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I analyse and numerically evaluate the radiation field generated by an experimentally
realized embodiment of an electric polarization current whose rotating distribution
pattern moves with linear speeds exceeding the speed of light in vacuum. I find that
the flux density of the resulting emission (i) has a dominant value and is linearly
polarized within a sharply delineated radiation beam whose orientation and polar
width are determined by the range of values of the linear speeds of the rotating
source distribution, and (ii) decays with the distance d from the source as d−α in
which the value of α lies between 1 and 2 (instead of being equal to 2 as in a
conventional radiation) across the beam. In that the rate at which boundaries of
the retarded distribution of such a source change with time depends on its duration
monotonically, this is an intrinsically transient emission process: temporal rate of
change of the energy density of the radiation generated by it has a time-averaged
value that is negative (instead of being zero as in a conventional radiation) at points
where the envelopes of the wave fronts emanating from the constituent volume
elements of the source distribution are cusped. The difference in the fluxes of power
across any two spheres centred on the source is in this case balanced by the change
with time of the energy contained inside the shell bounded by those spheres. These
results are relevant not only to long-range transmitters in communications technology
but also to astrophysical objects containing rapidly rotating neutron stars (such as
pulsars) and to the interpretation of the energetics of the multi-wavelength emissions
from sources that lie at cosmological distances (such as radio and gamma-ray bursts).
The analysis presented in this paper is self-contained and supersedes my earlier works
on this problem.
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1. Introduction
Radiation problems in electrodynamics are customarily analysed in the frequency

domain with the far-field approximation and under the assumption that retarded
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2 H. Ardavan

solution of Maxwell’s equations for the electromagnetic field can be written down in
analogy with the classical expression for the retarded potential. These constraints and
presuppositions relinquish the possibility of detecting a host of effects ab initio when
the problem involves constructive interference of the emitted waves and formation of
propagating caustics. Neither can the sudden changes that characterize the solutions to
these problems be easily discerned without recourse to an analysis in the time domain,
nor can the emitted waves that are described by such solutions be approximated by
plane waves (as effected by the far-field approximation) when they have cusped
envelopes that propagate into the far zone. The a priori assumption that the retarded
field like the retarded potential automatically satisfies the boundary conditions at
infinity is moreover unfounded as we shall see in this paper.

A case in point is the problem of finding the radiation generated by an extended
source whose distribution pattern rigidly rotates with linear speeds exceeding the
speed of light in vacuum. Such a source is not incompatible with the requirements
of special relativity because its superluminally moving distribution pattern is created
by the correlated motion of aggregates of subluminally moving charged particles
(Bolotovskii & Ginzburg 1972; Ginzburg 1972; Bolotovskii & Bykov 1990). This
and other types of superluminal sources have already been created in the laboratory
(Ardavan et al. 2004b; Bolotovskii & Serov 2005).

In this paper I present a detailed mathematical treatment of this problem in the time
domain that is based on first principles. The results I obtain turn out to be radically
different from those of other treatments of this problem that are based on commonly
made assumptions and approximations (Hannay 2000; Hewish 2000; Hannay 2001,
2006, 2008, 2009; McDonald 2004; Kalapotharakos, Contopoulos & Kazanas 2012).
I will pinpoint the assumptions and approximations responsible for this discrepancy
and explain why they fail in the present instance. I will also devote an appendix to
illustrating Hadamard’s method for extracting the finite part of a divergent integral
(Hadamard 2003) which seems to be less widely known than the other two pivotal
methods used in this analysis: the time-domain version (Burridge 1995) of the
uniform asymptotic expansion near a caustic (Chester, Friedman & Ursell 1957) and
the method of steepest descent (see, e.g. Bender & Orszag 1999). To the extent that
(i) it is self-contained, (ii) it presents a more exact and thorough analysis of the
problem, (iii) it demonstrates how the requirements of the conservation of energy
are met in the present case and (iv) it includes, for the first time, numerical results
that depict the characteristic features of the generated radiation comprehensively, this
paper supersedes my earlier works on this problem (Ardavan 1998; Ardavan, Ardavan
& Singleton 2004c; Ardavan et al. 2007, 2008a, 2009b).

I start with an analytic expression for a generic electric polarization whose
sinusoidal distribution pattern rotates with a constant angular velocity (figure 1). This
expression represents a single Fourier component of any source whose distribution
pattern rotates rigidly. A discretized version of such a polarization can be created
in the laboratory by surrounding a dielectric ring with an array of electrode pairs
that oscillate with the same frequency but differing phases (figures 2 and 3). In
§ 2, I will specify the accuracy with which the discrete distribution of the moving
source created by such a device matches the continuous distribution described by the
original analytic expression and will list an experimentally viable set of values for
the parameters of this device to emphasize that the propagation speed of the created
distribution can easily exceed the speed of light in vacuum.

In § 3, I show that to satisfy the required boundary conditions at infinity the
free-space radiation field of an accelerated superluminal source has to be calculated
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Radiation whose decay violates the inverse-square law 3

FIGURE 1. Schematic representation of the distribution pattern of the electric polarization
described by (2.1) at a given (r, z). The circles designate the edges of the dielectric ring
hosting the polarization and the sinusoidal curve designates the rigidly rotating wave train
whose linear speed rω (along the shown arrows) exceeds the speed of light in vacuum.

(a)

(b)

FIGURE 2. Schematic view of the experimental apparatus (a) from above and (b) from
the side, showing the boundaries of the dielectric medium (in orange) and the electrode
pairs (in blue).

(in the Lorenz gauge) by means of the retarded solution of the wave equation for
the electromagnetic potential. There is a fundamental difference between the classical
expression for the retarded potential and the corresponding retarded solution of
the wave equation that governs the electromagnetic field. We will see that while
the boundary contribution to the retarded solution for the potential can always be
rendered equal to zero by means of a gauge transformation that preserves the Lorenz
condition, the boundary contribution to the retarded solution of the wave equation for
the field cannot be assumed to be zero a priori.

An integral representation of the radiation field of an extended charge-current with
a rigidly rotating distribution pattern is obtained from the retarded solution of the
wave equation for the potential in § 4. The field that arises from each constituent
volume element of the rotating distribution pattern of such a source (in this paper
labelled by its position at time t = 0) acts as the Green’s function for the present
problem (§§ 4.1 and 4.2). I derive an expression for this Green’s function in § 4.3
and show that it is singular on the envelope of the wave fronts that emanate from the
superluminally rotating volume element acting as its source (figure 5). Outside the
envelope – a tube-like surface consisting of two sheets that tangentially meet along a
spiralling cusp (figure 6) – only one wave front passes through the observation point
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FIGURE 3. The oscillating voltage V on each electrode pair versus the ϕ coordinate
(ϕn = 2πn/N with n = 1, . . . , 21) of the centre of that electrode at four equally spaced
consecutive times (t1 < t2 < t3 < t4). The electrodes oscillate with the same frequency but
differing phases. It can be seen that the phase difference between the oscillations of the
adjacent electrode pairs sets this discretized wave train in motion. The fundamental Fourier
component of the resulting discretized polarization, here depicted by a solid sinusoidal
curve, thus moves in the azimuthal direction with a speed that can exceed the speed of
light in vacuum, even though the charges whose separation creates the polarization move
in a different direction with a different speed.

at any given observation time; but inside the envelope three distinct wave fronts,
emitted at three distinct values of the retarded time, simultaneously pass through
each observation point (figure 4). It is the coalescence of two of the contributing
retarded times on the envelope of wave fronts that gives rise to the constructive
interference of the waves and so the divergence of the Green’s function on this
surface. At an observation point on the cusp locus of the envelope all three of the
contributing retarded times coalesce and the Green’s function has a higher-order
singularity (figure 7).

In § 4.4, I introduce the notion of bifurcation surface: a two-sheeted cusped surface
reciprocal to the envelope of wave fronts that resides in the space of source points,
instead of residing in the space of observation points, and issues from the observation
point, instead of issuing from a source point (figure 8). Intersection of the bifurcation
surface of an observation point with the volume of the source divides this volume into
two parts. The source elements inside the bifurcation surface make their contributions
toward the observed field at three distinct values of the retarded time, while the
source elements outside the bifurcation surface make their contributions at a single
value of the retarded time (as a subluminally moving source would). The source
elements inside and close to the bifurcation surface, for which the values of two of
the contributing retarded times approach one another, and the source elements inside
the bifurcation surface close to its cusp, for which all three values of the contributing
retarded times coalesce, are by far the dominant contributors toward the strength
of the observed field. This is reflected in the fact that the phase of the integrand
of the integral defining the Green’s function (i.e. the space–time distance between
the observation point and source points) has two stationary points, occurring on the
two sheets of the bifurcation surface, which coalesce for the source elements on the
cusp locus of the bifurcation surface (in this paper referred to as C). By applying
the time-domain version of the method already developed by Chester et al. (1957)
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FIGURE 4. Generic forms of the function g(ϕ) for source points whose (r̂, ẑ) coordinates
lie across the boundary ∆ = 0 delineating the projection of the cusp curve of the
bifurcation surface onto the (r̂, ẑ) plane (see figure 11). Depending on whether φ lies
outside or inside the interval (φ−, φ+), contributions are made toward the observed field
(i.e. the argument g(ϕ)− φ of the Dirac delta function in (4.5) vanishes) at either one or
three retarded positions of the source. For a horizontal line g= φ that either approaches
an extremum of g(ϕ) from inside the interval (φ−, φ+) or passes through an inflection
point of g(ϕ), two or all three of the retarded positions in question coalesce and so their
contributions interfere constructively to form caustics. This figure is for r̂ = 3 and only
shows two rotation periods. At higher speeds, the difference between the values of φ+
and φ− can be large enough for a horizontal line g= φ to intersect g(ϕ) over more than
one rotation period (see figure 36). Contributions toward the observed field can thus arise,
not only from one or three, but from any odd number of retarded positions of the source.
There are contributions from more than three retarded times whenever the rotation period
of the source is shorter than the time taken by the collapsing sphere |x− xP| = c(t− tP),
centred on the observation point P, to cross the orbit of the source.

FIGURE 5. Cross-sections with the plane ẑP = ẑ of the spherical wave fronts emanating
from a rotating source point. This source has an angular frequency of rotation, ω, that is
constant and a speed, rω, that exceeds the speed of light c in vacuum. The larger circle
depicts the orbit of the source and the smaller circle the light cylinder r= c/ω. The heavier
(red) curves show the intersection of the envelope of these wave fronts (see figure 6) with
the plane of rotation.

and Burridge (1995) for this type of integral, I calculate a uniform asymptotic
approximation to the value of the Green’s function near the cusp locus of the
bifurcation surface in § 4.5.
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FIGURE 6. Three-dimensional view (in the space (r̂P, ϕ̂P, ẑP) of observation points) of the
envelope of wave fronts emanating from the rotating source point (r̂, ϕ̂, ẑ). This envelope
consists of two sheets that tangentially meet along a cusp (see figure 7). The singular
sheet, i.e. the sheet that issues from the source point with an initial conical shape, is that
described by ϕ̂P = ϕ̂ − φ−(r̂P, ẑP; r̂, ẑ).

FIGURE 7. The cusp along which the two sheets of the envelope of wave fronts meet and
are tangent to one another. This cusp touches and is tangent to the light cylinder r̂P = 1
on the plane ẑP = ẑ and spirals outward into the far field on the hyperbolic surface of
revolution ∆(r̂P, ẑP; r̂, ẑ)= 0 (see figure 12).

The Green’s function for the present problem has a complicated singularity structure:
it diverges only if one of the sheets of the bifurcation surface is approached from
inside this surface but it remains finite (with values that in general differ on opposite
sides of the cusp) if either of these sheets is approached from outside the bifurcation
surface (figures 9 and 10). Consequently, when the expression for the retarded
potential in terms of this Green’s function is treated as a generalized function, so
that it can be differentiated under the integral sign to obtain the field, the result is a
divergent integral. This is the kind of divergence, well understood in the context of
generalized functions, that occurs when the orders of two limiting operations (here,
integration and differentiation) are interchanged. It can be handled, as illustrated by
the example given in appendix A, by means of Hadamard’s regularization technique
(Hadamard 2003).

We will see in § 4.6 that Hadamard’s finite part of the resulting divergent integral
that represents the field of a constituent ring of the source distribution consists of two
types of terms: (i) boundary terms extending over the intersections of the two sheets
of the bifurcation surface with the source distribution, i.e. the terms that embody
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FIGURE 8. The two sheets φ=φ± of the bifurcation surface issuing from the observation
point P, the cusp C of this surface and the light cylinder r̂= 1. In contrast to the envelope
of wave fronts which resides in the space of observation points, the surface shown here
resides in the space (r, ϕ̂, z) of source points: it is the locus of source points that approach
P, along the radiation direction, with the speed of light at the retarded time. The two
sheets of this surface meet along a cusp that tangentially touches the light cylinder at
ẑ = ẑP and moves outward spiralling around the rotation axis on the hyperbolic surface
of revolution ∆(r̂, ẑ; r̂P, ẑP)= 0 (see figure 11). The source points on this cusp approach
the observer along the radiation direction not only with the speed of light but also with
zero acceleration at the retarded time. The source would normally be distributed over
a finite volume close to the light cylinder. If the position of the observation point is
such that the cusp shown here intersects the source distribution, there will be wave fronts
with differing emission times that are received simultaneously: while the source points
outside the bifurcation surface make their contributions toward the value of the observed
field at a single instant of retarded time, the source points inside this surface make their
contributions at 3 (or 5, 7, . . .) distinct instants of retarded time.

FIGURE 9. Dependence of the Green’s function Gnj on χ in cases where qnj is positive
and appreciably greater than |pnj/c1|. The two sheets φ+ and φ− of the bifurcation surface
map onto the distinct values χ = 1 and χ =−1 of χ , respectively, even at the cusp locus
of the bifurcation surface where the separation φ+−φ− of these two sheets vanishes. The
Green’s function thus diverges only for source points inside the bifurcation surface whose
retarded positions coalesce when they approach this surface or its cusp from |χ |< 1.

the contributions from the discontinuities of the Green’s function and (ii) a three-
dimensional integral extending over the volume of the source that is equivalent to
the classical expression for the radiation field of an extended source in terms of the
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FIGURE 10. Dependence of the Green’s function Gnj on χ in cases where pnj is positive
and appreciably greater than |c1qnj| (see also figure 9).

retarded value of the electric charge-current density. In this paper I refer to the part of
the radiation from a superluminally rotating source that is described by the boundary
terms in question as the unconventional component of the radiation.

The bifurcation surface of an observation point intersects the rotating distribution
pattern of the source at points which approach the observer along the radiation
direction with the speed of light at the retarded time. The source elements that lie on
the cusp locus of the bifurcation surface approach the observer along the radiation
direction not only with the speed of light but also with zero acceleration at the
retarded time (§ 5). Conversely, the cusp loci of the envelopes of wave fronts that
emanate from the superluminally rotating volume elements of the source distribution
span a radiation beam in the space of observation points that is composed of
constructively interfering waves or caustics. Geometries of the cusp loci in the
spaces of source points (figure 11) and observation points (figure 12) and the parts
they play in determining the source elements responsible for, and the regions occupied
by, the unconventional radiation will be discussed in § 5.1.

Section 6 will be devoted to demonstrating that the integral representation of the
part of the field that arises from the volume of the source is the same as that for the
field of any other time-dependent extended source regardless of whether the volume
elements of the source make their contributions toward the observed field at single or
multiple values of the retarded time, i.e. regardless of whether the source distribution
lies entirely (or partly) inside the bifurcation surface of the observation point (§ 6.1)
or outside it (§ 6.2).

The part of the radiation field that arises from the discontinuities of the Green’s
function, i.e. the part describing the unconventional component of the radiation,
is given by the difference between two surface integrals each extending over the
intersection of the source distribution with one of the sheets of the bifurcation
surface (§ 7). The phase of the oscillating exponential factor in the integrand of one
of these integrals (the one associated with the singular sheet of the bifurcation surface
which contains a conical vertex) has a vanishing derivative with respect to the radial
coordinate of source points along a two-dimensional curve (in this paper referred to
as S), while that of the other integral (the one associated with the regular sheet of
the bifurcation surface) has no stationary points. For an observation point in the far
zone, the locus S of stationary points lies extremely close to the cusp locus C of the
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FIGURE 11. The dash-dotted curve is the projection of the cusp locus of the bifurcation
surface, C, onto the (r̂, ẑ) plane, i.e. the projection of the locus of source points that
approach the observer along the radiation direction with the speed of light and zero
acceleration at the retarded time (see (4.24)). The solid curve (in red) is the locus S of
the stationary points of the function φ−, i.e. the stationary points of the phase of the
exponential factor that appears in the integrand of the expression for the field [Eb

−
Bb
−
]

(see (5.8) and (7.2)). The dotted rectangle represents the boundary of the support S ′
of the source term s defined in (2.7), i.e. the boundary of the projection of the source
distribution described in § 2 onto the (r̂, ẑ) plane. The part of the source distribution
whose projection lies to the left of curve C, for which ∆< 0, only generates a spherically
decaying conventional field. Whether the cusp locus C intersects the source distribution
(as shown here) or lies to the left or right of the domain S ′ is dictated by the polar
coordinate θP of the observation point P (see (5.12)). In plotting this figure, I have placed
the observation point close to the source (at r̂P= ẑP= 3) in order to render the separation
between C and S visible. As R̂P increases, these two curves overlap and tend toward the
vertical. For R̂P� 1, the radial distance between C and S at an arbitrary ẑ diminishes as
R̂−2

P (see (7.3)).

bifurcation surface (figure 11): the separation between these two loci shrinks as R−2
P

with the distance RP of the observer from the source (§ 7.1).
Given that the cusp C constitutes one of the limits of integration in the expression

for the unconventional radiation field, its proximity to the locus of stationary points S
of the integrand of the integral over the singular sheet of the bifurcation surface means
that the contributions of the two neighbouring critical loci C and S toward the value
of this integral cannot be taken into account properly without resorting to a technique
more discerning than a direct numerical integration. In § 7, I perform the integration
with respect to the radial coordinate in the integral in question by the method of
steepest descent (see, e.g. Bender & Orszag 1999). I regard the radial coordinate
everywhere in the expression for the unconventional radiation field as complex and
invoke Cauchy’s integral theorem to deform the original paths of integration along the
real axis into contours of steepest descent in the complex plane through the critical
points of the integral (§ 7.2). The critical points consist in each case of the original
boundaries of integration along the real axis and the stationary points (if any) of the
phases of the exponential factors in the integrand.
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FIGURE 12. Counterpart of figure 11 in the (r̂P, ϕP, ẑP)-space of observation points. While
the cusp locus C in figure 11 is described by ∆ = 0 for fixed values of (r̂P, ẑP), the
hyperbolas shown here are described by ∆= 0 for fixed values of the source coordinates
(r̂, ẑ): the values (r̂U, ẑ0) and (r̂L, −ẑ0). If the observation point P lies in the space
(coloured orange) between the hyperbolas, then the cusp locus C of the bifurcation surface
intersects the source distribution shown in figure 11. But if the observation point P lies
in the space (coloured yellow) that is bounded by the inner hyperbola, then ∆ is positive
throughout the source distribution and the cusp locus C lies to the left of the source
distribution shown in figure 11. On the other hand, at observation points in 0 6 θP 6 θ c

L
and π− θ c

L 6 θP 6 π (outside the coloured regions), ∆ is negative throughout the source
distribution and the cusp locus C lies to the right of the source distribution shown in
figure 11. In cases where the lower boundary of the source distribution shown in figure 11
falls on or within the light cylinder, i.e. r̂L 6 1 but r̂U > 1, the two arms of the inner
hyperbola shown here coalesce onto the r̂P-axis and the cusp locus of the bifurcation
surface intersects the source distribution for all points of the (expanded orange) space
inside the outer hyperbola.

The range of integration along the real axis, i.e. the radial extent of the portion
of the source that contributes toward the value of the unconventional field at the
observation point, is determined by the intersection of the bifurcation surface with
the source distribution and so changes as the position of the observation point changes
(figure 11). To find the distribution of this radiation over all angles we therefore have
to determine the paths of steepest descent for different ranges of values of the polar
coordinate of the observation point separately. In the case of observation points
located inside the region (coloured orange) that is bounded by the two hyperbolas in
figure 12, for which the loci C and S both intersect the source distribution (as shown
in figure 11), I will analyse the paths of steepest descent through the critical points
of the integral over the singular sheet of the bifurcation surface in § 7.3 and those
through the boundary points of the integral over the regular sheet in § 7.4. In the case
of observation points located inside the region (coloured yellow) that encompasses
the equatorial plane in figure 12, for which the entire source distribution lies within
the bifurcation surface, the field receives no contributions from the loci C or S and
the integration can be performed accurately along the real axis (§ 7.8). In the case
of observation points located in the narrow transition intervals between the above
regions, for which only one of the loci C or S intersect the source distribution, one
can find the relevant paths of steepest descent as outlined in § 9.

Outcomes of the analyses in §§ 7.3 and 7.4 enable us to express the boundary
fields (i.e. the two contributions toward the value of the unconventional field from the
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singular and regular sheets of the bifurcation surface) each as a sum of the integrals
over the steepest-descent paths that pass through their critical points and any paths
at infinity that are needed to close the integration contours (Bender & Orszag 1999).
Phases of the decaying exponential factors in the integrands of the integrals over
the steepest-descent paths are all multiplied by an integer designating the ratio of
the radiation frequency to the rotation frequency (i.e. the number of wavelengths of
the polarization wave train that fits around the circumference of the dielectric ring
hosting the sinusoidal source distribution (figure 1)). Even for moderate values of this
integer (of the order of 10) the main contributions toward the value of each integral
come from short segments of the steepest-descent paths next to the critical points
from which they issue. In §§ 7.5 and 7.6, I accordingly approximate the values of
the boundary fields by ignoring the connecting paths at infinity and by performing
the integration along each steepest-descent path only as far as a point beyond which
the change in the resulting value of the integral becomes negligible (to within a
pre-specified level of accuracy).

The asymptotic approximations to the values of the two boundary integrals found
in §§ 7.5 and 7.6 will be combined in §§ 7.7 and 7.8 and their resultant will be
added to the contribution from the volume of the source found in § 6 to obtain the
total radiation field in various regions of the space of observation points outside the
transitional intervals in § 8.

The results arrived at in § 8 yield the electromagnetic field generated by a
polarization current density that, while having an azimuthally rotating distribution
pattern, flows in an arbitrary direction. I will determine the flux density of energy and
the state of polarization of the radiation described by this field for the following two
specific cases corresponding to two differently designed versions of the experimental
device sketched in figure 2: for a current that flows axially, i.e. parallel to the rotation
axis (§ 10.1) and for a current that flows radially perpendicular to the rotation axis
(§ 10.2).

Numerical evaluation of each integral in the expression for the total radiation field
for which the integration with respect to the radial coordinate is performed along a
steepest-descent path involves solving a transcendental equation – one that defines the
path in question – at every point of the integration domain. Moreover, the integrands
of such integrals mostly have gradients whose values along their corresponding
steepest-descent paths are not only large at the critical points from which the paths
issue but also increase as the distance of the observer from the source increases. To
render the time required for evaluating such integrals manageable, therefore, only
discrete sets of values of the quantities that characterize the radiation will be plotted
in § 11 instead of continuous curves.

In § 11.1, I discuss the characteristic features of the emission from a polarization
current parallel to the rotation axis for which the range of values of the source
speed across the dielectric (in figures 1 and 2) is such that the non-spherically
decaying part of the radiation propagates between the polar angles 60◦ and 70◦
(and 110◦ and 120◦). I first present, in figure 21, the full angular distribution of the
time-averaged value of the radial component of normalized Poynting vector (in a
logarithmic scale) at a relatively close distance to the source: at R̂P = 10, where R̂P
denotes the radial coordinate RP of the observation point in units of a light-cylinder
radius. (The light-cylinder radius c/ω is the distance from the rotation axis at which
a distribution pattern rigidly rotating with the angular velocity ω would attain a linear
speed equal to the speed of light in vacuum c.) The factor by which the Poynting
vector is normalized here, and elsewhere in this paper, is the mean value of the power
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that propagates across the sphere R̂P = 10 per unit solid angle. Only the radiation
distribution in 06 θP 6 90◦ will be shown because this distribution is symmetric both
with respect to the equatorial plane and around the rotation axis (θP denotes the polar
coordinate of the observation point P measured from the axis of rotation). The rapid
changes in the magnitude of the Poynting vector in figure 21 occur when the cusp
locus of the bifurcation surface associated with the observation point enters or leaves
the source distribution; they reflect the presence or absence of source elements that
approach the observation point along the radiation direction with the speed of light
and zero acceleration at the retarded time.

