEOREM. There is a first Baire category set M C C°(I,I) such that any f £
C°(I,I) \ M has only scrambled sets (if any) which are nowhere dense in I and of
zero Lebesgue measure. In other words, mappings from C°(I,I) have generically only
nowhere dense zero measure scrambled sets.

Combining the above mentioned results with the Theorem, we obtain

COROLLARY. Continuous self-mappings of an interval are generically chaotic but
only with nowhere dense zero measure scrambled sets.

We prove the Theorem by several Lemmas. We may assume that I = [0,1] . Let
A denote the Lebesgue measure on / . For n = 1,2,3,..., let 0 < £n < 4~n . For
i = 1, 2 ,3 , . . . , 2" let a(n, i) = (i - l)2"n , a(n, 2" + 1) = 1, b(n, i) == i2~n - (n . Let
I(n,i) = [a(n,i), b(n,i)}, /„ = (Ji A"-*)- Let An = {/ € C°(I,I) : / ( /„) C in t / n } .
Immediately we have

LEMMA 1. For every n, An is open in C°(I,I) .

Let Bn = \Jk>n Ak .

LEMMA 2. For every n , Bn is open and dense in C°(I,I).

PROOF: By Lemma 1, Bn is open. Let Uc(f) be an £ -neighbourhood of / in
C°(I,I). By the uniform continuity of / there exists an integer k ^ n such that
2~* < e/4 and

(4) |/(x) - f(y)\ < e/4 whenever |x - y| < 2~k.

Now we construct a function g £ Ak H Ue(f) in two steps. |

First define an auxiliary function h: Ik —> Ik such that for every i , h is constant
on I(k,i) , h{Ik) C int Ik and

(5) \h(a(k,i))-f(a(k,i))\<e/8.

We put f(a(k,i)) for the image of I(k,i) under h , provided f(a(k,i)) £ int Ik •
Otherwise, we put for the image of I{k,i) a slightly perturbed value: f(a(k, t))+2~(fc+1)

or f(a(k,i)) — 2~(fc+1). Note that the gaps between the adjacent intervals of Ik have
each length (k < 4~fc s$ 2~(-k+1), while the length of each of these intervals is 2~k-(k >

2-(fc+i) Hence, if f(a(k,i)) £ int Ik , then at least, one of the perturbed values belongs
to int Ik •

In the second step, let g be a continuous extension of h such that g is linear
on every interval contiguous to Ik and g(l) = /(I) . Clearly g € Ak , so it remains
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only to show that | / (x ) — g(x)\ < e for all x G I . This is true for x = 1 ; let
x £ [a(k,i) ,a(k,i + 1)) for some i . We have

(6) \f(x)-g(x)\^\f(x)-f(a(k,i))\

+ \f(a(k,i)) - g(a(k,i))\ + \g(a{k,i)) - g(x)\.

By (5), the middle term on the right of (6) is less than e/8. By the linearity of g, (4)

and (5) we get

\g(a(k,i)) - g(x)\ < \g(a(k,i)) - g{a(k,i + 1))|

^ e/8 + \f(a(k,i)) - f(a(k,i + 1))| + e/8 < e/2.

Now, summarizing all this, we have \f(x) — <7(i')l < £ , and this completes the proof.

LEMMA 3. Let f £ An , let S be a scrambled set for f . If S n In ^ p , then

(7) limsup|/ f c(u)-/ f c(u)| < 2 - n forallu,v£S.
k

PROOF: Let w € S n In . Then fk(w) € int In for every k ^ 1 since / ( / „ ) C
int / „ . Since actually / ( / „ ) C int / „ , dist { / ( / „ ) , / \ / „} > 0 , hence (2) for x = u ,

y = w implies that for any sufficiently large k both f (u) and / (w) lie in the same
component of In (dependent on k). By the same argument applied to v and w we
obtain that for sufficiently large k both fk(u) and fk(v) lie in the same component
of / „ , dependent on k . This implies (7).

Now we can complete the proof of the Theorem. Put M — H^Li -^n =
fC=i Ufcln Ak • B y Lemma 2 M is residual in C°(I, I) . Let / £ M , let S be a scram-
bled set for / . There exists an infinite, increasing sequence {n ;}^ j of integers such
that / € Ani for every i . By Lemma 3, there exists an integer s such that Sf)In. -p

for all rii > s — since otherwise (1) would be violated. Let J = Un>« m * ' ^ni • ^ o r

every n , A ( / \ i n t / n ) < 2~n , hence J has full measure. This implies J is dense;
clearly it is open. Since S C I\J , we have that A(5) = 0 and S is nowhere dense in

1 • I

REMARK 1: We want to call attention to the following fact, implied by Lemmas
2 and 3. Let Mc be the set of all / e C ° ( / , / ) such that either all scrambled sets
for / have Lebesgue measure less than e , or for every scrambled set S (for / ) is
l imsup n _ o o \fn(x) — fn(y)\ < e for all z,y G 5 . Then Me contains an open dense
subset - its complement in C°(I,I) is nowhere dense. In other words, functions from
M€ are generically stable.

REMARK 2: The results admit a straight forward generalisation to the case of
continuous self-mappings of the circle. They can be also extended to cover the n-

dimensional case - for continuous functions of In into J " .

https://doi.org/10.1017/S0004972700004172 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004172


92 I. Mizera [4]

REFERENCES

[1] L. Block, 'Stability of periodic orbits in the theorem of SarkovskiT, Proc. Amer. Math. Soc. 81
(1981), 333-336.

[2] G.J. Butler, G. Pianigiani, 'Periodic points and chaotic functions in the unit interval', Bull.
Austral. Math. Soc. 18 (1978), 255-265.

[3] A.M. Bruckner, Thakyin Hu, 'On scrambled sets for chaotic functions', Trans. Amer. Math. Soc.
301 (1987), 289-297.

[4] T. Gedeon, 'There are no residual scrambled sets', Bull. Austral. Math. Soc. (to appear).
[5] K. Jankova, 'On the stability of chaotic functions', preprint 1984.
[8] K. Jankova, J. Smi'tal, 'A characterization of chaos', Bull. Austral. Math. Soc. 34 (1986), 283-292.
[7] I. Kan, 'A chaotic function possessing a scrambled set of positive Lebesgue measure', Proc. Amer.

Math. Soc. 92 (1984), 45-49.
[8] P.E. Kloeden, 'Chaotic difference equations are dense', Bull. Austral. Math. Soc. 15 (1976),

371-379.
[9] T.Y. Li, J.A. Yorke, 'Period three implies chaos', Amer. Math. Monthly 82 (1975), 985-992.

[10] M. Misiurewicz, 'Chaos almost everywhere', in Iteration Theory and its Functional Equations:
Lecture Notes in Mathematics 1163, ed. R.P. Liedl, L.P. Reich, G. Targonski (Springer, Berlin,
1985).

[11] M. Misiurewicz, 'Horseshoes for mappings of the interval', Bull. Acad. Polon. Sci. Sir. Sci. Math.
27 (1979), 167-169.

[12] J. Smi'tal, 'A chaotic function with some extremal properties', Proc. Amer. Math. Soc. 87 (1983),
54-56.

[13] J. Smital, 'A chaotic function with a scrambled set of positive Lebesgue measure', Proc. Amer.
Math. Soc. 92 (1984), 50-54.

[14] J. Smital, 'Chaotic functions with zero topological entropy', Trans. Amer. Math. Soc. 297 (1986),
269-282.

Department of Mathematics
Komensky University
842 15 Bratislava
Czechoslovakia

https://doi.org/10.1017/S0004972700004172 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004172