The angular distribution of the radiation at the larger values 102 to 106 of R̂P
will be presented only between the polar angles 60◦ and 70◦ where this distribution
changes with distance (figure 22). The angular distribution of the radiation in the rest
of the interval 0 6 θP 6 90◦ is the same as that shown in figure 21 at all distances.
To facilitate the comparison between these distributions, I will vertically shift the plot
of each distribution by the number of decibels by which their ordinates would have
changed if the magnitude of the Poynting vector for this part of the radiation had
diminished as R̂−2

P with distance. The separation between the shifted distributions in
this and the corresponding figures presented in §§ 11.2 and 11.3 will be a measure of
the degree to which the dependence of the Poynting vector on distance departs from
that predicted by the inverse-square law. I will obtain a quantitative measure of this
departure by plotting logarithm of the radial component of the Poynting vector versus
logarithm of distance at various polar angles inside the non-spherically decaying
radiation beam (figure 24). From the slope of the curve fitted to these data one will
be able to infer the value of the exponent α in the power-law dependence R−αP of the
radial component of the Poynting vector on distance at various polar angles inside
the non-spherically decaying radiation beam (figure 25). In § 11.1, I will also (i) plot
the angular distribution of the radiation at various distances in polar coordinates
(figure 23) and (ii) point out how the requirements of the conservation of energy
(discussed in appendix C) are met in this case.

Corresponding results for the emission from another polarization current parallel to
the rotation axis whose rotating distribution pattern moves with the linear speeds c and
1.2c at the inner and outer radii of the dielectric (in figures 1 and 2) are presented
in § 11.2. The new feature of the radiation in this case, where the non-spherically
decaying beam encompasses the equatorial plane, is that the magnitude of the radial
component of Poynting vector exhibits a prominent maximum within a narrowing solid
angle centred on the plane of rotation (figures 26–28). The narrow equatorial radiation
beam in question stems from an additional mechanism of focusing which comes into
play whenever the observation point is closer to the equatorial plane than half the
width of the source distribution normal to this plane (§ 7.1). Though significantly more
intense than the radiation at other angles when observed close to the source, the
equatorial beam will be shown to decay faster with distance than the rest of the
non-spherically decaying beam (figure 29).

For comparison, I will also plot the radial component of normalized Poynting vector
(using the same normalization factor) for the radiation generated by a source that is
the same as the source generating the non-spherically decaying radiation depicted by
curve a of figure 26 in every respect (has the same dimensions, the same oscillation
frequency, the same current density, . . .) except that its sinusoidal distribution pattern
is stationary. We will see that even at the relatively short distance R̂P = 10 from the
source the intensity of the radiation generated by the superluminally rotating source
exceeds that of the conventional radiation generated by a corresponding stationary
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source (depicted in curve s of figure 26) by more than a factor of 300 on the
equatorial plane.

In § 11.3, I will present the numerical results for a polarization current that differs
from that analysed in § 11.1 only in having a direction everywhere perpendicular
(rather than parallel) to the rotation axis (figures 30–33). The only feature in this
case that is radically different from its counterpart in the case of an axial current
is the state of polarization of the resulting radiation. The emissions discussed in
§§ 11.1 and 11.2 are both linearly polarized everywhere with position angles parallel
to the rotation axis. We will see that the non-spherically decaying part of the
radiation described in § 11.3 is also linearly polarized but with a fixed position
angle perpendicular to the rotation axis (figure 34). The part of the unconventional
radiation that propagates in the region next to the equatorial plane (coloured yellow
in figure 12), on the other hand, turns out to be elliptically polarized with a position
angle that changes as the polar angle of the observation point changes (figure 35).

An essential tool for the derivation of the results reported in this paper is the long
established but scarcely used technique by Hadamard for extracting the finite part
of a divergent integral (Hadamard 2003). As an illustrative example, derivative of a
simple double integral is evaluated, with respect to its free parameter, in appendix A.
Like the integrand in the expression for the Green’s function for the present problem,
the integrand in this example contains a Dirac delta function whose argument is a
cubic function of one of the integration variables. Depending on the order in which
one performs the integration with respect to the two variables of integration, one
obtains two different values for the derivative of this integral, one finite and one
divergent. The paradox is resolved (i.e. the value of the derivative of the integral
remains unchanged when the order of integration is changed) once we interpret the
divergent integral as a generalized function and equate it to its Hadamard’s finite part.

In appendix B, I will explain why a conventional approach to the problem
formulated in § 4 fails to capture the unusual features of the radiation described in this
paper. The contributions that arise from the differentiation of the limits of integration
in the classical form of the retarded potential (i.e. from the boundaries of the retarded
distribution of the source) will be shown to be divergent at any observation points for
which the value of the potential at the observation time depends on three coalescing
values of the retarded time. We will see that the more familiar treatment of the
retarded potential as a classical function merely replaces the singularities of the
Green’s function for the present problem by corresponding singularities in the limits
of integration. In contrast to the singularities of the Green’s function which can be
rigorously handled by Hadamard’s regularization technique, however, the singularities
encountered in the limits of integration vitiate the differentiability of the retarded
potential ab initio.

Constancy of the width of the solid angle over which the Poynting vector decays
non-spherically might seem to contravene the conservation of energy at first sight.
In the case of a conventional radiation field, for which the derivative of the
electromagnetic energy density with respect to time vanishes when time averaged, the
continuity equation stating the conservation of energy (see, e.g. Jackson 1999) requires
that the flux of energy into any closed region (e.g. into the volume bounded by two
spheres centred on the source) should equal the flux of energy out of that region.
However, because the boundaries of the support of the retarded distribution of the
present source change with time at a rate that depends on the time elapsed since the
source was switched on monotonically (appendix C), the radiation process analysed in
this paper never attains a steady state. I will evaluate the time-averaged value of the
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temporal rate of change of the energy density carried by the non-spherically decaying
part of the radiation in appendix C and show that it is negative at points where the
envelopes of the wave fronts emanating from the constituent volume elements of the
source distribution are cusped. In the case of the present radiation process, which is
intrinsically transient, the flux of energy into a closed region is always smaller than
the flux of energy out of it because the electromagnetic energy contained in that
region decreases with time (§ 12 and appendix C).

In the last seven paragraphs of the concluding section of the paper (§ 12), I
briefly remark on the implications of the present results for a diverse set of
disciplines ranging from astrophysics (e.g. the emission mechanism of pulsars and
the interpretation of the energetic requirements of the distant sources of radio and
gamma-ray bursts) to communications technology (e.g. antenna theory and the design
of long-range transmitters).

2. An experimentally realized superluminal source distribution
Consider a distribution of electric polarization P whose components in a cylindrical

coordinate system (r, ϕ, z) are given by

Pr,ϕ,z(r, ϕ, z, t)= sr,ϕ,z(r, z) cos[m(ϕ −ωt)], (2.1)

in which t (assumed to be > 0) is time, ω is a constant angular frequency, s(r, z)
is an arbitrary vector function with a finite support in r > c/ω and m is a positive
integer (c denotes the speed of light in vacuum). At a given time t, the azimuthal
dependence of the polarization (2.1) along each circle of radius r within the source
is the same as that of a sinusoidal wave train, of wavelength 2πr/m, whose m
cycles fit around the circumference of the circle smoothly. As time elapses, this
wave train propagates around each circle of radius r with a linear speed rω that
exceeds the speed of light c, i.e. rotates about the z-axis rigidly (figure 1). This is a
generic source: one can construct the Fourier representation of any distribution with
a uniformly rotating pattern, Pr,ϕ,z(r, ϕ −ωt, z), by the superposition over m of terms
of the form sr,ϕ,z(r, z,m) cos[m(ϕ −ωt)].

Equation (2.1) corresponds to a laboratory-based source that has been experimentally
implemented (Ardavan et al. 2004b). The apparatus in the performed experiments
consists of a circular ring made of a dielectric material, with an array of N electrode
pairs that are placed beside each other around its circumference. With a sufficiently
large value of N (to be specified below), a sinusoidal distribution of polarization can
be generated along the length of the dielectric by applying a voltage to each pair
independently (figure 2). The distribution pattern of this polarization can then be set
in motion by energizing the electrodes with phase-controlled time-varying voltages.
One can synthesize the transverse polarization wave cos[m(ϕ − ωt)] moving around
the ring by driving each electrode pair with a harmonically oscillating voltage whose
frequency is fixed but whose phase depends on the position of the pair around the
ring (figure 3).

To estimate the required value of N, let us note that the (ϕ, t) dependence of the
polarization that is thus generated by the discrete set of electrodes described above
has the form

P(ϕ, t)=
N−1∑
k=0

Π

(
k−

Nϕ
2π

)
cos
[

m
(
ωt−

2πk
N

)]
, (2.2)
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in which Π(x) denotes the rectangle function, a function that is unity when |x|< 1/2
and zero when |x|> 1/2. (For any given k, the function Π(k − Nϕ/2π) is non-zero
only over the interval (2k− 1)π/N <ϕ < (2k+ 1)π/N.) When the electrodes operate
over a time interval exceeding 2π/ω, the generated polarization is a periodic function
of ϕ for which the range of values of ϕ correspondingly exceeds the period 2π.

The Fourier-series representation of Π(k−Nϕ/2π) with the period 2π is given by

Π

(
k−

Nϕ
2π

)
=

1
N
+

∞∑
n=1

2
nπ

sin
(nπ

N

)
cos
[

n
(
ϕ −

2πk
N

)]
. (2.3)

If we now insert (2.3) in (2.2) and use formula (4.21.16) of Olver et al. (2010)
to rewrite the product of the two cosines in the resulting expression as the sum
of two cosines, we obtain two infinite series, each involving a single cosine and
extending over n= 1, 2, . . . ,∞. These two infinite series can then be combined (by
replacing n in one of them by −n everywhere and performing the summation over
n=−1,−2, . . . ,−∞) to arrive at

P(ϕ, t)=
∞∑

n=−∞

1
nπ

sin
(nπ

N

) N−1∑
k=0

cos
[

mωt− nϕ + 2π(n−m)
k
N

]
, (2.4)

in which the order of summations with respect to n and k has been interchanged and
the contribution N−1 on the right-hand side of (2.2) has been incorporated into the
n= 0 term: the coefficient (nπ)−1 sin(nπ/N) has the value N−1 when n= 0.

The finite sum over k can be evaluated by means of the geometric progression. The
result, according to formula (1.341.3) of Gradshteyn & Ryzhik (1980), is

N−1∑
k=0

cos
[

mωt− nϕ +
2π(n−m)k

N

]
= cos

[
mωt− nϕ +

π(n−m)(N − 1)
N

]
sin[(n−m)π]

sin
[
(n−m)π

N

] . (2.5)

The right-hand side of (2.5) vanishes when (n−m)/N is different from an integer. If
n=m+ lN, where l is an integer, on the other hand, the above sum would have the
value N cos(mωt − nϕ), as can be seen by directly inserting n = m + lN in the left-
hand side of (2.5). Performing the summation with respect to k in (2.4), we therefore
obtain

P(ϕ, t)=
N

mπ
sin
(mπ

N

)
×

{
cos[m(ϕ −ωt)] +

∑
l 6=0

(−1)l
(

1+
Nl
m

)−1

cos[(Nl+m)ϕ −mωt]

}
, (2.6)

since only those terms of the infinite series survive for which n has the value m+ lN
with an l that ranges over all integers from −∞ to ∞.

I have written out the l = 0 term of the series in (2.6) explicitly in order to
emphasize the following points. The parameter N/m, which signifies the number of
electrode pairs within a wavelength of the polarization wave train, need not be large
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for the factor (mπ/N)−1 sin(mπ/N) to be close to unity: this factor equals 0.9 even
when N/m is only 4. Moreover, if the travelling polarization wave cos[m(ϕ − ωt)]
that is associated with the l = 0 term has a phase speed rω that is only moderately
superluminal, the phase speeds rω/|1+Nl/m| of the waves described by all the other
terms in the series would be subluminal. Not only would these other polarization
waves have amplitudes that are by the factor |1 + Nl/m|−1 smaller than that of the
wave associated with the fundamental Fourier component l= 0, but also they would
generate electromagnetic fields whose characteristics (such as their rate of decay with
distance) are different from those generated by the superluminally moving polarization
wave.

The fundamental (l = 0) Fourier component of the discretized polarization current
that is created by the present device thus has precisely the same (ϕ, t) dependence
as that which is described in (2.1) above. Neither the reduction in its amplitude,
which arises from the departure of the value of (mπ/N)−1 sin(mπ/N) from unity, nor
the presence of the other low-amplitude waves that are superposed on it, makes any
difference to the fact that the fundamental Fourier component of the discretized wave
created in r > c/ω rotates uniformly with a superluminal speed (figure 3). Linearity
of the emission process ensures that the radiation that is generated by an individual
term of the series in (2.6) is not in any way affected by those that are generated by
the other terms in this series.

For the distribution pattern of the created polarization current to be moving, it is
however essential that the number of electrode pairs per wavelength of this pattern,
N/m, exceed 2. For N/m= 2, the l=−1 term is proportional to cos[m(ϕ +ωt)] and
so describes a wave that has the same amplitude as, and travels with the same speed
in the opposite direction to, the wave described by the l= 0 term. The fundamental
wave is thus turned into a standing wave when N/m has a value as low as 2.

Note, finally, that the speed of light is easily attainable. The adjacent electrode pairs
are energized to oscillate out of phase, so that there is a time difference 1t between
the instants at which the oscillatory applied voltages on adjacent electrodes attain their
maximum amplitude. The variation thus produced in the distribution pattern of the
induced polarization current results in the azimuthal propagation of this distribution
pattern around the ring with the speed 1`/1t, where 1` is the distance between
the centres of the adjacent electrode pairs. The phase difference between oscillations
of two adjacent electrode pairs, 1Φ, and the energizing time delay 1t are related
by 1Φ = 2πν1t, where ν is the oscillation frequency of the applied voltage. The
generated wave train can retain its shape while rotating around the ring only if it
contains an integral number of wavelengths of the sinusoidal distribution pattern of
the current, i.e. if the phase difference 1Φ is constrained by N1Φ = 2πm, where
m is an integer (the integer appearing in (2.1) which also connects ν to the angular
frequency of rotation of the wave train, ω, via 2πν = mω). The propagation speed
of the distribution pattern of the polarization current is therefore given by 1`/1t =
2πν r̄/m, in which r̄=N1`/(2π) denotes the mean radius of the dielectric ring.

This speed can exceed the speed of light in vacuum, c, for a large set of
experimentally viable values of the parameters N, 1`, 1Φ, ν and m. In the case of
an apparatus consisting of N = 72 electrode pairs for which 1`= 1 cm, for example,
energizing the electrodes with the phase difference 1Φ = 25◦ and the frequency
ν = 2.5 GHz results in a polarization current whose distribution pattern has the form
of a sinusoidal wave train, containing m= 5 wavelengths, and propagates around the
ring of mean radius r̄= 11.46 cm with the speed 1`/1t= 1.2c.

To be able to calculate the field generated by the polarization current j = ∂P/∂t,
we need an explicit expression also for the amplitude s of the polarization (2.1).
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A choice that both corresponds to a simple model of the experimentally realized
source distribution discussed in Ardavan et al. (2004b), and can adequately illustrate
the salient features of the resulting radiation, is one in which s vanishes outside the
rectangular region

S ′: r̂L 6 r̂ 6 r̂U, −ẑ0 6 ẑ 6 ẑ0, (2.7)

of the (r̂, ẑ)-plane and is constant inside it. In this expression, the dimensions r̂L,
r̂U and ẑ0 of the rectangular cross-section of the annulus bounding the polarization
distribution are all constant.

3. Fundamental role of the retarded potential in electrodynamics of superluminal
sources
In the classical theory of electromagnetic radiation, Maxwell’s equations are most

commonly reduced to wave equations by one of the following two methods.

(i) One of the fields is eliminated between Maxwell’s equations by differentiation to
obtain a wave equation for the other field: e.g. the electric field E is eliminated
to obtain the wave equation

∇
2B−

1
c2

∂2B
∂t2
=−

4π

c
∇× j (3.1)

for the magnetic field B (see, e.g. Jackson 1999, p. 246).
(ii) The fields are expressed in terms of potentials. In the Lorenz gauge, the

electromagnetic fields

E=−∇PΦ −
1
c
∂A
∂tP
, B=∇P ×A, (3.2a,b)

are expressed in terms of a four-potential Aµ that satisfies the wave equation

∇
2Aµ −

1
c2

∂2Aµ

∂t2
=−

4π

c
jµ, µ= 0, . . . , 3, (3.3)

where (x, t) and (xP, tP) are the space–time coordinates of the source points and
the observation point P, and µ = 0 and µ = 1, 2, 3 respectively designate the
temporal and spatial components of Aµ = (Φ, A) and jµ = (ρc, j) in a Cartesian
coordinate system (see, e.g. Jackson 1999).

We shall see below that, in free space, the retarded solutions to the above two wave
equations ((3.1) and (3.3)) do not always have the same form.

The solution to the initial-boundary value problem for (3.3) inside a closed surface
∂D is given by

Aµ(xP, tP) =
1
c

∫ tP

0
dt
∫
D

d3x jµG+
1

4π

∫ tP

0
dt
∫
∂D

d2x · (G∇Aµ − Aµ∇G)

−
1

4πc2

∫
D

d3x
(

Aµ
∂G
∂t
−G

∂Aµ

∂t

)
t=0

, (3.4)

in which G is the Green’s function and D is the volume enclosed by the surface
∂D (see, e.g. Morse & Feshbach 1953, p. 893). The potential that arises from a
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time-dependent localized source in unbounded space decays as RP
−1 when R̂P � 1,

so that for an arbitrary free-space potential the second term in (3.4) would be of the
same order of magnitude (∼RP

−1) as the first term in the limit that the boundary ∂D
tends to infinity. However, even potentials that satisfy the Lorenz condition ∇ ·A +
c−1∂Φ/∂t = 0 are arbitrary to within a solution of the homogeneous wave equation:
the gauge transformation

A→A+∇Λ, Φ→Φ − ∂Λ/∂t, (3.5a,b)

preserves the Lorenz condition if ∇2Λ− c−2∂2Λ/∂t2
= 0 (see Jackson 1999). One can

always use this gauge freedom in the choice of the potential to render the boundary
contribution (the second term in (3.4)) equal to zero, since this term, too, satisfies the
homogenous wave equation. Under the null initial conditions Aµ|t=0 = (∂Aµ/∂t)t=0 =

0, assumed in this paper, the contribution from the third term in (3.4) is, moreover,
identically zero.

In the absence of boundaries, i.e. in the limit where ∂D lies at infinity, the retarded
Green’s function for (3.1) and (3.3) has the form

G(x, t; xP, tP)=
δ(t− tP + R/c)

R
, (3.6)

where δ is the Dirac delta function and R is the magnitude of the separation
R ≡ xP − x between the observation point xP and the source point x. Irrespective
of how the radiation field decays in the limit R→∞, therefore, the potential Aµ
due to a localized source distribution in an unbounded space which is switched on at
t= 0, can be calculated from the first term in (3.4)

Aµ(xP, tP)=
1
c

∫
d3x dt jµ(x, t)

δ(t− tP + R/c)
R

. (3.7)

Whatever the Green’s function for the problem may be in the presence of boundaries,
it would approach that in (3.6) in the limit where the boundaries tend to infinity.

Next, let us consider the wave equation that governs the magnetic field B. One can
write the solution to the initial-boundary value problem for (3.1) as

Bi(xP, tP) =
1
c

∫ tP

0
dt
∫
D

d3x (∇× j)iG+
1

4π

∫ tP

0
dt
∫
∂D

d2x · (G∇Bi − Bi∇G)

−
1

4πc2

∫
D

d3x
(

Bi
∂G
∂t
−G

∂Bi

∂t

)
t=0

, (3.8)

where i= 1, 2, 3 designate the components of B and ∇× j in a Cartesian coordinate
system (Morse & Feshbach 1953). In contrast to (3.4), here we no longer have the
freedom that was offered by the gauge transformation (3.5) to make the boundary term
(the second term in (3.8)) zero. In other words, the retarded solution to the wave
equation for the field cannot be written down in analogy with (3.7) as is done in
certain textbooks (see, e.g. Jackson 1999, p. 246).

There is a fundamental difference between the classical expression for the retarded
potential and the corresponding retarded solution of the wave equation that governs
the electromagnetic field: while the boundary contribution to the retarded solution for
the potential can always be rendered equal to zero by means of a gauge transformation
that preserves the Lorenz condition, the boundary contribution to the retarded solution
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of the wave equation for the field may be neglected only if it diminishes with distance
faster than the contribution of the source density (the first term in (3.8)) in the far
zone. In the case of a source whose distribution pattern rotates superluminally, where
the radiation field decays non-spherically (more slowly than R̂−1

P ) with distance, the
boundary term in the retarded solution (3.8) for the field is in fact larger than the
source term of this solution, in the limit where the closed surface ∂D tends to
infinity (Ardavan et al. 2008a). Given that the distribution of the radiation field
of an accelerated superluminal source in the far zone is not known a priori, to be
prescribed as a boundary condition, it follows that the only way one can calculate the
free-space radiation field of such sources is via the retarded solution for the potential.

4. Formulation of the problem
4.1. Extended polarization currents whose distribution patterns propagate faster than

light in vacuum
The experimentally realized source distribution described in § 2 is a generic member
of a wide class of rotating source distributions. Any electric polarization P whose
distribution pattern rotates uniformly with the constant angular frequency ω gives rise
to a charge density ρ = −∇ · P and a current density j = ∂P/∂t that, like P itself,
depend on the azimuthal angle ϕ in only the combination

ϕ̂ = ϕ −ωt, (4.1)

i.e. are of the forms Pr,ϕ,z(r, ϕ, z, t)
ρ(r, ϕ, z, t)

jr,ϕ,z(r, ϕ, z, t)

 =
Pr,ϕ,z(r, ϕ̂, z, t)
ρ(r, ϕ̂, z, t)

jr,ϕ,z(r, ϕ̂, z, t)

 , (4.2)

where (r, ϕ, z) are, as in § 2, the cylindrical polar coordinates based on the axis
of rotation, t (assumed to be > 0) is time and Pr,ϕ,z and jr,ϕ,z are the cylindrical
components of P and j, respectively.

In (4.1) and (4.2) the coordinates t and ϕ both range over (0,∞) but the coordinate
ϕ̂ has a limited range of length 2π, e.g.

0 6 ϕ̂ < 2π. (4.3)

As can be seen from the alternative form ϕ = ϕ̂ + ωt of (4.1), ϕ̂ is a Lagrangian
coordinate that labels the rotating volume elements of the current distribution on
each circle r = const., z = const., by their azimuthal positions at the time t = 0.
This coordinate cannot range over a wider interval because the aggregate of volume
elements that constitute a rotating source in its entirety can at most occupy an
azimuthal interval of length 2π at any given time (e.g. at t = 0). The polarization
distribution Pr,ϕ,z(r, ϕ, z, t)= sr,ϕ,z(r, z) cos(mϕ̂) given in (2.1), on which the analysis
in the following sections will be based, is an example of this class of sources in
which the range of ϕ̂ is likewise subject to the constraint (4.3).

Note that beyond r= c/ω (which I will refer to as the light cylinder) the distribution
patterns of the above charge-current densities move with linear speeds rω exceeding
the speed of light in vacuum, c. This is not inconsistent with the requirements
of special relativity because the superluminally moving pattern is created by the
coordinated motion of aggregates of subluminally moving particles (Bolotovskii
& Ginzburg 1972; Ginzburg 1972; Bolotovskii & Bykov 1990). Not only is a
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superluminal current distribution of this type already generated in the laboratory (see
Ardavan et al. 2004b; Bolotovskii & Serov 2005, and § 2), but it also occurs in the
magnetospheres of astrophysical objects containing rapidly rotating neutron stars such
as pulsars (see Ardavan 1981; Spitkovsky 2006; Ardavan et al. 2008c; Kalapotharakos
et al. 2012; Tchekhovskoy, Philippov & Spitkovsky 2016, and § 12).

4.2. Radiation field of a superluminally rotating charge-current distribution
According to (3.2), the radiation fields associated with the retarded potential (3.7) are
given by [

E
B

]
=

1
c2

∫
d3x dt

δ′(t− tP + R/c)
R

[
j− ρc n̂

n̂× j

]
, (4.4)

where δ′ denotes the derivative of δ with respect to its argument and n̂=∇PR=R/R.
The terms arising from the differentiation of R−1 which describe static fields (terms
that are non-zero even when the charge-current distribution is time independent) have
been discarded here: in addition to decaying faster with distance, these terms are
negligibly smaller than the retained terms in cases where the radiation frequency is
appreciably larger than the rotation frequency (i.e. the integer m in (2.1) appreciably
exceeds unity). For an observation point that is located at infinity, the unit vector n̂
is independent of the integration variables (x, t) and can be taken outside the above
integrals to obtain B= n̂×E in the limit |xP|→∞. Since we will be concerned also
with observation points that lie at finite distances from the source, however, I will take
the dependence of n̂ on x and xP into account and treat E and B as two independent
vectors in this paper.

For the purposes of calculating the fields generated by the sources in (4.2) and (4.3),
the space–time of source points may be marked either with (x, t)= (r, ϕ, z, t) or with
the coordinates (r, ϕ̂, z, t) that naturally appear in the description of such rotating
sources. Once ϕ̂, with the range (0, 2π), is adopted as one of the coordinates, either
t or ϕ (which have unlimited ranges) could be used to track the time evolution of the
rotating source point (r, ϕ̂, z).

Changing the variables of integration in (4.4) from (x, t)= (r, ϕ, z, t) to (r, ϕ̂, z, ϕ)
and introducing the dimensionless coordinates r̂= rω/c and ẑ= zω/c, we obtain[

E
B

]
=

1
ω

∞∑
k=1

∫
S

r̂ dr̂ dϕ̂ dẑ
∫ ϕ̂+2kπ

ϕ̂+2(k−1)π
dϕ
δ′(g− φ)

R̂

[
j− ρc n̂

n̂× j

]
, (4.5)

where

R̂= [(ẑ− ẑP)
2
+ r̂2

P + r̂2
− 2r̂Pr̂ cos(ϕ − ϕP)]

1/2, (4.6)

n̂= {[r̂P − r̂ cos(ϕ − ϕP)]êrP − r̂ sin(ϕ − ϕP)êϕP − (ẑ− ẑP)êzP}/R̂, (4.7)

the function g(r̂, ϕ, ẑ; r̂P, ϕP, ẑP) is defined by

g≡ ϕ − ϕP + R̂, (4.8)

the variable φ in the argument of the delta function stands for

φ ≡ ϕ̂ − ϕ̂P with ϕ̂P ≡ ϕP −ωtP, (4.9a,b)
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and (êrP, êϕP, êzP) are the cylindrical base vectors at the observation point (rP, ϕP, zP).
In (4.5), the domain of integration over the (r̂, ϕ̂, ẑ) space consists of the support S
of the source density jµ and the range of integration with respect to ϕ is given by
the extended interval of azimuthal angle traversed by the source in the course of its
rotations prior to the observation time tP.

I have expressed the range of ϕ integration as a sum of the intervals of length
2π that the element initially located at ϕ̂ traverses during each of its individual
rotations: k is a positive integer enumerating successive rotation periods (the first
rotation period being designated by k= 1) and the summation extends over the set of
rotations executed by the source over its lifetime. Given (r̂, ϕ̂, ẑ) and (rP, ϕP, zP, tP),
there are a limited number of values of k for which g−φ vanishes and so the integral
in (4.5) is non-zero. In other words, the contribution received from the source point
(r̂, ϕ̂, ẑ) at the space–time observation point (rP, ϕP, zP, tP) is made during a limited
number of its (earlier) rotation periods (see appendix B).

4.3. The Green’s function for the problem and its loci of singularities
To put the current density j = jrêr + jϕ êϕ + jzêz into a form suitable for performing
the integration with respect to ϕ, we need to express the ϕ-dependent base vectors
(êr, êϕ, êz) associated with the source point (r, ϕ, z) in terms of the constant base
vectors (êrP, êϕP, êzP) at the observation point (rP, ϕP, zP):êr

êϕ
êz

=
 cos(ϕ − ϕP) sin(ϕ − ϕP) 0
−sin(ϕ − ϕP) cos(ϕ − ϕP) 0

0 0 1

êrP

êϕP

êzP

 . (4.10)

Once the resulting expression,

j= [ jr cos(ϕ − ϕP)− jϕ sin(ϕ − ϕP)]êrP + [ jr sin(ϕ − ϕP)+ jϕ cos(ϕ − ϕP)]êϕP + jzêzP,

(4.11)
and the expression in (4.7) for n̂ are inserted in (4.5) and δ′(g − φ) is written as
−∂δ(g− φ)/∂ϕ̂ (see (4.9)), we arrive at[

E
B

]
=−

1
ω

2∑
n=1

3∑
j=1

∫
S

r̂ dr̂ dϕ̂ dẑ
∂Gnj

∂ϕ̂

[
unj
vnj

]
, (4.12)

with u11
u12
u13

=
 jrêrP + jϕ êϕP

−jϕ êrP + jrêϕP

jzêzP

 , (4.13)

u21
u22
u23

= ρc

 r̂êrP

r̂êϕP

−r̂PêrP + (ẑ− ẑP)êzP

 , (4.14)

[
v11 v12 v13

]
=
[
0 0 0

]
, (4.15)

and v21
v22
v23

=
−(ẑ− ẑP)u12 + r̂jzêϕP + r̂Pjϕ êzP

êzP × v21 + r̂PjrêzP

−r̂PjzêϕP − r̂jϕ êzP

 , (4.16)
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in which Gn1
Gn2
Gn3

= ∞∑
k=1

∫ ϕ̂+2kπ

ϕ̂+2(k−1)π
dϕ
δ(g− φ)

R̂n

cos(ϕ − ϕP)

sin(ϕ − ϕP)

1

 (4.17)

denotes the outcome of the remaining integration with respect to ϕ. Note that the
dependence on ϕ̂ of the limits of integration in (4.17) does not contribute toward the
values of the derivatives of Gnj with respect to ϕ̂ (see (B 7)).

The function Gnj(r̂, ϕ̂, ẑ; r̂P, ϕ̂P, ẑP) here acts as the Green’s function for
the present problem. It describes the Liénard–Wiechert field that arises from an
individual volume element of the rotating distribution pattern of the source. If we
specialize the current distribution to a rotating point charge q, i.e. let jr = jz = 0 and
jϕ = rsωqδ(r − rs)δ(ϕ̂)δ(z) with a constant rs, then (4.12) at an observation point in
the far zone would describe the familiar field of synchrotron radiation when rs < c/ω
and a synergic field combining attributes of both synchrotron and Čerenkov emissions
when rs > c/ω (see, e.g. Ardavan et al. 2004c).

Depending on the value of

∆= (r̂2
P − 1)(r̂2

− 1)− (ẑ− ẑP)
2 (4.18)

for a given source point (r, ϕ̂, z) with rω> c, the ϕ-dependence of the function g that
appears in the definition of the Green’s function Gnj in (4.17) has one of the generic
forms shown in figure 4. As can be seen from the curve labelled ∆> 0 in this figure,
there are values,

ϕ± = ϕP + 2kπ− arccos
(

1∓∆1/2

r̂r̂P

)
, (4.19)

of the retarded position of the source point at which

∂g
∂ϕ
= 1+

r̂r̂P sin(ϕ − ϕP)

R̂
(4.20)

vanishes and so Gnj diverges. These turning points of g occur at source points for
which ∂(R|ϕ=ϕ̂+ωt)/∂t = −c, i.e. the source points that approach the observer, along
the radiation direction n̂, with the speed of light at the retarded time. The inflection
point of g (see the curve labelled ∆= 0 in figure 4), at which

∂2g
∂ϕ2

∣∣∣∣
ϕ=ϕ±

=∓
∆1/2

R̂±
(4.21)

in addition vanishes, occurs at source points that approach the observer not only with
the wave speed but also with zero acceleration at the retarded time, i.e. for which
both ∂(R|ϕ=ϕ̂+ωt)/∂t=−c and ∂2(R|ϕ=ϕ̂+ωt)/∂t2

= 0 at the time when g|ϕ=ϕ̂+ωt = φ and
∂g/∂ϕ = ∂2g/∂ϕ2

= 0. In (4.21),

R̂± = [(ẑ− ẑP)
2
+ r̂2
+ r̂2

P − 2(1∓∆1/2)]1/2 (4.22)

is the value of R̂ at the extrema ϕ± of g.
The envelope of the wave fronts emanating from a given rotating source element

(r̂, ϕ̂, ẑ), on which ∂g/∂ϕ vanishes, consists of the rigidly rotating two-sheeted surface
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ϕ̂ − ϕ̂P = g(ϕ±) in the space (r̂P, ϕ̂P, ẑP) of observation points. This surface, which is
shown in figures 5 and 6, is described by

φ± ≡ ϕ̂± − ϕ̂P = ϕ± − ϕP + R̂± (4.23)

(see (4.8), (4.9), (4.19) and (4.22)). The two sheets of this surface tangentially meet
along a cusp on which ∂2g/∂ϕ2 as well as ∂g/∂ϕ vanishes (see figures 6 and 7). Three
distinct wave fronts, emitted at three differing values of the retarded time, pass through
any given observation point inside the envelope. At an observation point located on
the envelope or its cusp, respectively two or all three of these waves coalesce and
interfere constructively (see figure 4).

4.4. Bifurcation surface of an observation point
Reciprocally, the locus in the space of source points (r̂, ϕ̂, ẑ) on which ∂g/∂ϕ
vanishes is a two-sheeted cusped surface issuing from the fixed observation point P
(see figure 8). I refer to this locus, which is described by (4.23) for fixed values
of (r̂P, ϕ̂P, ẑP) rather than fixed values of (r̂, ϕ̂, ẑ), as the bifurcation surface of the
observation point P. The two sheets φ = φ+ and φ = φ− of this surface, respectively
referred to as the regular and singular sheets, meet along the following cusp:

C :

{
r̂= r̂C(ẑ)= [1+ (ẑ− ẑP)

2/(r̂2
P − 1)]1/2,

ϕ = ϕC(ẑ)= ϕP + 2kπ− arccos[1/(r̂r̂P)],
(4.24)

where k is the same integer as that appearing in (4.5). I refer to both C and its
projection onto the (r, z) plane as the cusp locus of the bifurcation surface; whether
it is C itself or its projection that is referred to will be clear from the context.

The source points inside the bifurcation surface, close to its cusp, make their
contributions toward the observed value of the field at three distinct retarded positions
in their trajectory (where a horizontal line g = φ in figure 4 intersects the curve
∆ > 0 between its extrema), while those outside the bifurcation surface make their
contributions at a single retarded position (where the curve ∆ < 0 is intersected by
g = φ in figure 4). For the source points on the bifurcation surface (i.e. those for
which g= φ± in figure 4), two of the contributing retarded positions coalesce at the
extrema of the curve ∆> 0 in figure 4 giving rise to a divergent value of the Green’s
function at P. For the source points located on the cusp locus C of the bifurcation
surface (i.e. those for which ∆= 0 in figure 4), all three of the contributing retarded
positions coalesce at the inflection point of the curve ∆ = 0 in figure 4 giving rise
to a higher-order singularity in Gnj. In the following section, I use the time-domain
version (Burridge 1995) of the method of Chester et al. (1957) to derive a uniform
asymptotic approximation to the value of Gnj for the source points close to the cusp
C of the bifurcation surface.

4.5. A uniform asymptotic approximation to the value of the Green’s function near
the cusp locus of the bifurcation surface

As long as the observation point does not coincide with the source point, the function
g(ϕ) is analytic and the following transformation of the integration variable in (4.17)
from ϕ to ν is permissible

g(ϕ)= 1
3ν

3
− c1

2ν + c2, (4.25)

in which
c1 = [

3
4(φ+ − φ−)]

1/3 and c2 =
1
2(φ+ + φ−), (4.26a,b)
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are chosen such that the values of the two functions on opposite sides of (4.25)
coincide at their extrema when ∆ is positive. Thus an alternative exact expression
for Gnj is

Gnj =

∞∑
k=1

H
∫
∞

−∞

dν fnjδ

(
1
3
ν3
− c1

2ν + c2 − φ

)
, (4.27)

where fn1
fn2
fn3

= 1

R̂n

dϕ
dν

cos(ϕ − ϕP)

sin(ϕ − ϕP)

1

 , (4.28)

and the step function H is non-zero only if the argument of the delta function in (4.17)
vanishes within the original domain of integration ϕ̂+ 2(k− 1)π6ϕ6 ϕ̂+ 2kπ, i.e. if
g|ϕ=ϕ̂+2kπ − φ > 0 but g|ϕ=ϕ̂+2(k−1)π − φ 6 0. Inserting ϕ = ϕ̂ + 2kπ and ϕ = ϕ̂ + 2(k−
1)π in the definition of g in (4.8) and simplifying the resulting expressions by means
of (4.9), we can write this step function as

H=H[R̂|ϕ=ϕ̂ −ωtP + 2kπ] −H[R̂|ϕ=ϕ̂ −ωtP + 2(k− 1)π], (4.29)

in which H(x) denotes the Heaviside step function.
In cases where the distance R̂P= (r̂2

P+ ẑ2
P)

1/2 of the observation point from the origin
of the reference frame is much larger than the coordinates r̂ and ẑ of the source point,
equation (4.29) reduces to

H∞ =H[R̂P −ωtP + 2kπ] −H[R̂P −ωtP + 2(k− 1)π], R̂P� 1. (4.30)

The step function H picks out the particular rotation cycle (or cycles) during which
the signal that reaches the observation point (r̂P, ϕP, ẑP) at the observation time tP is
emitted by the source point (r̂, ϕ̂, ẑ).

Note that c1(r̂, ẑ; r̂P, ẑP) in the expression for Gnj vanishes on the cusp locus of
the bifurcation surface where ∆ equals zero and φ− = φ+. The leading term in the
asymptotic expansion of the integral in (4.27) in the vicinity of the cusp locus of the
bifurcation surface, i.e. for small c1, can be found by replacing fj by pj + qjν,

Gnj '

∞∑
k=1

H
∫
∞

−∞

dν (pnj + qnjν)δ

(
1
3
ν3
− c1

2ν + c2 − φ

)
, c1� 1, (4.31)

where
pnj =

1
2( fnj|ϕ=ϕ− + fnj|ϕ=ϕ+), (4.32)

qnj =
1
2 c1
−1( fnj|ϕ=ϕ− − fnj|ϕ=ϕ+) (4.33)

(see Chester et al. (1957) and note that ϕ = ϕ− maps onto ν = c1 and ϕ = ϕ+ onto
ν =−c1). To evaluate the integral in (4.31) we need to know the roots of the cubic
function that appears in the argument of the Dirac δ function in this expression.
Depending on whether the source point is located inside or outside the bifurcation
surface, the roots of

1
3ν

3
− c1

2ν + c2 − φ = 0 (4.34)
for ∆> 0 are given, respectively, by

ν = ν` = 2c1 cos
(

2
3`π+

1
3 arccos χ

)
, |χ |< 1, (4.35)

with `= 0, 1 and 2, or by

ν = νout = 2c1sgn(χ) cosh
(

1
3 arccosh|χ |

)
, |χ |> 1, (4.36)
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where
χ =

3(φ − c2)

2c1
3

. (4.37)

Note that χ equals 1 on the sheet φ+ of the bifurcation surface and −1 on the
sheet φ−.

The integral multiplying pj in (4.31) therefore has the following value when the
source point lies inside the bifurcation surface (|χ |< 1) and (4.34) has the three roots
given in (4.35),∫

∞

−∞

dνδ
(

1
3
ν3
− c1

2ν + c2 − φ

)
=

2∑
`=0

|ν2
` − c2

1|
−1

=

2∑
`=0

c−2
1

∣∣∣∣4 cos2

(
2
3
`π+

1
3

arccos χ
)
− 1
∣∣∣∣−1

, |χ |< 1. (4.38)

Using the trigonometric identity 4 cos2 α − 1= sin 3α/ sin α, we can write this as∫
∞

−∞

dνδ
(

1
3
ν3
− c1

2ν + c2 − φ

)
= c−2

1 (1− χ
2)−1/2

2∑
`=0

∣∣∣∣sin
(

2
3
`π+

1
3

arccos χ
)∣∣∣∣

= 2c−2
1 (1− χ

2)−1/2 cos
(

1
3

arcsin χ
)
, |χ |< 1, (4.39)

in which I have evaluated the sum by adding the sine functions two at a time. When
the source point lies outside the bifurcation surface (|χ | > 1), the above integral
receives a contribution only from the single value of ν given in (4.36) and we obtain

∫
∞

−∞

dνδ
(

1
3
ν3
− c1

2ν + c2 − φ

)
= c−2

1 (χ
2
− 1)−1/2 sinh

(
1
3

arccosh|χ |
)
, |χ |> 1,

(4.40)
where this time I have used the identity 4 cosh2 α − 1= sinh(3α)/ sinh α.

The second part of the integral in (4.31) can be evaluated in exactly the same way.
It has the value∫

∞

−∞

dν νδ
(

1
3
ν3
− c1

2ν + c2 − φ

)
=−2c−1

1 (1− χ
2)−1/2 sin

(
2
3

arcsin χ
)
, |χ |< 1,

(4.41)
when the source point lies inside the bifurcation surface (|χ |< 1) and the value∫

∞

−∞

dν νδ
(

1
3
ν3
− c1

2ν + c2 − φ

)
= c−1

1 (χ
2
− 1)−1/2sgn(χ) sinh

(
2
3

arccosh|χ |
)
, |χ |> 1, (4.42)

when the source point lies outside the bifurcation surface (|χ |> 1). Inserting (4.39)–
(4.42) in (4.31), we obtain

Gin
nj '

∞∑
k=1

2Hc−2
1 (1− χ

2)−1/2

[
pnj cos

(
1
3

arcsin χ
)
− c1qnj sin

(
2
3

arcsin χ
)]
, |χ |< 1,

(4.43)
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and

Gout
nj '

∞∑
k=1

Hc−2
1 (χ

2
− 1)−1/2

[
pnj sinh

(
1
3

arccosh|χ |
)

+ c1qnjsgn(χ) sinh
(

2
3

arccosh|χ |
)]

, |χ |> 1, (4.44)

where Gin
nj and Gout

nj denote the values of Gnj over ∆ > 0 inside and outside the
bifurcation surface, respectively.

For the source points in ∆< 0, the functions φ− and φ+ are complex conjugate of
one another so that the coefficient c2 is still real but c1 is pure imaginary: the relevant
cube root of φ+− φ− in the expression for c1 is in this case given by −i|φ+− φ−|1/3,
which casts (4.26a) into the form c1 = −i[3/4|φ+ − φ−|]1/3. Since neither g(ϕ) nor
the cubic expression to which g is transformed have any extrema in this case, there
is only one real solution to (4.34) when ∆< 0 and c1 is pure imaginary. This solution,
which can be found by writing the coefficient c1

2 of ν (in which c1 is pure imaginary)
as −|c1|

2 prior to solving the cubic, is given by

ν = 2c1 sinh
(

1
3 arcsinhχ ′

)
, (4.45)

with
χ ′ =

3(φ − c2)

2|c1|
3
. (4.46)

Following the same procedure as that employed in deriving (4.40) and (4.42), we
obtain

Gsub
nj '

∞∑
k=1

Hc−2
1 (χ

′2
+ 1)−1/2

[
pnj cosh

(
1
3

arcsinhχ ′
)

+ |c1|qnj sinh
(

2
3

arcsinhχ ′
)]

, |χ ′|> 1, (4.47)

for the value Gsub
nj of the Green’s function in ∆< 0 where the source points approach

the observer with subluminal speeds.
To complete the derivation of Gnj, we need to evaluate the coefficients pj and

qj which are defined by (4.32), (4.33) and (4.28). The indeterminate quantities
dϕ/dν|ϕ=ϕ± that appear in these definitions have to be found by repeated differentiation
of (4.25) with respect to ν, and the evaluation of the resulting relations

∂g
∂ϕ

dϕ
dν
= ν2
− c1

2, (4.48)

and
∂2g
∂ϕ2

(
dϕ
dν

)2

+
∂g
∂ϕ

d2ϕ

dν2
= 2ν, (4.49)

at ϕ = ϕ±. This procedure, which amounts to applying the l’Hôpital rule, yields

dϕ
dν

∣∣∣∣
ϕ=ϕ±

=

(
2c1R̂±
∆1/2

)1/2

. (4.50)
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Equation (4.50) together with (4.28), (4.19) and (4.22), now yield the following values
of fn1

fn2
fn3


ϕ=ϕ±

=
1

r̂r̂PR̂n−1/2
±

(
2c1

∆1/2

)1/2
1∓∆1/2

−R̂±
r̂r̂P

 , (4.51)

and hence the following values ofpn1
pn2
pn3

= 1
r̂r̂P

( c1

2∆1/2

)1/2

R̂−n+1/2
+ + R̂−n+1/2

− +∆1/2(R̂−n+1/2
− − R̂−n+1/2

+ )

−(R̂−n+3/2
− + R̂−n+3/2

+ )

r̂r̂P(R̂
−n+1/2
− + R̂−n+1/2

+ )

 , (4.52)

and qn1
qn2
qn3

= 1
r̂r̂P(2c1∆1/2)1/2

R̂−n+1/2
− − R̂−n+1/2

+ +∆1/2(R̂−n+1/2
− + R̂−n+1/2

+ )

R̂−n+3/2
+ − R̂−n+3/2

−

r̂r̂P(R̂
−n+1/2
− − R̂−n+1/2

+ )

 (4.53)

(see (4.32) and (4.33)). For ∆< 0, the functions c1 and ∆1/2 in (4.52) and (4.53) are
respectively given by −i|φ+ − φ−|1/3 and −i|∆|1/2, so that pj and qj are real also in
this case: R̂− is the complex conjugate of R̂+ (see (4.22)).

The two-dimensional loci χ =±1 across which the resulting expression

Gnj =


Gin

nj ∆> 0, |χ |< 1
Gout

nj ∆> 0, |χ |> 1
Gsub

nj ∆< 0, |χ ′|> 1
(4.54)

for the Green’s function changes form correspond to the two sheets φ± of the
bifurcation surface, respectively. As a source point (r, ϕ̂, z) in the vicinity of the
cusp C approaches the bifurcation surface from inside, i.e. as χ→ 1− or χ→−1+,
Gin

nj diverges. However, as a source point approaches either one of the sheets of the
bifurcation surface from outside, the numerator and the denominator in (4.44) vanish
simultaneously and Gout

nj tends to a finite limit,

Gout
nj |φ=φ± =Gout

nj |χ=±1 =
1
3 c−2

1

(
pnj ± 2c1qnj

)
. (4.55)

Note that c1, and hence pnj and qnj, are independent of k (see (4.19), (4.23) and (4.26)).
The only k-dependent functions appearing in the expressions for Gout

nj |φ=φ± are the step
functions H|φ=φ± which can be summed over k to obtain unity (see (4.29)). Thus the
Green’s function Gnj is singular only on the inner side of the bifurcation surface (see
figures 9 and 10).

4.6. Hadamard’s finite part of the divergent integral representing the field
It follows from (4.43) and (4.54) that the factor ∂Gnj/∂ϕ̂ in the integrand of the
integral (4.12) diverges as (1 − χ 2)−3/2 and so has a non-integrable singularity on
the bifurcation surface where χ 2 equals 1. This singularity has arisen because we
differentiated the retarded potential (3.7) under the integral sign when calculating
the field. Had we evaluated the integral in (3.7) prior to differentiating it we would
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have found a singularity-free expression. Interchanging the orders of integration and
differentiation is mathematically permissible when the integrand is discontinuous
only if one treats the resulting integral as a generalized function and so one handles
any non-integrable singularities that consequently arise by means of Hadamard’s
regularization technique (see Ardavan 1999; Hadamard 2003; Hoskins 2009, and the
illustrative example in appendix A).

Hadamard’s procedure consists of performing an integration by parts and discarding
the divergent (integrated) term in the resulting expression. The remaining finite part
is the value that Hadamard’s regularization assigns to the integral; in the present case,
it is the value we would have obtained if we had first evaluated the finite integral
representing the retarded potential and had differentiated the result Aµ(xP, tP) of that
evaluation subsequently. (The more direct approach, in which the potential is first
evaluated and then differentiated, cannot of course be carried out for any realistic
source distribution analytically.)

The ϕ̂ coordinates ϕ̂± of the two sheets of the bifurcation surface depend on the
observation time tP (see (4.23) and (4.9)), so that these two sheets move across the
ϕ̂ extent of the source distribution as tP elapses. If the position of the observation
point is such that the cusp locus of the bifurcation surface intersects the source
distribution, the two sheets of this surface (which tangentially meet at the cusp)
will divide the volume of the source into a part that lies inside and a part that lies
outside the bifurcation surface. The Lagrangian coordinates ϕ̂ designating the initial
azimuthal positions of the constituent volume elements of a source that fully occupies
an annular region range over the interval 0 6 ϕ̂ < 2π. The (r̂, ẑ) coordinates of these
source elements either fall in ∆> 0 or in ∆< 0. The elements in ∆> 0 are always
divided into two sets: a set inside the bifurcation surface for which ϕ̂− 6 ϕ̂ 6 ϕ̂+ and
so the Green’s function Gnj has the form Gin

nj and a set outside for which ϕ̂ lies either
in (0, ϕ̂−) or in (ϕ̂+, 2π) and so Gnj has the form Gout

nj (see (4.54)). On the other
hand, if the position of the observation point is such that ∆< 0 for all values of (r̂, ẑ)
in S ′ (see (2.7)), then the source lies entirely outside the bifurcation surface and Gnj

has the form Gsub
nj . Note that, for certain space–time coordinates of the observation

point P, the values of ϕ̂− and ϕ̂+ that lie in the interval (0, 2π) could correspond to
different rotation periods, i.e. to different values of k (see (4.19), (4.22) and (4.23)).
To simplify the notation, here I adopt an observation time tP at which the values of
ϕ̂− and ϕ̂+ that lie in the interval (0, 2π) correspond to the same rotation period k.

Breaking up the volume of integration in the expression for one of the radiation
fields, e.g. E, into the domains of validity of Gin

nj, Gout
nj and Gsub

nj , we can therefore
write the ϕ̂-integral over unj in (4.12) as

Iϕ̂ ≡
∫ 2π

0
dϕ̂ unj

∂Gnj

∂ϕ̂

= H(∆)

[(∫ ϕ̂−

0
+

∫ 2π

ϕ̂+

)
dϕ̂ unj

∂Gout
nj

∂ϕ̂
+

∫ ϕ̂+

ϕ̂−

dϕ̂ unj
∂Gin

nj

∂ϕ̂

]

+H(−∆)
∫ 2π

0
dϕ̂ unj

∂Gsub
nj

∂ϕ̂
. (4.56)

If we now integrate every term of the above expression by parts, recall that ϕ̂ = 0
labels the same source point as does ϕ̂ = 2π, and use the fact that the exact version
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of Gnj given in (4.17) is periodic in ϕ̂ as well as in ϕ (with the same period 2π), we
arrive at

Iϕ̂ = H(∆)

{[
unj
(
Gin

nj −Gout
nj

)]ϕ̂=ϕ̂+
ϕ̂=ϕ̂−
−

(∫ ϕ̂−

0
+

∫ 2π

ϕ̂+

)
dϕ̂
∂unj

∂ϕ̂
Gout

nj

−

∫ ϕ̂+

ϕ̂−

dϕ̂
∂unj

∂ϕ̂
Gin

nj

}
−H(−∆)

∫ 2π

0
dϕ̂
∂unj

∂ϕ̂
Gsub

nj , (4.57)

an expression that reduces to

Iϕ̂ =H(∆)[unj(Gin
nj −Gout

nj )]
ϕ̂=ϕ̂+
ϕ̂=ϕ̂−
−

∫ 2π

0
dϕ̂
∂unj

∂ϕ̂
Gnj, (4.58)

once the integrals over Gin
nj, Gout

nj and Gsub
nj are combined in the light of (4.54).

We have seen in the last paragraph of § 4.5 that the value of Gin
nj at ϕ̂= ϕ̂± diverges

(figures 9 and 10). The Hadamard finite part of Iϕ̂ is therefore given by the right-hand
side of (4.58) without the divergent terms involving Gin

nj|ϕ̂=ϕ̂− and Gin
nj|ϕ̂=ϕ̂+ ,

Fp{Iϕ̂} =−H(∆)ujGout
nj |

ϕ̂=ϕ̂+
ϕ̂=ϕ̂−
−

∫ 2π

0
dϕ̂
∂unj

∂ϕ̂
Gnj, (4.59)

where Fp{Iϕ̂} denotes the Hadamard finite part of the divergent integral Iϕ̂ (see
Hadamard 2003; Hoskins 2009). This procedure applies also to the expression for
the radiation field B in (4.12) except that unj in (4.56)–(4.59) is everywhere replaced
by vnj.

Once the integrals with respect to ϕ̂ in (4.12) are equated to the expression on the
right-hand side of (4.59) and its counterpart for B, we find that[

E
B

]
=

[
Ev

Bv

]
+

[
Eb
+

Bb
+

]
−

[
Eb
−

Bb
−

]
(4.60)

with [
Ev

Bv

]
=

1
ω

2∑
n=1

3∑
j=1

∫
S

r̂ dr̂ dϕ̂ dẑ Gnj
∂

∂ϕ̂

[
unj
vnj

]
, (4.61)

and [
Eb
±

Bb
±

]
=

1
ω

2∑
n=1

3∑
j=1

∫
S ′

r̂ dr̂ dẑ H(∆)Gout
nj

[
unj
vnj

]∣∣∣∣
ϕ̂=ϕ̂±

, (4.62)

where S ′ is the projection of the support S of the source distribution onto the (r, z)
plane (see (2.7)). The term [Ev Bv

] constitutes the contribution from the entire
volume of the source while the terms [Eb

±
Bb
±
] denote the contributions from the

discontinuities of the Green’s function on the two sheets φ = φ± of the bifurcation
surface, respectively. We will see that the terms [Eb

±
Bb
±
] describe unconventional

radiation fields with characteristics that turn out to differ from any previously known
radiation fields.
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5. Radiation field of the experimentally realized source distribution
For the charge and current densities ρ =−∇ · P and j= ∂P/∂t associated with the

polarization distribution Pr,ϕ,z = Re[sr,ϕ,z(r̂, ẑ) exp(−imϕ̂)] in (2.1) the source terms
[unj vnj] defined by (4.13)–(4.16) reduce to the real part of[

unj(r̂, ẑ, ϕ̂)
vnj(r̂, ẑ, ϕ̂)

]
= imω exp(−imϕ̂)

[
ũnj(r̂, ẑ)
ṽnj(r̂, ẑ)

]
, 0 6 ϕ̂ < 2π, (5.1)

where ũ11
ũ12
ũ13

=
 srêrP + sϕ êϕP

−sϕ êrP + srêϕP

szêzP

 , (5.2)

ũ21
ũ22
ũ23

= s0

 r̂êrP

r̂êϕP

−r̂PêrP + (ẑ− ẑP)êzP

 , (5.3)

[
ṽ11 ṽ12 ṽ13

]
=
[
0 0 0

]
, (5.4)

and ṽ21
ṽ22
ṽ23

=
−(ẑ− ẑP)ũ12 + r̂szêϕP + r̂Psϕ êzP

êzP × ṽ21 + r̂PsrêzP

−r̂PszêϕP − r̂sϕ êzP

 , (5.5)

with
s0 =

sϕ
r̂
+

i
m
∇̂ · s. (5.6)

Here, ∇̂ · s denotes the divergence of s with respect to the dimensionless coordinates
(r̂, ϕ, ẑ).

Insertion of (5.1) in (4.61) and (4.62) results in the following expressions,[
Ev

Bv

]
=m2

2∑
n=1

3∑
j=1

∫
S

r̂ dr̂ dϕ̂ dẑ exp(−imϕ̂)Gnj

[
ũnj
ṽnj

]
, (5.7)

and [
Eb
±

Bb
±

]
= im

2∑
n=1

3∑
j=1

∫
S ′

r̂ dr̂ dẑ H(∆) exp(−imϕ̂±)Gout
nj |ϕ̂=ϕ̂±

[
ũnj
ṽnj

]
, (5.8)

whose real parts describe the contributions from the volume of the source and from
the two sheets of the bifurcation surface toward the total radiation field [E B],
respectively (see (4.60)). The values Gout

nj |ϕ̂=ϕ̂± of the Green’s function that appear in
(5.8) are given by (4.55), (4.52) and (4.53).

5.1. Cusp locus C and its dual role in the spaces of source points and observation
points

The boundary terms [Eb
±

Bb
±
] receive contributions only from those source elements

whose (r̂, ẑ) coordinates fall within the region ∆ > 0 shown in figure 11, i.e. for
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which r̂ > r̂C(ẑ) (see (4.24)). In other words, [Eb
±

Bb
±
] are non-zero either when the

projection of the cusp locus of the bifurcation surface C onto the (r̂, ẑ) plane intersects
the domain S ′ described by (2.7), in which case r̂L 6 r̂C 6 r̂U for −ẑ0 6 ẑ6 ẑ0 as shown
in figure 11, or when r̂C 6 r̂L for these values of ẑ and the entire radial extent of the
source lies inside the bifurcation surface. The intersection of S ′ and ∆ > 0 which
constitutes the domain of integration in (5.8) thus changes as the location of the cusp
locus C (which depends on the position of the observation point) changes.

The parametric equation r̂ = r̂(ẑ), ϕ = ϕ(ẑ), of the cusp locus of the bifurcation
surface associated with a given observation point (r̂P, ϕ̂P, ẑP) at the observation
time tP was derived in (4.24). If we rewrite the two members of (4.24) in terms
of the dimensionless polar coordinates R̂P = (r̂2

P + ẑ2
P)

1/2, θP = arccos(ẑP/R̂P), of the
observation point P and solve them for θP and ϕP as functions of (r̂, ϕ, ẑ) and R̂P,
we obtain

C :


θP = θ

c
P(r̂, ẑ)≡ arccos

{
1

R̂Pr̂

[
ẑ
r̂
±
(
r̂2
− 1
)1/2

(
R̂2

P − 1−
ẑ2

r̂2

)1/2
]}

,

ϕP = ϕ
c
P(r̂, ϕ, ẑ)≡ ϕ − 2kπ+ arccos

(
1

r̂R̂P sin θP

)
,

(5.9)

where the ± correspond to the two halves of the cusp curve below and above the
plane ẑ= ẑP, respectively, and k is the positive integer enumerating successive rotation
periods (see (4.5) and (4.19)).

The angle between the asymptotes to the hyperbola representing the projection of
the cusp locus C onto the (r̂, ẑ)-plane, as well as the radial coordinate of the point
of intersection of this hyperbola with the plane ẑ= 0, depend on the coordinate θP of
the observation point (see figure 11). As the observation point P at a given distance
R̂P moves from the upper half of the rotation axis (θP = 0) towards the plane of
rotation (θP=π/2), the point of intersection of the cusp locus C with the plane ẑ= 0
gradually shifts across this plane from a large value (limR̂P→∞

r̂C= csc θP) of the radial
coordinate r̂ towards the upper boundary r̂U of the source distribution, across the radial
extent of the source distribution towards its lower boundary r̂L and eventually towards
the light cylinder r̂= 1. The cusp C will thus lie to the right of the source distribution
shown in figure 11 when 0< θP 6 θ c

L, where

θ c
L = θ

c
P|r̂=r̂U ,ẑ=ẑ0, (5.10)

intersects this source distribution while θ c
L 6 θP 6 θ c

U, where

θ c
U = θ

c
P|r̂=r̂L,ẑ=−ẑ0, (5.11)

and lies in 1 < r̂ < r̂L (to the left of this source distribution) when θ c
U 6 θP 6 π/2.

(Recall that r̂L and r̂U designate the inner and outer radial boundaries of the source
distribution (see figure 11).)

Thus the cusp locus C would intersect the support (2.7) of the source distribution
only if the observation point lies within one of the following conical shells,

θ c
L 6 θP 6 θ

c
U,

π− θ c
U 6 θP 6π− θ c

L.

}
(5.12)
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The first member of (5.9), on which the definitions in (5.10) and (5.11) are based,
reduces to

θ c
P = arcsin

(
1
r̂

)
−

(
ẑ
r̂

)
R̂−1

P ±
1
2

(
r̂2
− 1
)1/2

R̂−2
P + · · · (5.13)

in the far zone where R̂P � 1. The leading term in this expansion (in powers of
R̂−1

P ) together with (5.10) and (5.11) shows that, in the limit R̂P→∞, the angles θ c
L

and θ c
U reduce to arcsin(1/r̂U) and arcsin(1/r̂L), respectively. We shall see below that

the radiation field [E B] has radically differing characteristics in each of the three
disjoint regions of space separated by these two cones (see figure 12).

6. The part of the field arising from the volume of the source
6.1. Evaluation of [Ev Bv

] at observation points for which θ c
L 6 θP 6π− θ c

L

When the polar coordinate θP of the observation point lies in θ c
L 6 θP 6π− θ c

L, there
are volume elements within the source distribution S that approach P along the
radiation direction with a speed exceeding c at the retarded time. For such source
elements ∆ is positive. Depending on whether the ϕ̂ coordinates of these elements
lie inside or outside the bifurcation surface associated with the observation point P,
the Green’s function Gnj that appears in (5.7) has either the value Gin

nj or the value
Gout

nj (see (4.54)). There are also source elements lying in ∆ < 0 for which Gnj has
the value Gsub

nj (see figure 11). The expression in (5.7) can therefore be written as[
Ev

Bv

]
= m2

2∑
n=1

3∑
j=1

∫
S ′

r̂ dr̂ dẑ
[

ũnj
ṽnj

]{
H(∆)

[∫ ϕ̂+

ϕ̂−

dϕ̂ exp(−imϕ̂)Gin
nj

+

(∫ ϕ̂−

0
+

∫ 2π

ϕ̂+

)
dϕ̂ exp(−imϕ̂)Gout

nj

]
+H(−∆)

∫ 2π

0
dϕ̂ exp(−imϕ̂)Gsub

nj

}
,

(6.1)

in which Gin
nj, Gout

nj and Gsub
nj are given by (4.43), (4.44) and (4.47).

If we change the variable of integration in the integral over ϕ̂− 6 ϕ̂ 6 ϕ̂+ in (6.1)
from ϕ̂ to

ψ =−2c1 sin
(

1
3 arcsin χ

)
, (6.2)

in which χ depends on ϕ̂ as in (4.37), and note that the inversion of (6.2) yields

ϕ̂ = 1
3ψ

3
− c2

1ψ + c2 + ϕ̂P, (6.3)

we obtain∫ ϕ̂+

ϕ̂−

dϕ̂ exp(−imϕ̂)Gin
nj

= 2
∞∑

k=1

∫ c1

−c1

dψH(pnj + qnjψ) exp
[
−im

(
1
3
ψ3
− c2

1ψ + ϕ̂P + c2

)]
(6.4)

(see (4.43)). The variables of integration in the remaining two integrals inside the
square bracket in (6.1) can be similarly transformed from ϕ̂ to

Ψ = 2c1sgn(χ) cosh
(

1
3 arccosh|χ |

)
. (6.5)
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This transformation and its inverse

ϕ̂ = sgn(χ)
(

1
3Ψ

3
− c2

1Ψ
)
+ c2 + ϕ̂P, (6.6)

then result in(∫ ϕ̂−

0
+

∫ 2π

ϕ̂+

)
dϕ̂Gout

nj =

∞∑
k=1

(∫
−2c1

ΨL

+

∫ ΨU

2c1

)
dΨH(pnj + qnjΨ )

× exp
[
−im

(
1
3
Ψ 3
− c2

1Ψ + c2 + ϕ̂P

)]
, (6.7)

where

ΨL =−2c1 cosh
[

1
3

arccosh
(

3
2
ϕ̂P + c2

c3
1

)]
(6.8)

and

ΨU = 2c1 cosh
[

1
3

arccosh
(

3
2

2π− ϕ̂P − c2

c3
1

)]
(6.9)

are the values of Ψ corresponding to ϕ̂ = 0 and ϕ̂ = 2π, respectively (see (4.37)
and (4.44)). For any given observation point with the space–time coordinates (R̂P,
θ c

L 6 θP 6π− θ c
L, ϕP, tP) the value of k (in c2) that is selected by the step function H

(or its far-field version H∞) will automatically render the arguments of the arccosh
functions in (6.8) and (6.9) positive and yield a positive ΨU and a negative ΨL.

Rather than evaluating the remaining integral in (6.1) by substituting the expression
for Gsub

nj in its integrand, here I replace Gnj in (5.7) by its original representation (4.17)
to write this integral as

3∑
j=1

∫
S ′

r̂ dr̂ dẑH(−∆)
[

ũnj
ṽnj

] ∫ 2π

0
dϕ̂ exp(−imϕ̂)Gsub

nj =

∞∑
k=1

∫
S ′

r̂ dr̂ dẑ H(−∆)

×

∫ 2π

0
dϕ̂ exp(−imϕ̂)

∫ ϕ̂+2kπ

ϕ̂+2(k−1)π
dϕ
δ(g− φ)

R̂n

×

{
cos(ϕ − ϕP)

[
ũn1
ṽn1

]
+ sin(ϕ − ϕP)

[
ũn2
ṽn2

]
+

[
ũn3
ṽn3

]}
. (6.10)

Given that g is a monotonic function of ϕ in ∆< 0 and that the integrand in (6.10)
is periodic in ϕ with the period 2π, it makes no difference which period, i.e. which
value of k, makes the contribution received at the observation time. We can therefore
replace the range of the ϕ-integral by (0, 2π) (omitting the summation over k) and
perform the trivial integration with respect to ϕ̂ to obtain

3∑
j=1

∫
S ′

r̂ dr̂ dẑ H(−∆)
[

ũnj
ṽnj

] ∫ 2π

0
dϕ̂ exp(−imϕ̂)Gsub

nj = exp(−imϕ̂P)

∫
S ′

r̂ dr̂ dẑ H(−∆)

×

∫ 2π

0
dϕ

exp(−img)

R̂n

{
cos(ϕ − ϕP)

[
ũn1
ṽn1

]
+ sin(ϕ − ϕP)

[
ũn2
ṽn2

]
+

[
ũn3
ṽn3

]}
(6.11)

for the value of the last integral in (6.1).
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Inserting (6.4), (6.7) and (6.11) in (6.1), we arrive at[
Ev

Bv

]
=m2 exp(−imϕ̂P)

2∑
n=1

∫
S ′

r̂ dr̂ dẑ

{
H(∆)

3∑
j=1

∞∑
k=1

exp(−imc2)

[
ũnj
ṽnj

]

×

(∫ ΨU

ΨL

−

∫ 2c1

−2c1

+2
∫ c1

−c1

)
dΨ (pnj + qnjΨ )H exp

[
−im

(
1
3
Ψ 3
− c2

1Ψ

)]
+H(−∆)

×

∫ 2π

0
dϕ

exp(−img)

R̂n

(
cos(ϕ − ϕP)

[
ũn1
ṽn1

]
+ sin(ϕ − ϕP)

[
ũn2
ṽn2

]
+

[
ũn3
ṽn3

])}
,

(6.12)

where the integration variable ψ in (6.4) has been renamed Ψ and the limits of
integration in (6.7) have been placed in alternative positions. For small c1, the
difference between the values of the two integrals over −2c1 6 Ψ 6 2c1 and
−c1 6 Ψ 6 c1 is negligibly small compared to that of the first integral inside the
parentheses. Once these two integrals are ignored, the remaining k-dependent function
in the resulting expression can be summed,

∞∑
k=1

H= 1, (6.13)

since the k-dependence of c2 does not influence the value of exp(−imc2) (see (4.19),
(4.23) and (4.26)). This enables us to obtain the asymptotic value of the integral over
ΨL 6Ψ 6ΨU by simply extending its range,∫ ΨU

ΨL

dΨ (pnj + qnjΨ ) exp
[
−im

(
1
3
Ψ 3
− c2

1Ψ

)]
' 2

∫
∞

0
dΨ

{
pnj cos

[
m
(

1
3
Ψ 3
− c2

1Ψ

)]
− iqnjΨ sin

[
m
(

1
3
Ψ 3
− c2

1Ψ

)]}
, m� 1, (6.14)

because the phase of the exponential factor in its integrand is in a canonical form as
it stands.

The imaginary part of the Ψ -integral in (6.14) can be obtained by differentiating
the real part of this integral with respect to c2

1 and dividing the resulting expression
by m. From (9.5.1) of Olver et al. (2010) and (6.13) and (6.14) it follows, therefore,
that[

Ev

Bv

]
' m2 exp(−imϕ̂P)

2∑
n=1

∫
S ′

r̂ dr̂ dẑ

{
H(∆)

3∑
j=1

2πm−1/3 exp(−imc2)

[
ũnj
ṽnj

]
×
[

pnjAi
(
−m2/3c2

1

)
+ im−1/3qnjAi′

(
−m2/3c2

1

)]
+H(−∆)

×

∫ 2π

0
dϕ

exp(−img)

R̂n

(
cos(ϕ − ϕP)

[
ũn1
ṽn1

]
+ sin(ϕ − ϕP)

[
ũn2
ṽn2

]
+

[
ũn3
ṽn3

])}
,

θ c
L 6 θP 6π− θ c

L, m� 1, (6.15)
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in which Ai and Ai′ are the Airy function and the derivative of the Airy function with
respect to its argument, respectively.

On the other hand, evaluation of the leading term in the asymptotic expansion of
the ϕ-integral in[

Ev

Bv

]
= m2

2∑
n=1

∫
S ′

r̂ dr̂ dẑ
∫ 2π

0
dϕ

exp[−im(g+ ϕ̂P)]

R̂n

×

(
cos(ϕ − ϕP)

[
ũn1
ṽn1

]
+ sin(ϕ − ϕP)

[
ũn2
ṽn2

]
+

[
ũn3
ṽn3

])
(6.16)

by the method of Chester et al. (1957) results in exactly the same expression as that
which multiplies H(∆) in (6.15). Hence, the expression in (6.16) gives the combined
contributions of the source elements in both ∆< 0 and ∆> 0. It turns out that this
expression could have been directly obtained in the present case by performing the
integration with respect to t in (4.4), even though such a procedure is not generally
applicable to cases in which the retarded time is multi-valued (see appendix B).

6.2. Evaluation of [Ev Bv
] at observation points for which 0< θP 6 θ c

L or
π− θ c

L 6 θP <π

Equation (6.16) applies also to an observation point for which the entire source lies
outside the bifurcation surface, i.e. for which r̂U < r̂C (see figure 11). None of the
source elements in S ′ can approach observers that are located in 0 < θP 6 θ c

L or
π− θ c

L 6 θP < π with a superluminal speed along the radiation direction. As a result,
∆ is negative throughout the source distribution (2.7) and the field [Ev Bv

] that is
generated outside these two cones (i.e. outside the coloured regions in figure 12) is
the same as any other conventional radiation field.

It is customary, when deriving (6.16) from (4.4), to replace the term ∂ρ/∂t that
results from the integration with respect to t by −c∇ · j (from the equation of
continuity) and to apply a subsequent integration by parts with respect to x (by
means of the divergence theorem) to write the conventional radiation field as[

Ev

Bv

]
=

1
c2

∫
d3x dt

δ(t− tP + R/c)
R

n̂×
∂

∂t

[
n̂× j
−j

]
. (6.17)

However, of the two equivalent formulations given by (6.16) and (6.17), I will be
using the former which can be more easily combined with the expressions I will
derive for [Eb

±
Eb
±
].

7. The part of the field arising from the discontinuities of the Green’s function
7.1. Locus of stationary points, S, of the phase of the exponential factor in the

expression for [Eb
−

Bb
−
]

Despite the apparent symmetry between the two terms Gout
nj |ϕ̂± exp(−imϕ̂±) in the

expressions for [Eb
±

Bb
±
] in (5.8), these two contributions toward the value of the

unconventional radiation field differ radically: the phase ϕ̂− of the first exponential
factor is stationary, as a function of r̂, along a curve in the (r, ϕ, z) space while the
phase ϕ̂+ of the second exponential has no stationary points.
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Differentiation of the functions φ± = ϕ̂± − ϕ̂P = g(ϕ±) with respect to r̂ yields

∂φ±

∂ r̂
=

r̂2
− 1±∆1/2

r̂R̂±
(7.1)

(see (4.23)). Hence ∂φ−/∂ r̂ vanishes for all ẑ, along the projection r̂ = r̂S(ẑ) of the
following three-dimensional curve onto the (r, z) plane,

S :

{
r̂= r̂S(ẑ)= { 1

2(r̂
2
P + 1)− [ 14(r̂

2
P − 1)2 − (ẑ− ẑP)

2
]

1/2
}

1/2,

ϕ = ϕS(ẑ)= ϕP + 2kπ− arccos(r̂S/r̂P).
(7.2)

Along this curve, which is depicted in figure 11, the two derivatives ∂g/∂ϕ and ∂g/∂ r̂
of the argument of the Dirac delta function in (4.17) vanish simultaneously and ∆1/2

=

r̂2
− 1 (see (4.19) and (4.20)). At the point ẑ = ẑP on S the derivative ∂g/∂ ẑ also

vanishes (since g depends on ẑ only through (ẑ − ẑP)
2), so that the derivatives of

the phase of the Green’s function (4.17) with respect to all three of the integration
variables in the expression for the field [E B] (i.e. ∂g/∂ϕ, ∂g/∂ r̂ and ∂g/∂ ẑ) vanish
simultaneously. I refer to both S and its projection onto the (r, z) plane as the locus
of stationary points of φ−; whether it is S itself or its projection that is referred to
will be clear from the context.

Note that the coordinates of a far-field observation point need to satisfy R̂P >
2 cot θP csc θP for r̂S to be real; otherwise, the expression inside the curly brackets in
(7.2) would be negative. This constraint reflects the fact that the projection of locus
S onto the (r̂, ẑ) plane curves away from the rotation axis (see figure 11). The locus
S becomes more parallel to the rotation axis as the observation point moves into the
far zone. But, no matter how large R̂P may be, there are always ranges of values of
the polar angle θP (close to 0 and to π) for which the function φ− has no stationary
points.

By comparing (4.24) and (7.2), we can see that the radial separation between the
curves C and S in figure 11 is exceedingly small when the observation point lies either
in the far zone, R̂P� 1, or close to the plane of rotation θP=π/2, so that |ẑ− ẑP|� 1
throughout the localized source distribution (2.7),

r̂S − r̂C '

{
cot4 θP/(2R̂2

P sin θP), R̂P� 1
1
2(ẑ− ẑP)

4/(r̂2
P − 1)3, |ẑ− ẑP| � 1.

(7.3)

In other words, the locus S of the stationary points of φ− is essentially coincident with
the cusp locus of the bifurcation surface (i.e. with the locus C of the source elements
that approach the observation point with the speed of light and zero acceleration at
the retarded time) in these cases. This notwithstanding, (4.18) and (7.1) show that
the value of the function ∆ undergoes a large change over a small interval in r̂: it
vanishes on C, equals (r̂2

S − 1)2 on S and rapidly rises to as large a value as that of
R̂2

P (for R̂P � 1) a short distance away from C. We will see that the sharp change
in the value of Gout

j |φ− resulting from the proximity of the loci C and S renders the
numerical evaluation of [Eb

−
Bb
−
] in the far zone particularly challenging (§ 11).

If, in analogy with (5.9), we rewrite the two members of (7.2) in terms of the
dimensionless polar coordinates (R̂P, θP) of the observation point P and solve them
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for θP and ϕP as functions of (r̂, ẑ) and R̂P, we obtain

S :


θP = θ

s
P(r̂, ẑ)≡ arccos

{
1

R̂Pr̂

[
ẑ
r̂
+
(
r̂2
− 1
)1/2

(
R̂2

P − r̂2
−

ẑ2

r̂2

)1/2
]}

,

ϕP = ϕ
s
P(r̂, ẑ)≡ ϕ − 2kπ+ arccos

(
r̂

R̂P sin θP

)
,

(7.4)

where k is the positive integer enumerating successive rotation periods. Hence, the
projection of the segment ẑP > ẑ of the locus S onto the (r̂, ẑ) plane intersects the
source distribution (2.7) at a given −ẑ0 6 ẑ 6 ẑ0 if the colatitude of the observation
point P lies in the interval θ s

L 6 θP 6 θ s
U, where

θ s
L = θ

s
P|r̂=r̂U ,ẑ=ẑ0 (7.5)

and
θ s

U = θ
s
P|r̂=r̂L,ẑ=−ẑ0 . (7.6)

The radial coordinates of all source elements would exceed r̂S, on the other hand, if
θ s

U 6 θP 6π− θ s
U (see (2.7) and figure 11).

The loci C and S would both lie within the source distribution (2.7), at every value
of ẑ in −ẑ0 6 ẑ 6 ẑ0, if θL 6 θP 6 θU, where

θL = θ
s
P|r̂=r̂U ,ẑ=−ẑ0 (7.7)

and
θU = θ

c
P|r̂=r̂L,ẑ=ẑ0 . (7.8)

This can be seen by noting that as the polar coordinate of the observation point
increases (at a given R̂P) away from the rotation axis θP = 0 toward the equatorial
plane θP=π/2, the curve S intersects the entire ẑ-extent of the source once it passes
the corner r̂= r̂U, ẑ=−ẑ0 of the rectangular support S ′ of the source distribution (2.7)
shown in figure 11. It is curve C, on the other hand, that starts leaving the source
at the corner r̂ = r̂L, ẑ = ẑ0 of S ′ after S and C have swept across the r̂-extent of
the source. If θP continues to increase past the value π/2, then S and C (in that
order) start entering S ′ from the corner r̂= r̂L, ẑ= ẑ0 when θP=π− θU and will both
intersect the entire ẑ-extent of the source again when π− θU 6 θP 6π− θL.

There are intervals of θP near θL or θU for which only one of the curves C and S
intersects the source distribution, mostly over a limited section of −ẑ0 6 ẑ 6 ẑ0 (see
figure 11). Evaluation of the radiation field in these transitional intervals whose widths
rapidly shrink with increasing distance – as R̂−2

P for R̂P� 1 (see (7.3)) – will be dealt
with separately in § 9.

Note that the stationary point r̂= 1, ϕ=ϕP+ 2πk− arccos(1/r̂), ẑ= ẑP, at which all
three derivatives of g vanish and the curves C and S meet tangentially (see figure 11)
does not fall within the range of integration in (5.8) unless (i) there are source
elements whose speeds equal the speed of light c, and (ii) the observation point lies
sufficiently close to the plane of rotation θP=π/2 for its coordinate ẑP= R̂P cos θP to
match the coordinate ẑ of some source elements. For the source distribution described
in § 2, these requirements are met only if r̂L 6 1, i.e. the source elements at the inner
radius of the dielectric move with a speed that is smaller than or equal to c and the
observation point lies within the following angular interval

π

2
− arcsin

(
ẑ0

R̂P

)
6 θP 6

π

2
+ arcsin

(
ẑ0

R̂P

)
(7.9)
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encompassing the equatorial plane. Note also that the width of this interval decreases
with increasing distance as R̂−1

P in the far zone.

7.2. Paths of steepest descent for the exponential kernels exp(−imφ±)
Owing to the proximity of the loci C and S and the rapid variation of Gout

nj |φ− in
their vicinity, the contributions of the critical points discussed in the preceding section
toward the value of the integral in (5.8) cannot be taken into account properly without
resorting to a technique more discerning than a direct numerical integration. Here I
evaluate the r̂-integral in (5.8) by the method of steepest descent (see, e.g. Bender &
Orszag 1999). I regard the variable of integration r̂ as complex, i.e. write

r̂= u+ iv, (7.10)

in which u and v are real, and invoke Cauchy’s integral theorem to deform the original
path of integration into the contours of steepest descent in the complex (u, v)-plane
that pass through the critical points of the phases φ±(r̂, ẑ) at a given ẑ, i.e. through
the stationary point r̂= r̂S and the boundary points r̂= r̂C or r̂L and r̂= r̂U. We will
see that the constant m in the argument of the exponential factor in (5.8) need not be
particularly large for the main contributions to the values of [Eb

±
Bb
±
] to come from

a limited segment of each path next to the critical point from which it issues.
The first step is to write φ± as functions of (u, v, ẑ; r̂P, ẑP). Inserting (7.10) in (4.18)

and adopting the square root of the resulting complex expression which is positive on
the real axis v = 0, we obtain

∆1/2
= d exp(iδ), (7.11)

with
d= {[(r̂2

P − 1)(u2
− v2
− 1)− (ẑ− ẑP)

2
]

2
+ 4(r̂2

P − 1)2u2v2
}

1/4, (7.12)

and

δ =
1
2

arctan
2(r̂2

P − 1)uv
(r̂2

P − 1)(u2 − v2 − 1)− (ẑ− ẑP)2
. (7.13)

Equation (4.22) together with (7.10) and (7.11) then yields

R̂± = L± exp(iσ±), (7.14)

in which

L± = {[(ẑ− ẑP)
2
+ r̂2

P + u2
− v2
− 2(1∓ d cos δ)]2 + 4(uv ± d sin δ)2}1/4, (7.15)

and
σ± =

1
2

arctan
2(uv ± d sin δ)

(ẑ− ẑP)2 + r̂2
P + u2 − v2 − 2(1∓ d cos δ)

. (7.16)

From Euler’s formula exp(ix)= cos x+ i sin x and (4.19), we have

exp[i(ϕ± − ϕP)] =
1∓∆1/2

− iR̂±
r̂r̂P

, (7.17)

so that the corresponding expression for ϕ± can be written as

ϕ± = ϕP + 2kπ+ ξ± − η+ i ln[r̂P(u2
+ v2)1/2]

− (i/2) ln{1+ d2
+ L2

±
+ 2L± sin σ± ∓ 2d[L± sin(σ± − δ)+ cos δ]}, (7.18)
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with

ξ± = arctan
−L± cos σ± ∓ d sin δ

1∓ d cos δ + L± sin σ±
, (7.19)

and
η= arctan(v/u), (7.20)

in the light of (7.10), (7.11), (7.14) and (7.17).
Inserting the above expressions for ∆1/2, R̂± and ϕ± in (4.23), we finally arrive at

the following expressions for the real and imaginary parts of φ±= ϕ̂±− ϕ̂P as functions
of (u, v, ẑ, r̂P, ẑP),

Re[φ±(u, v)] = L± cos σ± + ξ± − η+ 2kπ, (7.21)

and

Im[φ±(u, v)] = L± sin σ± + ln[r̂P(u2
+ v2)1/2]

− (1/2) ln{1+ d2
+ L2

±
+ 2L± sin σ± ∓ 2d[L± sin(σ± − δ)+ cos δ]}. (7.22)

The path of steepest descent through a given critical point of φ− or φ+ is the curve in
the complex (u, v)-plane along which the corresponding phase −imϕ̂− or −imϕ̂+ of
the relevant exponential factor in (5.8) has a constant imaginary part and a negative
real part (Bender & Orszag 1999).

To use Cauchy’s theorem to express the integrals over r̂ in (5.8) as integrals over
such steepest-descent paths, we also need the Jacobians of the transformations that
map the real axis onto these paths. Along each path of steepest descent through a
critical point of either exp(−imφ−) or exp(−imφ+), the real part of the relevant φ±
is constant. So, setting the total derivative of Re[φ±(u, v)] equal to zero, we find that
the slope of a steepest-descent path is given by

dv
du
=−

∂

∂u
[Re(φ±)]

∂

∂v
[Re(φ±)]

=

∂

∂u
[Re(φ±)]

∂

∂u
[Im(φ±)]

=

Re
[
∂φ±

∂ r̂

]
Im
[
∂φ±

∂ r̂

] , (7.23)

where I have used the Cauchy–Riemann relation

∂

∂v
{Re[φ±(u, v)]} =−

∂

∂u
{Im[φ±(u, v)]}, (7.24)

and the following expression for the derivatives of the complex functions φ±(u, v)
with respect to the complex variable r̂= u+ iv:

∂φ±

∂ r̂
=
∂

∂u
{Re[φ±(u, v)]} + i

∂

∂u
{Im[φ±(u, v)]}. (7.25)

Equation (7.23) applies to a steepest-descent path through any critical point of either
φ− or φ+, irrespective of whether it is parametrized by u or v (i.e. whether its slope
is given by the last expression on the right-hand side of (7.23) or by the inverse of
this expression).
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The functions ∂φ±/∂ r̂ have the values derived in (7.1). Writing r̂ everywhere in the
right-hand side of (7.1) as u+ iv and making use of (7.11) and (7.14), we arrive at

∂φ±

∂ r̂
=

u2
− v2
− 1± d cos δ + i(2uv ± d sin δ)

(u2 + v2)1/2L± exp[i(σ± + η)]
, (7.26)

so that insertion of the real and imaginary parts of the above expression in the last
member of (7.23) yields

dv
du
= cot(ζ± − σ± − η), (7.27)

where
ζ± = arctan

2uv ± d sin δ
u2 − v2 − 1± d cos δ

. (7.28)

The Jacobian of the transformation from r̂ along the real axis to u or v along a
steepest-descent path through a critical point of φ± is therefore given by

J±u =
dr̂
du
= 1+ i cot(ζ± − σ± − η), (7.29)

or

J±v =
dr̂
dv
= tan(ζ± − σ± − η)+ i, (7.30)

depending, respectively, on whether the path in question is parametrized by u or by
v.

We shall see below that a variable, more suitable than either u or v, for
parametrizing the path of steepest descent through the critical point u= r̂C, v = 0, is
the radial distance w= [(u− r̂C)

2
+ v2
]

1/2 from this point. If we mark the complex r̂
plane by a set of polar coordinates centred on the point u= r̂C, v = 0, i.e. write

r̂= u+ iv = r̂C +w exp(iλ), (7.31)

and express the Cartesian coordinates u and v in (7.27) in terms of the polar
coordinates w and λ, we find that

dλ
dw
=

1
w

cot(ζ± − σ± − η+ λ). (7.32)

This together with (7.31) yields

J±w =
dr̂
dw
= exp(iλ)[1+ i cot(ζ± − σ± − η+ λ)] (7.33)

for the Jacobian of the transformation from r̂ along the real axis to w along a steepest-
descent path through the point r̂= r̂C (i.e. through w= 0).

It should be noted (for purposes of numerical evaluation of the above expressions)
that the real functions that are defined in terms of an arctan, i.e. δ, σ±, ξ±, ζ± and λ,
are continuous along each steepest-descent path. Any discontinuities arising from the
multi-valuedness of arctan should be removed by adopting an appropriate branch of
arctan. The multi-valued complex function c1(u+ iv, ẑ, r̂P, ẑP) is rendered continuous
along every one of the paths described in this section by choosing the cubic root
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of φ+− φ− in (4.26) as follows: along the lower branch of the path LS in figures 16
and 19, for which u< 0,

c1|LS,u<0 =

{
[

3
4(φ+ − φ−)]

1/3, arg(φ+ − φ−) > 0

exp(2iπ/3)[ 34(φ+ − φ−)]
1/3
, arg(φ+ − φ−)6 0,

(7.34)

along the paths LC in figures 16 and 18,

c1|LC =

{
exp(−2iπ/3)[ 34(φ+ − φ−)]

1/3, arg(φ+ − φ−) > 0

[
3
4(φ+ − φ−)]

1/3
, arg(φ+ − φ−)6 0,

(7.35)

and along all other paths c1 is given by [3(φ+ − φ−)/4]1/3 irrespective of the sign of
arg(φ+ − φ−). Along the path LS, the phase of c1(u + iv, ẑ, r̂P, ẑP) discontinuously
changes by 2π/3 across the saddle point at r̂ = r̂S. This correspondingly shifts the
phase of the Green’s function Gout

nj |LS by π across r̂= r̂S, a phase shift similar to that
encountered across a focal point in optics. The choice in (7.35) is dictated by the
analytic expression for the approximate value of the phase of c1|LC in the vicinity
of r̂ = r̂C (see (7.46) below). It is understood that the branch cuts for any complex
multi-valued functions are selected to lie outside the closed areas in the (u, v) plane
around which the contour integrations are performed.

7.3. Paths of steepest descent through the critical points of the phase φ− for
observation points in θL 6 θP 6 θU or π− θU 6 θP 6π− θL

At observation points for which the cusp locus C of the bifurcation surface intersects
the source distribution S ′, the r̂-integral in the expression for [Eb

−
Bb
−
] in (5.8)

extends over r̂C 6 r̂6 r̂U, since H(∆) in its integrand would vanish over the remaining
segment r̂L 6 r̂ < r̂C of the range of integration with respect to r̂ (see § 5.1 and
figure 11). The critical points of φ− for the asymptotic evaluation of the r̂-integral
for large m would consist, therefore, of the locus r̂ = r̂S of stationary points of the
phase ϕ̂− of the exponential and the boundaries r̂ = r̂C and r̂ = r̂U of the domain of
integration.

The path of steepest descent for the exponential factor exp(−imϕ̂−), in the complex
(u, v) plane, through the point u= r̂S, v = 0, at which φ−(u, v) has a saddle point is
parametrically described by the solution v = vS(u) of the transcendental equation

Re[φ−(u, v)] = φ−(r̂S, 0)≡ φS (7.36)

that satisfies vS(r̂S)= 0 and the condition

γS ≡ Im[φ−(u, v)]|v=vS(u) 6 0 (7.37)

at all relevant values of the curve parameter u and the fixed parameters (ẑ, r̂P, ẑP). I
denote this path which consists of two segments, one in v < 0 and one in v > 0, by LS
(see figures 13–15). From the plots of γS versus u, it can be seen that for vS(u)> 0,
the condition in (7.37) is satisfied by the segment u > r̂S of the solution v = vS(u)
(see figure 14), while for vS(u)6 0, the condition in (7.37) is satisfied by the segment
u 6 r̂S of this solution (see figure 15).

When the cusp curve of the bifurcation surface intersects the source distribution, as
in figure 11, the point r̂ = r̂C (rather than r̂ = r̂L) constitutes the lower boundary of
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FIGURE 13. The solutions v = vS(u) of (7.36) for ẑ = 0, R̂P = 100 and θP = π/3
in the vicinity of the saddle point (r̂S, 0) of the function Re[φ−(u, v)]. As shown by
figures 14 and 15, the segments here designated by LS satisfy the condition in (7.37) and
so constitute the paths of steepest descent through the saddle point (r̂S, 0).

FIGURE 14. The function γS(u), here plotted for ẑ = 0, R̂P = 100 and θP = π/3, shows
that of the two segments of the solution to (7.36) for which vS(u)> 0 (the upper segments
in figure 13), only the segment u > r̂S (on the right) satisfies the requirement in (7.37).

FIGURE 15. The function γS(u), here plotted for ẑ = 0, R̂P = 100 and θP = π/3, shows
that of the two segments of the solution to (7.36) for which vS(u)6 0 (the lower segments
in figure 13), only the segment u 6 r̂S (on the left) satisfies the requirement in (7.37).
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FIGURE 16. The complex r̂= u+ iv plane with a shift in the position of the imaginary
axis which places the saddle point (r̂S,0) of φ−(u, v, ẑ, R̂P, θP) at the origin. The curves LS,
LC and LU delineate the paths of steepest descent of exp(−imφ−) through the following
critical points, respectively: the saddle point (r̂S, 0), the cusp point (r̂C, 0) and the
boundary point (r̂U, 0). Here, the cusp point lies between the lower and upper boundaries
(r̂L,0) and (r̂U,0) of the source distribution (see figure 11). The segment r̂C+ ε6u6 r̂U of
the real axis, together with LS, LC, LU and the indentation Lε , surrounding the singularity
of Gout

j |φ=φ− at the cusp point, constitute the contours of integration for the evaluation of
the part [Eb

−
Bb
−
] of the field given by (7.59). The arrows show the adopted directions

of integration along the various contours. This figure is plotted for the following set of
values of the parameters: R̂P = 102, θP =π/3, ẑ= 0, m= 10 and r̂U = 1.15474.

the domain of integration with respect to r̂ in (5.8). In terms of the polar coordinates
introduced in (7.31), the path of steepest descent for exp[−imφ−(w, λ)] through the
boundary point r̂= r̂C is given by the solution λ=λ−C (w) of the transcendental equation

Re[φ−(w, λ)] = φ−|r̂=r̂C ≡ φC (7.38)

that satisfies λ−C (0)=−π/2 and the condition

γ −C ≡ Im[φ−(w, λ)]|λ=λ−C (w) 6 0, (7.39)

for all relevant values of (ẑ, r̂P, ẑP) and of the curve parameter w. This path is
designated as LC in figure 16. Note that the requirement λ−C (0)=−π/2 on the path
issuing from w = 0 is dictated by the fact that, of the two solutions λ = λ(w) of
(7.38) through r̂= r̂C, in −π/26 λ6 0 and in 06 λ6π/2, only the one reducing to
−π/2 at w= 0 for which dλ/dw is negative can satisfy (7.39) (see (7.33)).

In contrast to LS that passes through the point r̂= r̂S itself, the path LC cannot be
used as a contour of integration that includes the point r̂ = r̂C because the functions
Gout

nj |φ=φ± which appear in the integrand of the integral in (5.8) are both divergent at
r̂= r̂C. To be able to apply Cauchy’s integral theorem, we need to confine the domain
of integration in the complex plane to one in which the integrand is analytic. This may
be done in the present case by determining the nature of the singularities of Gout

nj |φ=φ±

at r̂= r̂C and accordingly indenting the paths of steepest descent through this point to
excise the singularities of Gout

nj |φ=φ± from the domain of integration.
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To approximate Gout
nj |φ=φ± in the neighbourhood of r̂= r̂C (in order to determine the

nature of their singularities at this point), we may note that φ± can be expanded into
a Taylor series in powers of (r̂− r̂C)

1/2 to obtain

φ± = φC +
r̂2

C − 1

r̂CR̂C

(
r̂− r̂C

)
±
[2r̂C(r̂2

P − 1)]3/2

3R̂3
C

(
r̂− r̂C

)3/2

+
(r̂2

C − 1)[r̂2
C(r̂

2
P − 1)(R̂2

C + 4)+ r̂2
C − 1]

2r̂2
CR̂5

C

(r̂− r̂C)
2

∓
r̂1/2

C (r̂2
P − 1)3/2[3R̂4

C + 4(r̂2
C − 1)(3R̂2

C + 5)]

5
√

2R̂7
C

(r̂− r̂C)
5/2
+ · · · , (7.40)

for fixed (ẑ, r̂P, ẑP), where R̂C = (r̂2
C r̂2

P − 1)1/2. Insertion of this in (4.26) shows that
the function c1 appearing in the expression for Gout

nj |φ=φ± in (4.55) has the value

c1 '
21/6

R̂C

[
r̂C(r̂2

P − 1)
(
r̂− r̂C

)]1/2

[
1−

3R̂4
C + 4(r̂2

C − 1)(3R̂2
C + 5)

20r̂CR̂4
C

(
r̂− r̂C

)]
(7.41)

near r̂ = r̂C. Evaluating c1, pj and qj near r̂ = r̂C from (7.41), (4.52) and (4.53) and
inserting the results in (4.55), we arrive at

Gout
nj |φ=φ± '

R̂2−n
C

3r̂2
C r̂P(r̂2

P − 1)(r̂− r̂C)

 1
−R̂C
r̂C r̂P


±

21/2r̂1/2
C (r̂2

P − 1)1/2(r̂− r̂C)
1/2

R̂2
C

2R̂2
C + 3n−1

(−1)n−1R̂C

3n−1r̂C r̂P

 , 0 6 r̂− r̂C� 1. (7.42)

The integrand in (5.8) therefore has both a simple pole and a branch point at r̂= r̂C
which should be circumvented by an indentation of the integration contour.

The semi-circular indentation designated as Lε in figure 16 is described by

r̂= r̂C + ε(r̂S − r̂C) exp(iλ), λ−0 6 λ6−π/2, (7.43)

where ε � 1 is a real constant and λ−0 is the value of λ at which this circular arc
intersects the path LC. Since ε is small, the value of λ−0 can be determined from the
approximate solution to Re(φ− − φC)= 0 for w� 1.

To derive approximate solutions to (7.38) in the vicinity of w = 0, i.e. to find
the paths LC and KC that are shown in figures 16 and 17 when w � 1, we can
insert (7.40) in (7.38) and set the first two terms of the resulting Taylor expansions
of Re(φ± − φC) in powers of w1/2 equal to zero. This leads to the following two
equations for the dependences λ±C (w) of λ on w along KC and LC respectively:

κ cos
(

3
2λ
±

C

)
± 3 cos λ±C ' 0, w� 1, (7.44)

where

κ =
23/2r̂5/2

C (r̂2
P − 1)3/2w1/2

(r̂2
C − 1)(r̂2

C r̂2
P − 1)

. (7.45)
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FIGURE 17. The complex r̂= u+ iv plane with a shift in the position of the imaginary
axis which places the saddle point (r̂S, 0) of φ−(u, v, ẑ, R̂P, θP) at the origin. The curves
KC and KU delineate the paths of steepest descent of exp(−imφ+) through the cusp point
(r̂C, 0) and the boundary point (r̂U, 0), respectively. Here, the cusp point lies between the
lower and upper boundaries (r̂L, 0) and (r̂U, 0) of the source distribution (see figure 11).
The segment r̂C + ε 6 u 6 r̂U of the real axis, together with KS, KU and the indentation
Kε , surrounding the singularity of Gout

j |φ=φ+ at the cusp point, constitute the contours of
integration for the evaluation of the part [Eb

+
Bb
+
] of the field given by (7.61). The arrows

show the adopted directions of integration along the various contours. This figure is plotted
for the same set of values of the parameters as those for figure 16.

The function cos((3/2)λ±) in (7.44) can be written in terms of cos((1/2)λ±) to
obtain a cubic equation for cos((1/2)λ±) whose relevant roots, i.e. the roots satisfying
limw→0 λ

±

C =−π/2 and the constraints (7.39) and (7.54) below, are given by

λ±C '−2 arccos
{
∓κ−1

[(
1+ κ2

)1/2
cos
(
µ± 2

3π
)
+

1
2

]}
, w� 1, (7.46)

with

µ=
1
3

arccos
1− 3

2κ
2

(1+ κ2)3/2
. (7.47)

Note that, in contrast to their Taylor expansions in powers of w1/2, the above
expressions for λ±C are valid also at ẑ= ẑP where κ diverges.

The angle λ−0 in the description of the indentation Lε in (7.43) is obtained by
evaluating the above expression for λ−C at w= ε(r̂S − r̂C),

λ−0 = λ
−

C |w=ε(r̂S−r̂C). (7.48)

Note that when w = ε(r̂S − r̂C) and the observation point is sufficiently close to the
equatorial plane θP = π/2 for |ẑ− ẑP| to be small throughout the source distribution
(2.7), κ assumes a small value,

κ|w=ε(r̂S−r̂C) ' 2ε1/2, |ẑ− ẑP| � 1, (7.49)

(see (4.24) and (7.3)). From the following Taylor expansion of (7.46) in powers of κ

λ±C =−π/2± κ/(3
√

2)+ · · · , w� 1, ẑ 6= ẑP, (7.50)
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it follows, therefore, that λ±C +π/2 approach zero like ε1/2 as ε tends to zero. That this
holds true also when ẑ= ẑP follows from a corresponding numerical analysis based on
the exact expression for Re(φ± − φC).

Finally, the path of steepest descent of exp[−imφ−(u, v)] through the boundary point
r̂= r̂U is given by the solution u= u−U(v) of the transcendental equation

Re[φ−(u, v)] = φ−(r̂U, 0)≡ φ−U (7.51)

that satisfies u−U(0)= r̂U and the condition

γ −U ≡ Im[φ−(u, v)]|u=u−U (v)
6 0. (7.52)

In contrast to (7.36) which was solved for v as a function of u, (7.51) has to be solved
for u as a function of v because, otherwise, the Jacobian of the transformation from
r̂ to u+ iv(u) would diverge at the point r̂ = r̂U (see (7.29)). From the plots of γ −U
as a function of v for u = u−U(v) 6 0 and u = u−U(v) > 0, similar to those shown in
figures 14 and 15, it follows that the requirement expressed in (7.52) is met only by
the segment of u−U(v) that lies in v > 0. This segment which constitutes the path of
steepest descent through r̂= r̂U is designated as LU in figure 16.

7.4. Paths of steepest descent through the critical points of the phase φ+ for
observation points in θL 6 θP 6 θU or π− θU 6 θP 6π− θL

In contrast to ϕ̂−, the function ϕ̂+ that appears in the expression for [Eb
+

Bb
+
] in (5.8)

has no extrema. So, at observation points for which r̂L< r̂C, the kernel exp(−imϕ̂+) of
the r̂-integral in (5.8) has only two critical points: the point r̂= r̂C at which the cusp
intersects the source distribution, at a given ẑ, and the boundary point r̂= r̂U. Since c1

vanishes at r̂= r̂C, the value of the Green’s function Gout
nj on φ = φ+, too, diverges at

this point (see (7.42)). As in § 7.3, therefore, we need to excise this singularity from
the domain of integration in the complex plane by introducing an indentation in the
path of steepest descent through r̂= r̂C.

The path of steepest descent for exp[−imφ+(w, λ)] through the boundary point r̂=
r̂C is given by the solution λ= λ+C (w) of the transcendental equation

Re[φ+(w, λ)] = φ+|r̂=r̂C = φC (7.53)

that satisfies λ+C (0)=−π/2 and the condition

γ +C ≡ Im[φ+(w, λ)]|λ=λ+C (w) 6 0, (7.54)

for all relevant values of (ẑ, r̂P, ẑP) and of the curve parameter w. From the plots of
γ +C as a function of w for −π/2 6 λ+C 6 0 and 0 6 λ+C 6π/2, similar to those shown
in figures 14 and 15, it follows that the requirement expressed in (7.54) is met only
by the segment of λ+C (w) that lies in −π/2 6 λ6−π/3. This path is designated as
KC in figure 17.

The semi-circular indentation designated as Kε in figure 17 is described by

r̂= r̂C + ε(r̂S − r̂C) exp(iλ), −π/2 6 λ6 λ+0 , (7.55)
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where ε is the small parameter appearing in the description of Lε , (7.43), and

λ+0 = λ
+

C |w=ε(r̂S−r̂C) (7.56)

is the angle at which this circular arc intersects KC (see (7.46)).
The path of steepest descent for exp(−imϕ̂+) through the boundary point r̂= r̂U is

given by the solution u= u+U(v) of the transcendental equation

Re[φ+(u, v)] = φ+(r̂U, 0)≡ φ+U , (7.57)

which satisfies the condition

γ +U ≡ Im[φ+(u, v)]|u=u+U (v)
6 0. (7.58)

Invoking, this time, the plots of γ +U as a function of v for u+U(v)6 0 and u+U(v)> 0,
we find that the requirement expressed in (7.58) is met only by the segment of u+U(v)
that lies in v 6 0. This path is designated as KU in figure 17.

7.5. Asymptotic value of [Eb
−

Bb
−
] for large m in θL 6 θP 6 θU or

π− θU 6 θP 6π− θL

Having gone into the complex plane r̂ = u + iv, and having delineated the paths of
steepest descent for the factor exp(−imϕ̂−) in the integrand of the expression for the
field [Eb

−
Bb
−
] in (5.8), we are now in a position to use Cauchy’s theorem to replace

the r̂-integral over the segment r̂C 6 r̂ 6 r̂U of the real axis in this expression by
the sum of a set of integrals over the steepest-descent paths LC, LS and LU passing
through the critical points of this integral and over the semi-circular path Lε bypassing
the singularity of its integrand (see figure 16). Since the integrals over the steepest-
descent paths each have a kernel that exponentially decays away from the critical
points r̂ = r̂C, r̂ = r̂S and r̂ = r̂U, the requirement (set by Cauchy’s theorem) that
these paths should form a closed contour together with the segment r̂C 6 u 6 r̂U of
the real axis is not essential for obtaining an asymptotic approximation to the value
of [Eb

−
Bb
−
]. Even for moderate values (∼10) of the integer m that appears in the

arguments of the exponential factors exp(mγ −C ), exp(mγ −S ) and exp(mγ −U ) in (7.59)
below, accurate values of the integrals over the steepest-descent paths can be obtained
by performing each integration over only a limited segment of the corresponding path
adjacent to the critical point from which it issues. The length of the segment over
which each integral needs to be evaluated is dictated by the value of m and the
degree of required accuracy. For a given level of accuracy, the larger the value of
the harmonic number m, the shorter is the required segment.

Disregarding the negligible contributions from any connecting paths away from the
critical points r̂ = r̂C, r̂ = r̂S, and r̂ = r̂U that may be needed to construct a closed
contour out of LC, LS, LU, Lε and the segment of the real axis between r̂C and r̂U in
figure 16, we can write the r̂-integral in the expression for [Eb

−
Bb
−
] (which extends

over r̂C 6 r̂ 6 r̂U) as the sum of the integrals along the steepest-descent paths LC, LS,
LU and Lε since the path along the real axis is traversed in the direction of decreasing
r̂ (see, e.g. Bender & Orszag 1999). The exponent −imϕ̂− of the exponential factor
in (5.8) has the values m[γ −C − i(φC + ϕ̂P)], m[γS − i(φS + ϕ̂P)] and m[γ −U − i(φ−U +
ϕ̂P)] along LC, LS and LU, respectively (see (4.23), (7.36)–(7.39), (7.51) and (7.52)).
Hence, in cases where the cusp locus C of the bifurcation surface associated with the
observation point P intersects the source distribution (2.7), the asymptotic value of
[Eb
−

Bb
−
] for large m is given by
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Eb
−

Bb
−

]
' im exp(−imϕ̂P)

∫ ẑ0

−ẑ0

dẑ

{
exp(−imφS)

∫
LS

du exp(mγS)J−u

[
Λ−
Γ−

]∣∣∣∣
r̂=u+ivS

+ exp(−imφ−U )
∫
LU

dv exp(mγ −U )J
−

v

[
Λ−
Γ−

]∣∣∣∣
r̂=u−U+iv

+ exp(−imφC)

∫
LC

dw exp(mγ −C )J
−

w

[
Λ−
Γ−

]∣∣∣∣
r̂=r̂C+w exp(iλ−C )

+ iε(r̂S − r̂C)

∫ λ−0
−π/2

dλ exp[i(λ−mφ−)]
[
Λ−
Γ−

]∣∣∣∣
r̂=r̂C+ε(r̂S−r̂C) exp(iλ)

}
,

m� 1, θL 6 θP 6 θU, π− θU 6 θP 6π− θL, (7.59)

where [
Λ±
Γ±

]
=

2∑
n=1

3∑
j=1

r̂(pnj ± 2c1qnj)

3c2
1

[
ũnj
ṽnj

]
(7.60)

(see (4.55) and (5.8)). In this expression, the functions θL and θU and the Jacobians
J−u , J−v and J−w are defined in (7.7), (7.8), (7.29), (7.30) and (7.33), respectively, and
the value of λ−0 is given by (7.48).

Integrand of the integral over LS in (7.59) is singular at u = 0, ẑ = ẑP. From the
approximate expression for the integrand of the original integral in (5.8) in the vicinity
of r̂= r̂S at a given value of ẑ 6= ẑP, we find, however, that this singularity is integrable:
outcome of the integration with respect to r̂ of the approximate expression in question
turns out to have a logarithmic singularity at ẑ= ẑP.

The numerical computations described in § 11 show that the combined contributions
of the paths LC, KC, LU and KU (in figures 16 and 17) toward the value of the field
decays spherically with distance. The non-spherically decaying contribution – which
turns out to be more dominant and less steeply diminishing with distance the larger
the value of m – is that arising from the path LS which goes through the saddle point
at r̂= r̂S.

7.6. Asymptotic value of [Eb
+

Bb
+
] for large m in θL 6 θP 6 θU or

π− θU 6 θP 6π− θL

The phase ϕ̂+ of the exponential in the expression for [Eb
+

Bb
+
] in (5.8) has no

extrema but the function Gout
nj |φ=φ+ that multiplies this exponential is singular (see

(7.42)). Once the singularity of its integrand at r̂ = r̂C is circumvented by means of
the indentation Kε shown in figure 17, the r̂-integral over r̂C 6 r̂ 6 r̂U in (5.8) can be
approximated by the sum of the integrals over the steepest-descent paths KC and KU
and the indentation Kε to obtain[

Eb
+

Bb
+

]
' im exp(−imϕ̂P)

∫ ẑ0

−ẑ0

dẑ

{
exp(−imφ+U )

∫
KU

dv exp(mγ +U )J
+

v

[
Λ+
Γ+

]∣∣∣∣
r̂=u+U+iv

+ exp(−imφC)

∫
KC

dw exp(mγ +C )J
+

w

[
Λ+
Γ+

]∣∣∣∣
r̂=r̂C+w exp(iλ+C )

+ iε(r̂S − r̂C)

∫ λ+0
−π/2

dλ exp[i(λ−mφ+)]
[
Λ+
Γ+

]∣∣∣∣
r̂=r̂C+ε(r̂S−r̂C) exp(iλ)

}
,

m� 1, θL 6 θP 6 θU, π− θU 6 θP 6π− θL, (7.61)
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where the functions Λ+, Γ+, J+v and λ+0 are given by (7.60), (7.30) and (7.56),
respectively. The domain of validity of this expression in the space of observation
points, which is the same as that of (7.59), is shown in figure 12.

7.7. Resultant of the boundary fields in θL 6 θP 6 θU or π− θU 6 θP 6π− θL

The difference between the expressions in (7.61) and (7.59), which constitutes the part
of the radiation field [E B] denoted as [Eb

+
−Eb

−
Bb
+
−Bb

−
] (see (4.60)–(4.62)), can

be simplified by noting that not only do the leading terms in the Laurent expansions
of Gout

nj |φ=φ− and Gout
nj |φ=φ+ about the point r̂ = r̂C equal one another (see (7.42)), but

also λ−0 and λ+0 both approach the value −π/2 in the limit ε → 0 (see (7.48) and
(7.56)). This means that, as ε tends to zero, the values both of the integrands and of
the integration limits in the integrals over λ in (7.59) and (7.61) approach one another
thus rendering the divergent parts of these two integrals equal.

From (7.42) and the corresponding expansions of exp(mγ ±C )J±w in powers of w1/2 it
follows that, in the vicinity of the singular point w = 0, the difference between the
integrands of the integrals over LC and KC in (7.59) and (7.61) is given by

exp(mγ +C )J
+

w

[
Λ+
Γ+

]∣∣∣∣
r̂=r̂C+w exp(iλ+C )

− exp(mγ −C )J
−

w

[
Λ−
Γ−

]∣∣∣∣
r̂=r̂C+w exp(iλ−C )

'

2∑
n=1

R̂2−n
C

3r̂C r̂P(r̂2
P − 1)w1/2

{
1

w1/2
[J+w exp(mγ +C − iλ+C )− J−w exp(mγ −C − iλ−C )]

×

([
ũn1
ṽn1

]
− R̂C

[
ũn2
ṽn2

]
+ r̂C r̂P

[
ũn3
ṽn3

])
+
[2r̂C(r̂2

P − 1)]1/2

R̂2
C

[J+w exp(mγ +C − iλ+C/2)+ J−w exp(mγ −C − iλ−C/2)]

×

(
(2R̂2

C + 3n−1)

[
ũn1
ṽn1

]
+ (−1)n−1R̂C

[
ũn2
ṽn2

]
+ 3n−1r̂C r̂P

[
ũn3
ṽn3

])}
,

w� 1, (7.62)

a function whose singularity at w= 0 is integrable: it can be seen from (7.50) and the
corresponding expansions

J±w =−i± κ/(2
√

2)+ · · · , w� 1, ẑ 6= ẑP, (7.63)

γ ±C =−
r̂2

C − 1

r̂CR̂C

w±
2r̂3/2

C (r̂2
P − 1)3/2

3R̂3
C

w3/2
+ · · · , w� 1, (7.64)

that the factor J+w exp(mγ +C )− J−w exp(mγ −C ) vanishes like w1/2 in the limit w→ 0, so
that the right-hand side of (7.62) diverges as w−1/2 in this limit. This can be shown
to hold true also for ẑ= ẑP by means of a numerical computation.

In other words, the non-integrable singularities of the two integrands in the integrals
over LC and KC partially cancel to yield an integrable singularity. That this makes
the integrals over the indentations Lε and Kε (which were introduced to circumvent
the non-integrable singularities of [Λ± Γ±] at w = 0) superfluous is, at the same
time, confirmed by the fact that the integrals over λ cancel out of the expression for
[Eb
+
−Eb

−
Bb
+
−Bb

−
] in the limit ε→ 0.
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Combining (7.59) and (7.61), we therefore find that[
Eb
+
−Eb

−

Bb
+
−Bb

−

]
' im exp(−imϕ̂P)

∫ ẑ0

−ẑ0

dẑ

×

{
exp(−imφ+U )

∫
KU

dv exp(mγ +U )J
+

v

[
Λ+
Γ+

]∣∣∣∣
r̂=u+U+iv

− exp(−imφ−U )
∫
LU

dv exp(mγ −U )J
−

v

[
Λ−
Γ−

]∣∣∣∣
r̂=u−U+iv

− exp(−imφS)

∫
LS

du exp(mγS)J−u

[
Λ−
Γ−

]∣∣∣∣
r̂=u+ivS

+ exp(−imφC) lim
ε→0

∫ w0

ε(r̂S−r̂C)

dw
∑
ι=±

ι exp(mγ ιC)J
ι
w

[
Λι

Γι

]∣∣∣∣
r̂=r̂C+w exp(iλιC)

}
,

m� 1, θL 6 θP 6 θU, π− θU 6 θP 6π− θL, (7.65)

where w0 is a constant of the order of unity denoting the value of w beyond
which any contributions from the points along the paths LC and KC are negligible.
This expression applies to the case where the cusp locus C intersects the source
distribution.

The fact that the singularities of the integrals over LC + KC and over LS are
integrable even when the ranges of these integrals include values of ẑ that match
that of ẑP implies that the coincidence of the loci C and S at ẑ = ẑP (in figure 11)
does not vitiate the applicability of the steepest-descent method used to evaluate the
r̂-integral in (5.8). The length of the path connecting C and S along the real axis
of the complex (u, v)-plane (in figure 16) shrinks to zero for those source elements
whose ẑ-coordinate equals the ẑP-coordinate of the observation point (see (7.3)). There
is nevertheless a non-zero contribution toward the value of the r̂-integral in question
from this path in the limit ẑ→ ẑP because the coalescence of C and S results, at the
same time, in a higher-order singularity of the integrand in (5.8): all three derivatives
(∂g/∂ r̂, ∂g/∂ϕ and ∂g/∂ ẑ) of the argument of the Dirac delta function in (4.17)
with respect to the source coordinates, as well as the second derivative ∂2g/∂ϕ2

simultaneously vanish at the site (r̂ = 1, ϕ = ϕP − 3π/2, ẑ = ẑP) of this coalescence
(see § 7.1).

7.8. Resultant of the boundary fields in θU 6 θP 6π− θU

When the source distribution lies in ∆ > 0 in its entirety and neither of the loci C
and S intersect it (see figure 11), there is no need to invoke the method of steepest
descent for evaluating the r̂-integrals in the expressions for [Eb

±
Bb
±
]. Given that the

phases φ± are similar functions of r̂ in this case, it is simpler and so more convenient
to evaluate the following combination of the two integrals in (5.8) directly,[

Eb
+
−Eb

−

Bb
+
−Bb

−

]
'

2
3

m exp(−imϕ̂P)

2∑
n=1

3∑
j=1

∫
S ′

r̂ dr̂ dẑ c−1
1 exp(−imc2)

[
ũnj
ṽnj

]
×

[
c−1

1 pnj sin
(

2
3

mc3
1

)
+ 2iqnj cos

(
2
3

mc3
1

)]
, m� 1, θU 6 θP 6π− θU.

(7.66)
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Here I have used (4.55) for the asymptotic values of Gout
nj |ϕ̂=ϕ̂± and have written φ±

in terms of c1 and c2 with the aid of (4.26).

8. Total radiation field outside the transitional intervals

In this section I assemble and combine the expressions derived in the preceding
sections for the parts [Ev Bv

] and [Eb
+
−Eb

−
Bb
+
−Bb

−
] of the radiation field [E B]

in various regions of space (see (4.60)).
At observation points for which 0< θP 6 θL or π− θL 6 θP <π (see figure 12), the

field consists entirely of the part arising from the volume of the source which is given
by

[
E
B

]
= m2 exp(−imϕ̂P)

2∑
n=1

∫ ẑ0

−ẑ0

dẑ
∫ r̂U

r̂L

dr̂ r̂
∫ 2π

0
dϕ

exp(−img)

R̂n

(
cos(ϕ − ϕP)

[
ũn1
ṽn1

]
+ sin(ϕ − ϕP)

[
ũn2
ṽn2

]
+

[
ũn3
ṽn3

])
, 0< θP 6 θL or π− θL 6 θP <π (8.1)

(see § 6.2). Note that at such observation points ∆ is negative for the coordinates
(r̂, ẑ) of all volume elements of the source. This field has the same characteristics
as a conventional radiation field.

At observation points for which θL 6 θP 6 θU or π− θU 6 θP 6π− θL, equation (4.60),
(6.16), and (7.65) jointly yield

[
E
B

]
' exp(−imϕ̂P)

{
m2

2∑
n=1

∫ ẑ0

−ẑ0

dẑ
∫ r̂U

r̂L

dr̂ r̂
∫ 2π

0
dϕ

exp(−img)

R̂n

×

(
cos(ϕ − ϕP)

[
ũn1
ṽn1

]
+ sin(ϕ − ϕP)

[
ũn2
ṽn2

]
+

[
ũn3
ṽn3

])
+ im

×

∫ ẑ0

−ẑ0

dẑ

[
exp(−imφC) lim

ε→0

∫ w0

ε(r̂S−r̂C)

dw
∑
ι=±

ι exp(mγ ιC)J
ι
w

[
Λι

Γι

]∣∣∣∣
r̂=r̂C+w exp(iλιC)

+ exp(−imφ+U )
∫
KU

dv exp(mγ +U )J
+

v

[
Λ+
Γ+

]∣∣∣∣
r̂=u+U+iv

− exp(−imφ−U )
∫
LU

dv exp(mγ −U )J
−

v

[
Λ−
Γ−

]∣∣∣∣
r̂=u−U+iv

− exp(−imφS)

∫
LS

du exp(mγS)J−u

[
Λ−
Γ−

]∣∣∣∣
r̂=u+ivS

]}
,

m� 1, θL 6 θP 6 θU, π− θU 6 θP 6π− θL. (8.2)

When the superluminally moving part of the source distribution extends as far as the
light cylinder, i.e. when r̂L = 1, the angle θU equals π/2 and (8.1) and (8.2) jointly
describe the field throughout space (see figure 12).

But when r̂L > 1, as in figure 11, there is a third region, θU 6 θP 6π− θU (coloured
yellow in figure 12), in which the field is described by

https://doi.org/10.1017/S0022377819000382 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000382


52 H. Ardavan[
E
B

]
= 2m exp(−imϕ̂P)

2∑
n=1

3∑
j=1

∫ ẑ0

−ẑ0

dẑ
∫ r̂U

r̂L

dr̂ r̂
{

pnj

[
πm2/3Ai

(
−m2/3c2

1

)
+

1
3

c−2
1 sin

(
2
3

mc3
1

)]
+ iqnj

[
πm1/3Ai′

(
−m2/3c2

1

)
+

2
3

c−1
1 cos

(
2
3

mc3
1

)]}
× exp(−imc2)

[
ũnj
ṽnj

]
, m� 1, θU 6 θP 6π− θU, (8.3)

as can be seen from (4.60), (6.15) and (7.66). The step function H(∆) in (6.15) is
omitted here because, at observation points for which θU 6 θP 6π− θU, the values of
the radial coordinates r̂ of all volume elements of the source exceed that of r̂C.

In the case of a radiation problem involving caustics, such as the present one, it
makes a difference whether the generated field is calculated prior to proceeding to
the far-field limit or vice versa. This is because the far-field approximation replaces
spherical wave fronts by planar ones thereby vitiating the formation of caustics.
Equations (8.1)–(8.3), which hold true irrespective of whether the observer is located
in the near or the far zone, can now be numerically evaluated in the radiation field,
where R̂P � 1. For an informed interpretation of the numerical results (reported in
§ 11) it would be helpful to inspect the far-field versions of the quantities ∆, c1, c2,
pnj and qnj that appear in the above equations by replacing them with the following
leading terms in their Taylor expansions in powers of R̂−1

P :

∆' (r̂2 sin2 θP − 1)R̂2
P, (8.4)

c1 ' (3τ/2)1/3 , (8.5)

c2 ' R̂P − ẑ cos θP + 3π/2, (8.6)

pn1 ' (r̂ sin θP)
−1(r̂2 sin2 θP − 1)−1/4(12τ)1/6R̂−n−1

P , (8.7)
pn2 '−R̂Ppn1, pn3 ' r̂ sin θPR̂Ppn1, (8.8a,b)

qn1 ' (16/3)1/6(r̂ sin θP)
−1(r̂2 sin2 θP − 1)1/4τ−1/6R̂−n

P , (8.9)

and

qn2 '
1
2
(−1)n−1R̂−1

P qn1, qn3 '
3n−1

2
r̂ sin θPR̂−1

P qn1, (8.10a,b)

where
τ = (r̂2 sin2 θP − 1)1/2 − arctan(r̂2 sin2 θP − 1)1/2 (8.11)

(see (4.18), (4.26), (4.52) and (4.53)). Note that the expression in (8.3), for instance,
consists of two types of terms for each value of j: the ones involving pn2, pn3 and
qn1 which diminish as R̂−n

P with increasing R̂P and the ones involving pn1, qn2 and qn3

which diminish as R̂−n−1
P with distance. Both types of terms need to be kept because

there are isolated observation points at which the terms that decay as R̂−n
P cancel out

in the expressions for E or B and the corresponding field decays as R̂−n−1
P .

9. Evaluation of the field in transitional intervals

The radiation field [E B] changes rapidly over the narrow angular intervals θ c
L 6

θP 6 θL and θU 6 θP 6 θ s
U (see (5.10), and (7.6)–(7.8)). In these transitional intervals, at

least one of the loci C and S intersects the source distribution across either the entire
or a portion of its ẑ-extent (see figure 11) but C and S do not both intersect the source
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FIGURE 18. Paths of steepest descent of the exponential kernel exp(−imφ−) for an
observation point in the transitional interval θ c

L < θP < θ s
L and a source element within

ẑc
U 6 ẑ6 ẑ0. This figure is plotted for the following set of values of the parameters: R̂P=10,
θP = 181π/540, m = 10, ẑ = −0.025, r̂U = 1.1547. Radial coordinate r̂S = 1.1548 of the
stationary point of the phase φ− here exceeds the outer radius r̂U of the source distribution.

at every value of ẑ in −ẑ0 6 ẑ 6 ẑ0 as they do in θL 6 θP 6 θU. The angular widths
of such intervals rapidly decrease with increasing distance: as R̂−2

P for R̂P � 1 (see
(7.3)). Nevertheless, the total flux of energy close to the source (a quantity which I
will use to normalize the Poynting flux in § 11) cannot be accurately evaluated without
including the contributions from these intervals.

At observation points for which θ c
L <θP<θ

s
L and ẑP> 0, the cusp locus C intersects

the source distribution (2.7) over ẑc
U 6 ẑ 6 ẑ0, where

ẑc
U = ẑP − (r̂2

P − 1)1/2(r̂2
U − 1)1/2 (9.1)

(see (4.24)), while the locus S lies outside the source. The critical points contributing
toward the asymptotic value of the r̂-integral in the expression for [Eb

−
Bb
−
] in (5.8)

are therefore only the ones at r̂ = r̂C and r̂ = r̂U. The paths of steepest descent that
issue from these critical points are found (in the same way as in § 7.2) to be those
shown in figure 18. The critical points contributing toward the asymptotic value of the
r̂-integral in the expression for [Eb

+
Bb
+
] are the same as those shown in figure 17

except that r̂S is here greater than r̂U and so S falls outside the range of integration,
instead of inside it. The total radiation field can be evaluated in this case from a
version of (8.2) in which the integral over LS is absent and the second integration
with respect to ẑ runs from ẑc

U to ẑ0.
At observation points for which θ s

L <θP <θU, ẑP > 0, curves S and C both intersect
the source distribution (2.7) but over the limited ranges ẑs

U 6 ẑ6 ẑ0 and max(ẑc
U,−ẑ0)6

ẑ 6 ẑ0, respectively, where

ẑs
U = ẑP − (r̂2

P − r̂2
U)

1/2(r̂2
U − 1)1/2 (9.2)

(see (7.2)). For ẑs
U 6 ẑ 6 ẑ0 the critical points of the r̂-integrals in (5.8) and their

corresponding paths of steepest descent are the same as those shown in figures 16
and 17. For max(ẑc

U, −ẑ0) 6 ẑ 6 ẑ0, on the other hand, the critical points are only
r̂ = r̂C and r̂ = r̂U for which the paths of steepest descent are as shown in figure 18.
The total radiation field is in this case given by a version of (8.2) in which the second
integration with respect to ẑ is split into two integrals with differing ranges and the
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contribution from LS is omitted from the integrand of the integral over max(ẑc
U,−ẑ0)6

ẑ 6 ẑ0.
Another set of transitional intervals occurs when the value of the polar coordinate

θP of the observation point exceeds that of θU (see (7.8)) but is smaller than both
θ s

P|r̂=r̂L,ẑ=ẑ0 and θ c
U (see (7.4) and (5.11)). In this case, there are contributions toward the

value of the r̂-integral in (5.8) from the critical points r̂L, r̂S and r̂U of the exponential
kernel exp(−imφ−) if ẑc

L 6 ẑ 6 ẑ0 and from the critical points r̂C, r̂S and r̂U of this
kernel if −ẑ0 6 ẑ 6 ẑc

L, where

ẑc
L = ẑP − (r̂2

P − 1)1/2(r̂2
L − 1)1/2 (9.3)

(see (4.24) and figure 11). The paths of steepest descent of exp(−imφ−) for ẑc
L 6

ẑ 6 ẑ0 can be determined in the same way as in § 7.2 and are shown in figure 19.
The corresponding paths of steepest descent issuing from the critical points r̂L and
r̂U of the r̂-integral entailing the exponential kernel exp(−imφ+) in (5.8) are shown
in figure 20. The contributions made by the source elements in −ẑ0 6 ẑ 6 ẑc

L stem
from the same set of critical points (r̂C, r̂S and r̂U) as those encountered in §§ 7.3
and 7.4 and so can be calculated from an appropriate version of (8.2) for which the
steepest-descent paths resemble the ones in figures 16 and 17.

At observation points for which θ s
P|r̂=r̂L,ẑ=ẑ0 6 θP 6 θ c

U, locus S intersects the source
distribution over −ẑ0 6 ẑ 6 ẑs

L and locus C over −ẑ0 6 ẑ 6 ẑc
L. There are contributions

in this case toward the value of [Eb
−

Bb
−
] from the critical points r̂C, r̂S and r̂U in

−ẑ0 6 ẑ6 ẑc
L, from r̂L, r̂S and r̂U in ẑc

L 6 ẑ6 ẑs
L, and from r̂L and r̂U in ẑs

L 6 ẑ6 ẑ0. The
corresponding set of steepest-descent paths of exp(−imφ−) and exp(−imφ+) that issue
from these points are similar to those in figures 16 and 17 when −ẑ0 6 ẑ6 ẑc

L, similar
to those in figures 19 and 20 when ẑc

L 6 ẑ 6 ẑs
L and both similar to that in figure 20

when ẑs
L 6 ẑ6 ẑ0. The contributions in question can be evaluated by means of a version

of (8.2) in which the integration with respect to ẑ is split into the listed sub-intervals
and the integrations over u, v or w are performed along the steepest-descent paths that
issue from the critical points appropriate to each sub-interval.

Finally, at observation points for which θ c
U 6 θP 6 θ s

U the cusp locus C lies entirely
in r̂< r̂L and the intersection of S with the source distribution only occurs in −ẑ0 6
ẑ 6 ẑs

L. The relevant critical points for the evaluation of [Eb
−

Bb
−
] over −ẑ0 6 θP 6 ẑs

L
are r̂L, r̂S and r̂U as in figure 19. The relevant critical points for the evaluations of
[Eb
−

Bb
−
] over ẑs

L 6 θP 6 ẑ0, and of [Eb
+

Bb
+
] over −ẑ0 6 ẑ 6 ẑ0, are only r̂L and r̂U

as in figure 20.

10. Flux of energy and state of polarization of the radiation

Asymptotic value of the total radiation field [E B] derived in § 8 depends on
the observation time tP through the oscillating factor exp(−imϕ̂P) (see (4.9)) which
multiplies all three of the expressions in (8.1)–(8.3). When the cross-product of the
real parts of E and B is averaged over an oscillation period mωtP one finds that

〈Re(E)×Re(B)〉 = 1
2 Re(E×B∗), (10.1)

in which B∗ is the complex conjugate of B and the angular brackets denote averaging
with respect to ϕ̂P or tP. (Note that in the present case E×B∗ is not necessarily real.)
The Poynting vector therefore has the time-averaged value

S=
c

8π
Re(E×B∗). (10.2)
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FIGURE 19. Paths of steepest descent of the exponential kernel exp(−imφ−) for an
observation point in the transitional interval θU 6 θP 6 θ s

P|r̂=r̂L,ẑ=ẑ0 and a source element
within ẑc

L 6 ẑ6 ẑ0. This figure is plotted for the following set of values of the parameters:
R̂P= 10, θP= 52π/135, m= 10, ẑ0= 0.1, ẑ= 0.08, r̂L= 1.06657 and r̂U = 1.06667. Radial
coordinate of the lower boundary of the source distribution here exceeds the location
r̂C= 1.06652 of the cusp but the stationary point r̂S= 1.06662 of the phase φ− falls within
the source distribution.

FIGURE 20. Paths of steepest descent of the exponential kernel exp(−imφ+) for an
observation point in the transitional interval θU 6 θP 6 θ s

P|r̂=r̂L,ẑ=ẑ0 and a source element
within ẑc

L 6 ẑ 6 ẑ0. The parameters for this figure have the same values as those for
figure 19.

Mean value of the radial component of the time-averaged Poynting vector over a
sphere of radius R̂P centred at the origin is given by the integral of n̂∞ · S over all
values of θP and ϕP divided by the solid angle 4π covering the entire sphere,

S̄n =
1

4π

∫ 2π

0
dϕP

∫ π

0
dθP sin θP n̂∞ · S, (10.3)

where
n̂∞ = sin θPêrP + cos θPêzP (10.4)

denotes the unit vector normal to the sphere, i.e. the unit vector along the line joining
the origin of the coordinates to the observation point. Note that the symmetries of the
present source render S independent of ϕP and make the θP-integrals over (0,π/2) and
(π/2,π) equal to one another.
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In contrast to the case of a conventional radiation, in which both S and S̄n have
the dependence R̂−2

P on the radius R̂P, the ratio n̂∞ · S/S̄n (defining directive gain
in conventional antenna theory, Jay 1984) is not independent of R̂P in the present
case. To present the results of the numerical computations in § 11 in terms of a
dimensionless quantity most closely resembling directive gain, here I introduce

n̂∞ · Ŝ=
n̂∞ · S

S̄n|R̂P=10

, (10.5)

in which the radial component of time-averaged Poynting vector is normalized by the
mean value of the power that propagates across the sphere R̂P = 10 per unit solid
angle.

To determine the state of polarization of the radiation, I evaluate the Stokes
parameters

I = |E‖|2 + |E⊥|2, Q= |E‖|2 − |E⊥|2, (10.6a,b)

U = 2Re
(
E‖E∗⊥

)
, V =−2Im

(
E‖E∗⊥

)
, (10.7a,b)

L= (Q2
+U2)1/2, ψS =

1
2

arctan
U
Q
, (10.8a,b)

in which E‖ = ê‖ · E and E⊥ = ê⊥ · E are the components of the electric field along
the unit vectors ê‖= êϕP and ê⊥= n̂∞× ê‖. Together with n̂∞ (the radiation direction),
ê‖ (which is parallel to the plane of rotation) and ê⊥ (which is perpendicular to both
n̂∞ and ê‖) constitute the base vectors of a Cartesian reference frame.

The Poynting fluxes and Stokes parameters I will numerically evaluate in § 11 are
for the emissions that are generated in the cases of the following two differently
designed versions of the experimental apparatus described in §§ 2 and 4.1.

10.1. Case I: the emission from a polarization parallel to the rotation axis
In the case where the faces of the electrode pairs shown in figure 2 are normal to êz
and the vector s in (2.1) is spatially uniform in S ′ and zero outside it (see (2.7)), the
only non-zero components of the charge-current density are jz and ρ, i.e. the source
terms sz and s0. Once sr and sϕ in (5.1)–(5.6) are set equal to zero and s0 is evaluated
with the aid of (5.6) and (2.7), the vectors ũnj and ṽnj in these equations reduce to[

ũ11 ũ12 ũ13
]
= sz

[
0 0 êzP

]
, (10.9)ũ21

ũ22
ũ23

= isz

m

[
δ(ẑ+ ẑ0)− δ(ẑ− ẑ0)

]  r̂êrP

r̂êϕP

−r̂PêrP + (ẑ− ẑP)êzP

 , (10.10)

[
ṽ21 ṽ22 ṽ23

]
= sz

[
r̂êϕP −r̂êrP −r̂PêϕP

]
, (10.11)

and ṽ1j= 0. The polarization charges are here confined to the surfaces ẑ=±ẑ0 because
P is assumed to be spatially constant inside the dielectric and zero outside it. The delta
functions in (10.10) stem from the fact that ∇̂ · (szêz) = ∂sz/∂ ẑ and the dependence
of sz on ẑ is, according to (2.7), given by the combination H(ẑ+ ẑ0)− H(ẑ− ẑ0) of
Heaviside step functions.
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To elicit the orientations of the vectors E and B from the full expressions for these
vectors in (8.1)–(8.3), let Enj be the part of the field E arising from the source term
ũnj and Bnj be the part of the field B arising from the source term ṽnj, i.e. let[

E
B

]
=

2∑
n=1

3∑
j=1

[
Enj
Bnj

]
. (10.12)

Then it follows from (10.9)–(10.12) that in the present case[
E
B

]
=

[
(E21 + Er

23)êrP + E22êϕP + (E13 + Ez
23)êzP

B22êrP + (B23 + B21)êϕP

]
, (10.13)

where E13 = êzP · E13, E21 = êrP · E21, E22 = êϕP · E22, Er
23 = êrP · E23, Ez

23 = êzP · E23,
B21 = êϕP ·B21, B22 = êrP ·B22 and B23 = êϕP ·B23. The values of the fields Enj and Bnj

in these expressions can be computed by means of (8.1)–(8.3).
Hence the component of the time-averaged Poynting vector along the radial

direction n̂∞ is in the present case given by

n̂∞ · S=−
c

8π
Re[E⊥(B∗21 + B∗23)+ cos θPB∗22E‖], (10.14)

with [
E‖
E⊥

]
=

[
E22

sin θP(E13 + Ez
23)− cos θP(E21 + Er

23)

]
(10.15)

(see (10.2), (10.4) and (10.13)). The Stokes parameters for this radiation are given
by (10.6)–(10.8) and (10.15).

In the limit R̂P→∞, it follows from (4.17), (5.8) and (10.9)–(10.11) that (i) the
values of E21, E22, B21 and B22 are by a factor of the order of R̂−1

P smaller than that
of E13, (ii) the value of B23 approximately equals −sinθPE13 and (iii) the value of ũ23
is given by

ũ23 '−
isz

m
R̂
[
δ(ẑ+ ẑ0)− δ(ẑ+ ẑ0)

]
n̂∞, R̂P� 1. (10.16)

Hence, (10.13) and (10.14) reduce to

E' E13êzP + csc θPEr
23n̂∞, B' n̂∞ ×E, (10.17a,b)

and n̂∞ · S' c sin2 θP|E13|
2/(8π) at an observation point sufficiently distant from the

source for which R̂' R̂P� 1.

10.2. Case II: the emission from a radial polarization perpendicular to the
rotation axis

If the normals to the faces of the electrode pairs shown in figure 2 lie along êr, the
only non-zero components of the charge-current density would be jr and ρ, i.e. the
source terms sr and s0. Once sϕ and sz in (5.1)–(5.6) are set equal to zero and s0 is
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evaluated with the aid of (5.6) and (2.7), the vectors ũnj and ṽnj in these equations
reduce to [

ũ11 ũ12 ũ13
]
= sr

[
êrP êϕP 0

]
, (10.18)ũ21

ũ22
ũ23

= isr

m

[
1
r̂
+ δ(r̂− r̂L)− δ(r̂− r̂U)

]  r̂êrP

r̂êϕP

−r̂PêrP + (ẑ− ẑP)êzP

 , (10.19)

ṽ21
ṽ22
ṽ23

= sr

 −(ẑ− ẑP)êϕP

(ẑ− ẑP)êrP + r̂PêzP

0

 , (10.20)

and ṽ1j = 0. The first factor in (10.19) stems from the fact that ∇̂ · (srêr)= (sr/r̂)+
∂sr/∂ r̂ and the r̂-dependence of sr is, according to (2.7), given by the combination
H(r̂− r̂L)−H(r̂− r̂U) of Heaviside step functions. In addition to the surface charges
on r̂= r̂L and r̂= r̂U, there is also a volume distribution of polarization charge in this
case.

If, as in the preceding section, we let Enj be the part of the field E arising from
the source term ũnj and Bnj be the part of the field B arising from the source term
ṽnj, then (10.12) together with (10.18)–(10.20) yield

E= (E11 + E21 + Er
23)êrP + (E12 + E22)êϕP + Ez

23êzP (10.21)

and
B= Br

22êrP + B21êϕP + Bz
22êzP, (10.22)

where in this case E11 = êrP ·E11, E21 = êrP ·E21, Er
23 = êrP ·E23, E12 = êϕP ·E12, E22 =

êϕP · E22, Ez
23 = êzP · E23, Br

22 = êrP · B22, B21 = êϕP · B21 and Bz
22 = êzP · B22 are the

components of the fields Enj and Bnj given in (8.1)–(8.3). (Note that, because E and
B have different orientations in Cases I and II, the expressions that define Enj and Bnj
in § 10.1 are not the same as those that define these scalars in this section.)

From (10.2), (10.21) and (10.22) it follows that the radial component of time-
averaged Poynting vector has the value

n̂∞ · S=
c

8π
Re[E‖(sin θPBz∗

22 − cos θPBr∗
22)− B∗21E⊥], (10.23)

with [
E‖
E⊥

]
=

[
E12 + E22

− cos θP(E11 + E21 + Er
23)+ sin θPEz

23

]
, (10.24)

for the case where the current flows perpendicular to the rotation axis. The Stokes
parameters for this radiation are given by (10.6)–(10.8) and (10.24).

In the limit R̂P →∞, it follows from (4.17), (5.8) and (10.18)–(10.20) that the
values of E21 and E22 are by a factor of the order of R̂−1

P smaller than that of E23,
and the following limiting relationships hold: Ez

23 ' cot θPEr
23, B21 ' cos θPE11, Br

22 '

− cos θPE12, Bz
22 ' sin θPE12 and

ũ23 '−
isr

m
R̂
[

1
r̂
+ δ(r̂− r̂L)− δ(r̂− r̂U)

]
n̂∞. (10.25)
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Hence, (10.21)–(10.23) reduce to

E' E11êrP + E12êϕP + csc θPEr
23n̂∞, B' n̂∞ ×E, (10.26a,b)

and
n̂∞ · S'

c
8π

[
cos2 θP|E11|

2
+ |E12|

2
]

(10.27)

at an observation point sufficiently distant from the source for which R̂' R̂P� 1.

11. Numerical evaluation of characteristics of the radiation field
11.1. Case Ia: a polarization parallel to the rotation axis for which the

non-spherically decaying radiation beam spans 60◦ 6 θP 6 70◦ and 110◦ 6 θP 6 120◦

I have used Mathematica to compute the total radiation field [E B] and the time-
averaged value of radial component of its flux density by numerically evaluating the
integrals in (8.1)–(8.3) and inserting the outcome in (10.2). The results reported in
this section are for the following choice of the dimensionless parameters of the source
distribution (described in § 2): r̂L = csc(7π/18), r̂U = csc(π/3), ẑ0 = 0.1, m= 10 and
sr = sϕ = 0, i.e. for a polarization current density parallel to the rotation axis whose
sinusoidal distribution pattern, which consists of 10 wavelengths of the polarization
wave train (figure 1), azimuthally propagates with linear speeds ranging from rLω =
1.0642c to rUω = 1.1547c across the radial extent of the polarized dielectric (see
figures 1, 2 and 11). The only other parameter entering the expression for the radiation
field is sz which I will assume to be independent of (r̂, ẑ), i.e. to be constant over the
cross-section of the dielectric. It is not necessary to specify the value of the constant
sz because we will be normalizing the Poynting vector, which is proportional to s2

z , by
dividing it by a quantity that is likewise proportional to s2

z : namely, the average value
of the power that propagates across the sphere R̂P= 10 per unit solid angle (see (10.3)
and (10.5)).

The above values of the dimensionless parameters can be experimentally realized
in a number of different ways. The number of wavelengths m of the polarization
wave train fitting around the circumference of the dielectric ring (figure 1) would be
10 if there are N= 144 electrode pairs and the phases of sinusoidal oscillations of the
voltages across adjacent electrodes (figure 2) differ by 1Φ = 360◦m/N = 25◦. For a
voltage with the oscillation frequency ν= 2.3 GHz, the polarization wave train rotates
around the dielectric ring with the angular frequency ω= 2πν/m= 1.45× 109 rad s−1.
This yields c/ω = 20.76 cm for the radius of the light cylinder, i.e. the radius
at which the linear speed of the rotating distribution pattern of the source equals
c. So, the requirement csc(7π/18) 6 r̂ 6 csc(π/3) on the range of linear speeds
rω of the polarization wave train in units of c is met if the inner and outer
boundaries of the dielectric have the radii rL = csc(7π/18)c/ω = 22.09 cm and
rU = csc(π/3)c/ω = 23.97 cm, respectively. The mean radius r̄ = N1`/(2π) of the
dielectric ring would have the value (rL + rU)/2= 23.03 cm if the distance between
the centres of adjacent electrodes is 1` = 1 cm. The remaining dimension of the
dielectric ring, i.e. its thickness in the direction parallel to the rotation axis, is in this
case 2z0 = 4.15 cm.

Angular distribution of the radiation at a distance of 10 light-cylinder radii is
plotted in figure 21. The vertical axis in this figure shows the normalized component
of the Poynting vector S along the radiation direction n̂∞ versus the angle θP between
the radiation direction and the rotation axis êz in degrees (see (10.5) and (10.14)). The
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FIGURE 21. Logarithmic plot of the radial component of normalized Poynting vector Ŝ
versus the angle θP between the rotation axis and the radiation direction depicting directive
gain of the radiation source at a distance of 10 light-cylinder radii. Since this distribution
is symmetric with respect to the equatorial plane θP = 90◦, its remaining half in 90◦ <
θP < 180◦ is not shown here. Values of the parameters used for plotting this figure are
those for Case Ia described in § 11.1. (Only a discrete set of values of n̂∞ · Ŝ are plotted,
instead of a continuous curve, to render the required computing time for the points in
60◦ 6 θP 6 70◦ manageable.)

normalization factor, i.e. the average value of the power that propagates across the
sphere R̂P = 10 per unit solid angle, has the value S̄n|R̂P=10 = 2.66× 10−3

|jz|
2 W m−2,

in which |jz| = νsz stands for the amplitude of the electric current density in units
of A m−2. A logarithmic unit of measurement is used along the vertical axis so that
changes in the value of n̂∞ · Ŝ, called directive gain in antenna theory (Jay 1984),
are registered in decibels. The three-dimensional distribution of the directive gain,
by virtue of having an azimuthal symmetry about the rotation axis (θP = 0) and a
reflection symmetry about the equatorial plane (θP = 90◦), can be inferred from the
plot shown in figure 21.

The sharp changes in this distribution occur across the polar angles where the cusp
locus C of the bifurcation surface of the observation point either enters (at r̂= r̂U when
θP = 60◦) or leaves (at r̂ = r̂L when θP = 70◦) the source distribution (see figure 11).
The higher values of the radiation flux at angles for which the cusp C intersects
the source distribution reflect the fact that when the observation point is located in
60◦6 θP 670◦ there exist source elements (in r̂C 6 r̂6 r̂U) which approach the observer
with the speed of light and zero acceleration at the retarded time. On the other hand,
characteristics of the emission in 0 6 θP 6 60◦ (only part of whose distribution is
shown here) are the same as those of a conventional radiation: all volume elements
of the rotating source approach an observer in 0 6 θP 6 60◦ with subluminal speeds.
Despite having a similar rate of decay in the present case, the emission in 70◦6 θP 6
90◦ is however different from a conventional radiation: component of the velocity of
each volume element of the source along the radiation direction (i.e. along the line
that joins the source element to an observer in 70◦ 6 θP 6 90◦) exceeds c, while the
component of its acceleration along the radiation direction is non-zero.

In contrast to the spherically decaying part of the radiation whose angular
distribution is independent of distance, the angular distribution of the part of the
radiation that propagates into θL 6 θP 6 θU has a dependence on θP that changes
with R̂P. Figure 22 shows the angular distributions of the radial component of the
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FIGURE 22. Vertically shifted distributions of the radial component of the normalized
Poynting vector Ŝ in 60◦6 θP 6 70◦ for the following set of values of R̂P: (a) 10, (b) 102,
(c) 103, (d) 104, (e) 105 and ( f ) 106. In this figure, the values of the normalizing factors
in Ŝ for R̂P> 10 have been shifted, relative to that for R̂P= 10, by the following amounts:
(b) 20 dBi, (c) 40 dBi, (d) 60 dBi, (e) 80 dBi and ( f ) 100 dBi. Note that these shifted
curves would have been coincident had the Poynting vector been decaying as R̂−2

P . The
parts of these distributions in 06 θP 6 60◦ and 70◦6 θP 6 90◦ (which are not plotted here)
are coincident with one another and with those for R̂P = 10 that are shown in figure 21.
(Values of the parameters used for plotting this figure are those for Case Ia described
in § 11.1.)

normalized Poynting vector Ŝ (i.e. the component of the Poynting vector along the
radiation direction n̂∞ divided by the average value of the power that propagates
across the sphere R̂P = 10 per unit solid angle) for the following set of values of
R̂P (i.e. distance in units of the light-cylinder radius): (a) 10, (b) 102, (c) 103, (d)
104, (e) 105 and ( f ) 106. To facilitate the comparison between these distributions, I
have vertically shifted each of the curves for R̂P > 10, relative to that for R̂P= 10, by
the following amounts in this figure: (b) 20 dBi, (c) 40 dBi, (d) 60 dBi, (e) 80 dBi
and ( f ) 100 dBi. These are the number of decibels by which 10 log10(n̂∞ · Ŝ) would
have changed if the magnitude of the Poynting vector for this part of the radiation
had diminished as R̂−2

P with distance. The remaining parts of these distributions in
0< θP < 60◦ and 70◦ 6 θP 6 90◦ are identical in shape to those for R̂P = 10 (shown
in figure 21) at these angles and coincide when shifted in the same way.

The separation between the shifted distributions in 60◦ 6 θP 6 70◦ is a measure
of the degree to which the dependence of the Poynting vector on distance departs
from the inverse-square law. Figure 22 therefore indicates (i) that the Poynting vector
decays more slowly with distance than predicted by the inverse-square law, and
(ii) that the rate of decay of the Poynting vector with distance depends on both
coordinates, θP and RP, of the observation point.

Figure 23 shows figure 21 (the curve in blue that is marked as a) and parts c
and f of figure 22 in a polar coordinate system. At each polar angle θP, measured
from the vertical axis, value of the radial coordinate of a point on curve a shows
the directive gain of the radiation source at the observation point (with the radial
and polar coordinates R̂P = 10 and θP) plus 3 dBi. The 3 dBi increase is introduced
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FIGURE 23. Angular distribution of the radiation in 0 6 θP 6 90◦ at distances R̂P = 10
(curve a of figure 22), R̂P= 103 (curve c of figure 22) and R̂P= 106 (curve f of figure 22).
The angle between the radius vector to each point and the vertical axis stands for the polar
coordinate θP of the observation point. The radial coordinate of each point on the curves a,
c and f stands for the value of 10 log10(Ŝ) that appears in figure 22 against its coordinate
θP plus 3 dBi. The emission in 70◦ 6 θP 6 90◦ and the conventional radiation in 06 θP 6
60◦ (which is too weak to show up in this plot) have distance-independent distributions.
Three-dimensional distributions of the radiation patterns at the distances R̂P = 10, 103 and
106 are given by the surfaces of revolution that result from the reflection of curves a, c
and f with respect to the horizontal axis followed by their rotation about the vertical axis.
(Values of the parameters used for plotting this figure are those for Case Ia described
in § 11.1.)

here to render the value of 10 log10(n̂∞ · Ŝ) positive, and so representable as a radial
coordinate, across a sufficiently wide range of angles. The three-dimensional angular
distribution of the radiation can be obtained by rotating this curve about the vertical
axis and reflecting the resulting surface of revolution with respect to the equatorial
plane. The emission in 0<θP < 60◦ is too weak to show up in this figure. The radial
coordinates of the points on curves c and f respectively equal the shifted values of
10 log10(n̂∞ · Ŝ) plotted in figure 22 at the distances R̂P = 103 and R̂P = 106 increased
by 3 dBi.

The non-spherically decaying part of the present radiation is linearly polarized with
a fixed position angle: the Stokes parameters essentially have the values L/I=1, V=0
and ψS=−π/2 in 60◦6 θP 6 70◦ and 110◦6 θP 6 120◦ (see (10.6)–(10.8) and (10.15)).

In figure 24, I have plotted logarithm of the radial component of normalized
Poynting vector versus logarithm of the distance (in units of the light-cylinder radius)
at a polar angle (θP=62◦) within the non-spherically decaying radiation beam depicted
in figures 21–23. The red dots are the data points that appear in figure 23 against
θP = 62◦ and the blue curve is the best fit to these dots, given by log(n̂∞ · Ŝ) =
2.15–1.45 log R̂P − 0.04(log R̂P)

2. This figure shows that the flux of the outward-
propagating radiation along θP = 62◦ diminishes with distance as R̂−1.45

P (instead of
R̂−2

P ) over the range of distances R̂P = 10–106 and that the value of the exponent in
this power-law dependence on R̂P is itself a slowly varying function of distance.

By applying the same procedure to the remaining computed points in figure 23,
one can find the exponent α in the distance dependence R̂−αP of n̂∞ · Ŝ also for other
directions within the non-spherically decaying beam. The result is shown in figure 25.
Thus the departure of the value of α from 2 occurs over a solid angle whose polar and
azimuthal widths are constant. This departure is less pronounced at the edge θP= 70◦
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FIGURE 24. Logarithmic plot of the radial component of normalized Poynting vector
versus distance along the generating line of a cone (in this case the cone θP= 62◦) inside
the solid angle 60◦6 θP 670◦, 06ϕP 6360◦, where the radiation depicted in figures 21–23
decays non-spherically. The best fit to the computed points (extracted from figure 22) has
the slowly varying slope −1.45 (instead of −2) in this direction. (Values of the parameters
used for plotting this figure are those for Case Ia described in § 11.1.)

FIGURE 25. Exponent α in the distance dependence R̂−αP of the radial component of
normalized Poynting vector as a function of the polar angle θP within the solid angle
60◦ 6 θP 6 70◦, 0 6 ϕP 6 360◦. (Values of the parameters used for plotting this figure are
those for Case Ia described in § 11.1.)

of the beam where only limited segments of the loci C and S lie within the source
distribution (see § 9) but increases toward the edge θP = 60◦ as the portion of the
source that lies within the bifurcation surface increases in volume (see figure 11).

Constancy of the width of the solid angle over which the Poynting vector decays
as R̂−αP , with 1 < α < 2, implies that the power propagating across a sphere of
radius R̂P increases as R̂2−α

P with distance, rather than being independent of R̂P
as in a conventional radiation: a result that at first sight seems to contravene the
requirements of the conservation of energy. However, the constructively interfering
waves from the particular set of volume elements of the polarization current that
are responsible for the non-spherically decaying signal at a given observation point
constitute a radiation beam for which the time-averaged value ∂U/∂tP of the temporal
rate of change of energy density is negative (see appendix C) rather than being zero
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as in a conventional radiation. This means that the flux of energy out of a closed
region (e.g. out of the volume bounded by two large spheres centred on the source)
is greater than the flux of energy into it because the amount of energy contained
within the region decreases with time. I have shown in appendix C that the computed
value of ∂U/∂tP for the non-spherically decaying radiation described in this section
is indeed negative and decays as R̂−βP with a value of β whose range and angular
dependence are similar to those of α (cf. figure 38 and (4.10)). Since neither the
topology of the retarded distribution of the present source nor the temporal rate of
change of the energy density of its emission ever attain a steady state, it is not
surprising that α should differ from its conventional value 2. As pointed out in
appendix C, the slow decay of the radiation discussed in this paper is in fact required
by the conservation of energy given that the time-averaged temporal rate of change
of the energy density of this radiation is negative rather than zero.

A final remark is in order: from the values of the mean radius of the dielectric
ring (r̄ = 23.03 cm) and the wavelength associated with the oscillation frequency of
the electrodes (λ = 12 cm) it follows that the distance at which the Fresnel number
r̄2/(RPλ) attains the value unity is RP ' 44 cm in the present case. Given that this
distance is by many orders of magnitude shorter than the distances over which the
radiation from a superluminally rotating source is shown to disobey the inverse-square
law (see figure 24), the non-spherical decay discussed in this paper is not in any
way related to that which occurs within the Fresnel (or Rayleigh) distance when a
conventional radiation beam is focused.

11.2. Case Ib: a polarization parallel to the rotation axis for which the
non-spherically decaying radiation beam encompasses the equatorial plane

I have numerically evaluated the integrals in (8.1)–(8.3), and thereby the time-averaged
Poynting vector (10.2), also for the following choice of dimensionless parameters of
the source distribution described in § 2: r̂L = 1, r̂U = 1.2, ẑ0 = 0.1, m = 10 and
sr = sϕ = 0, i.e. for a polarization parallel to the rotation axis whose sinusoidal
distribution pattern, consisting of 10 wavelengths, azimuthally propagates with linear
speeds ranging from c to 1.2c across the radial extent of the polarized dielectric
(see figures 1 and 11). The oscillation frequency ν of the voltages that energize
the electrode pairs is here set equal to 2.5 GHz, so that the angular frequency
of rotation of the distribution pattern of the polarization current has the value
ω = 2πν/m = 1.57 × 109 rad s−1. This yields a light cylinder with the radius
c/ω= 19.1 cm and requires that the dielectric hosting the polarization current should
have the mean radius (1/2)(rL + rU)= 21 cm and the radial width rU − rL = 3.8 cm.
These values of the parameters can be experimentally realized by surrounding the
dielectric ring with an array of N = 130 electrode pairs whose centres are a distance
1`= 1.015 cm apart and the phases of whose oscillations differ by 1Φ = 27.7◦. As
in § 11.1, I have moreover assumed that sz is independent of (r̂, ẑ) and that the axial
thickness of the dielectric is 2z0 = 3.8 cm.

Curve a in figure 26 is a plot of the radial component of time-averaged Poynting
vector divided by the average power that propagates across the sphere R̂P=10 per unit
solid angle (i.e. the directive gain of the present radiation source at a distance of 10
light-cylinder radii) versus the polar coordinate θP of the observation point (see (10.5)
and (10.14)). The average power that propagates across the sphere R̂P = 10 per unit
solid angle is in this case given by S̄n|R̂P=10= 2.03× 10−2

|jz|
2 W m−2, where |jz| = νsz

stands for the amplitude of the electric current density in units of A m−2. Since the
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FIGURE 26. The outward-propagating component of the normalized Poynting vector Ŝ
versus the polar coordinate θP of the observation point at the distance R̂P= 10 for both a
superluminally rotating source (curve a) and a corresponding stationary source (curve s).
Since these distributions are symmetric with respect to the equatorial plane θP= 90◦, their
remaining halves in 90◦ 6 θP 6 180◦ are not shown here. (Values of the parameters used
for plotting this figure are those for Case Ib described in § 11.2.)

source is symmetric with respect to the equatorial plane (see figure 11), so is the
distribution of its radiation. The remaining half of the radiation distribution in 90◦ 6
θP 6 180◦ consists therefore of the reflection of the half that is shown in figure 26
across the plane θP = 90◦. The rapid change in the intensity of the radiation at θP =

θL ' 56.4◦ reflects the penetration of the cusp C of the bifurcation surface associated
with the observation point P into the source distribution across its boundary r̂= r̂U (see
figure 11). Once the observation point P is in θL 6 θP 6 θU, certain volume elements
of the source (those in r̂C 6 r̂ 6 r̂U) approach P along the radiation direction with
the speed of light and zero acceleration at the retarded time, thus emitting waves that
interfere constructively. The weaker radiation in 0 < θP < θL consists entirely of the
conventional radiation described by (8.1).

Curve s in figure 26 shows the radial component of normalized Poynting vector
for the radiation generated by a source that is the same as the source generating
the radiation depicted by curve a in every respect (has the same dimensions, the
same oscillation frequency, the same current density, . . .) except that its sinusoidal
distribution pattern is stationary, i.e. is described by

Pz(r, ϕ, z, t)= sz cos(mϕ) cos(mωt), (11.1)

instead of (2.1), and so does not rotate around the dielectric ring. The normalization
factor used for curve s is the same as that for curve a: namely the average value of the
power arising from the rotating source that propagates across the sphere R̂P = 10 per
unit solid angle. Comparing the two curves we can see that even at the relatively short
distance RP = 10c/ω = 191 cm from the source, the intensity of the non-spherically
decaying radiation generated by the superluminally rotating source exceeds that of the
conventional radiation generated by a corresponding stationary source by more than 25
decibels (i.e. by more than a factor of 300) on the equatorial plane.

Figures 27–29 are the counterparts of figures 22, 23 and 25 for Case Ib. Maximum
value of the intensity of the radiation depicted in these figures occurs at θP = π/2
because an additional mechanism of focusing comes into play when the coordinate ẑP
of the observation point falls within the ẑ-extent −ẑ0 6 ẑ6 ẑ0 of the source distribution,
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FIGURE 27. Vertically shifted distributions of the radiation in θL 6 θP 6π/2 at six values
of R̂P: (a) 10, (b) 102, (c) 103, (d) 104, (e) 105 and ( f ) 106. As in figure 22, the
normalization factor used here is the integral of the Poynting vector over a sphere of
radius R̂P = 10 divided by 4π. Vertical coordinates of the points in the distributions at
R̂P = 102, 103, 104, 105, 106 are respectively raised by 20, 40, 60, 80, 100 dBi relative to
those in the distribution at R̂P = 10. The spherically decaying parts of these distributions
in 06 θP 6 56.4◦ are identical in shape to that for R̂P= 10 (shown in figure 26) and would
coincide if included in this figure. (Values of the parameters used for plotting this figure
are those for Case Ib described in § 11.2.)

FIGURE 28. Polar diagrams of the distributions depicted by curve a of figure 26 (shown
in blue) and curves c and f of figure 27 (shown in red and black, respectively). The
angle between the radius vector to each point and the vertical axis stands for the polar
coordinate θP of the observation point. The radial coordinate of each point on the curves a,
c and f stands for the value of 10 log10(Ŝ) that appears in figure 27 against its coordinate
θP plus 30 dBi. All three distributions coincide in 0 6 θP 6 56.4◦ where their decay
with distance complies with the inverse-square law. Three-dimensional distributions of the
radiation patterns at the distances R̂P = 10, R̂P = 103 and R̂P = 106 are given by the
surfaces of revolution that result from the reflection of curves a, c and f with respect
to the horizontal axis followed by their rotation about the vertical axis. (Values of the
parameters used for plotting this figure are those for Case Ib described in § 11.2.)

i.e. the stationary point ẑ= ẑP of the phases ϕ̂± of the exponential factors appearing
in (5.8) falls within the domain of integration (see § 7.1). This radiation propagates
into a solid angle encompassing the equatorial plane whose polar width decreases as
R̂−1

P in the far zone (see (7.9)). From the fact that the area subtended by the solid
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FIGURE 29. Angular dependence of the exponent α in the power-law R̂−αP that best
describes the decay of the Poynting vector with distance over the range 10 6 R̂P 6 106.
Vertical coordinates of the points plotted in this figure were obtained by applying the
procedure illustrated in figure 24 to the data in figure 27. (Values of the parameters used
for plotting this figure are those for Case Ib described in § 11.2.)

angle into which this part of the radiation propagates increases as R̂P (instead of
R̂2

P) while the rate of decay of the Poynting vector with distance for the emission
into the equatorial plane is close to R̂−1.85

P (see figure 29), it can be seen that the
power carried by the focused equatorial radiation decreases with distance, rather than
being constant as in a conventional radiation. This means that the increase in the
flux of energy with distance across surfaces subtending the fixed solid angle within
which n̂∞ · Ŝ decays more slowly than R̂−2

P is partly compensated by a corresponding
decrease in the flux of energy with distance across surfaces subtending the narrowing
solid angle π/2− arcsin(ẑ0/R̂P)6 θP 6π/2+ arcsin(ẑ0/R̂P), 06ϕP<2π into which the
stronger equatorial radiation propagates. In the case of the present example, therefore,
the radiation meets the requirements of the conservation of energy not only by means
of the mechanism discussed in appendix C but partly by containing a high-intensity
beam whose width narrows with distance.

The non-spherically decaying part of the radiation is, as in Case Ia, linearly
polarized with a fixed position angle: the Stokes parameters essentially have the values
L/I = 1, V = 0 and ψS = −π/2 throughout 56.4◦ 6 θP 6 123.6◦ (see (10.6)–(10.8)
and (10.15)).

11.3. Case II: a radial polarization for which the non-spherically decaying radiation
beam spans 60◦ 6 θP 6 70◦ and 110◦ 6 θP 6 120◦

In this section I analyse the emission from an example of the source distribution
described in § 10.2 for which the dimensionless parameters appearing in the
expressions for the fields (in (8.1)–(8.3)) have the same values as those adopted
in § 10.1 except that the direction of the polarization current density is perpendicular
(rather than parallel) to the rotation axis. The polarization current density again has
a sinusoidal distribution pattern consisting of m= 10 wavelengths which azimuthally
propagates with linear speeds ranging from r̂L= csc(7π/18) (in units of c), at the inner
edge, to r̂U = csc(π/3) at the outer edge of a dielectric ring with the axial thickness
2ẑ0= 0.2 (in units of the light-cylinder radius c/ω). The voltages across the electrode
pairs have the oscillation frequency ν = 2.5 GHz so that the angular frequency of
rotation of the polarization current has the value ω=2πν/m=1.57×109 rad s−1. This

https://doi.org/10.1017/S0022377819000382 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000382


68 H. Ardavan

FIGURE 30. Logarithmic plot of the time-averaged value of the radial component of the
normalized Poynting vector versus the polar angle θP for the radiation from the source
described in § 10.2 at 10 light-cylinder radii. The Poynting vector is here divided by the
mean value of the flux of power across a sphere of radius R̂P = 10 (concentric with the
ring-shaped source) per unit solid angle. The vertical axis therefore marks the directivity
of the radiation source described in § 10.2 at 10 light-cylinder radii. The distribution of
this radiation is independent of the azimuthal angle ϕP and is symmetric with respect to
the equatorial plane θP = 90◦. The sharp changes across θP = 60◦ and θP = 70◦ reflect the
fact that only an observer in 60◦ < θP < 70◦ can receive the cusped radiation generated
by the superluminally rotating volume elements of the distribution pattern of the source.
(Values of the parameters used for plotting this figure are those for Case II described
in § 11.3.)

yields a light cylinder with the radius c/ω= 19.1 cm and requires that the dielectric
hosting the polarization current should have the mean radius (1/2)(rL + rU)= 21 cm
and the radial width rU − rL = 3.8 cm. Moreover, the axial thickness of the dielectric
is 2z0 = 3.8 cm and sr, i.e. the non-zero component of s, is independent of (r̂, ẑ).
These values of the parameters can be experimentally realized by surrounding the
dielectric ring with an array of N = 130 electrode pairs whose centres are a distance
1`= 1.015 cm apart and the phases of whose oscillations differ by 1Φ = 27.7◦.

Figures 30–33 are the counterparts of figures 21–23 and 25, respectively (see (10.5)
and (10.23)). The normalization factor appearing in (10.5) has the value S̄n|R̂P=10 =

3.07 × 10−3
|jr|

2 W m−2, where |jr| = νsr stands for the amplitude of the electric
current density in units of A m−2. The radiation in this case differs from that in
Case Ia mainly in its state of polarization. While essentially linearly polarized with
a fixed position angle across the non-spherically decaying beam in 60◦6 θP 6 70◦ and
110◦6 θP 6 120◦, this radiation is elliptically polarized with a circular polarization that
changes sense across the unconventional beam (figure 34) and has a position angle that
sweeps across the radiation distribution in 60◦ 6 θP 6 120◦ (figure 35). Moreover, the
direction of polarization of the non-spherically decaying beam is in the present case
orthogonal to that of the non-spherically decaying beam in Case Ia, thus reflecting the
orthogonality of the directions of the electric current density in these two cases.

12. Conclusion
The unconventional properties of the radiation discussed in this paper stem from

the collaborative action, at certain observation points, of several focusing mechanisms
simultaneously: the space–time distance between the observation point and the
constituent volume elements of a superluminally rotating source distribution (i.e. the
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FIGURE 31. Vertically shifted time-averaged values of the radial component of the
normalized Poynting vector over the limited range of polar angles where the cusped
radiation from the source described in § 10.2 is observable. Curves a to f respectively
correspond to the values 10, 102, . . . , 106 of the dimensionless distance R̂P. The
distribution at each R̂P with a value > 102 is here shifted upward relative to the preceding
distribution at R̂P/10 by 20 dBi. The separation of the curves in this figure is a measure
of the degree to which the dependence of the radial component of time-averaged Poynting
vector on distance differs from R̂−2

P . Had n̂ · Ŝ been decaying as R̂−2
P , a tenfold increase

in the value of distance would have resulted in a 20 dBi decrease in the value of
10 log10(n̂ · Ŝ) and so the curves c, d, e and f would have been coincident with curve a.
The parts of the radiation distribution in 0 6 θP 6 60◦ and 70◦ 6 θP 6 90◦ are identical in
shape to those for R̂P= 10 (shown in figure 31) at all distances and would have coincided
had they been included in this figure. (Values of the parameters used for plotting this
figure are those for Case II described in § 11.3.)

argument of the delta function in the expression for the retarded potential in (3.7)) is
stationary with respect to three coordinates of certain source elements concurrently. In
addition, these concurring stationary points are not all isolated. The stationary point
with respect to the retarded azimuthal positions of those source elements (which
is equivalent to that with respect to their emission times (§ 4.1)) results from the
coalescence of two other stationary points and so is degenerate. At each of the
original isolated stationary points the rotating source element approaches the observer
along the radiation direction with the speed of light at the retarded time. At the locus
of the degenerate stationary points resulting from the coalescence of two of these
isolated stationary points (here referred to as the cusp locus C) the source elements
approach the observer at the retarded time not only with the speed of light but also
with zero acceleration along the radiation direction.

The locus of such degenerate stationary points (which lies at a boundary of
the integration domain delineated by the intersection of the cusp C with the source
distribution (figure 11)) is separated from the locus of source points whose space–time
distances from the observer are stationary with respect to the radial coordinate r
(here denoted by S) by a distance that shrinks to zero when the observation point
lies either in the plane of rotation or at infinity. For an observation point in the
plane of rotation, the space–time distance in question is stationary also with respect
to the axial coordinate z of those source points that lie on a plane passing through
the observation point normal to the z-axis. These critical points result in a Green’s
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FIGURE 32. The results shown in figures 30 and 31 are here depicted in polar coordinates.
The value of the radial coordinate of each point on curve a corresponds to that of the
time-averaged radial component of the normalized Poynting vector in logarithmic units
(shown on the vertical axis of figure 30) plus 10 dBi, and the value of the polar angle of
each point corresponds to that of θP. This holds true also for the points on curves c and f
except that their radial coordinates in 60◦6 θP 6 70◦ respectively correspond to the shifted
values of 10 log10(n̂ · Ŝ) for R̂P = 103 and 106 shown on the vertical axis of figure 31.
Three-dimensional distributions of the radiation patterns at the distances R̂P = 10, 103 and
106 are given by the surfaces of revolution that result from the reflection of curves a,
c and f with respect to the horizontal axis followed by their rotation about the vertical
axis. (Values of the parameters used for plotting this figure are those for Case II described
in § 11.3.)

FIGURE 33. The exponent α in the dependence R̂−αP of the time-averaged radial
component of the Poynting vector on the distance R̂P at the polar angles 60◦ 6 θP 6 70◦
within the cusped radiation beam shown in figure 32. To derive the value of this exponent
I have used the data shown in figure 31 to plot log(n̂ · Ŝ) versus log R̂P at each of
the specified θP values and to fit the resulting graph with log(n̂ · Ŝ) = α′ − α log R̂P −

α′′(log R̂P)
2 in which α, α′ and α′′ are constants (as in figure 24). The values of α′′ in

the best fits to the data, though significantly smaller than the corresponding values of α
shown here, are also positive. Thus the exponent α is itself a slowly increasing function
of R̂P at any given θP. (Values of the parameters used for plotting this figure are those
for Case II described in § 11.3.)

function for the problem that is discontinuous on a two-sheeted cusped surface
(figure 8) and has non-integrable singularities there (§ 4.5). The singularities of this
Green’s function have been handled in §§ 4.6, 7 and 8 analytically. The complicated
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FIGURE 34. Fractions of linear polarization L/I (the upper blue dots) and circular
polarization V/I (the lower red dots) for the radiation generated by an electric current
that flows across the radial dimension of the dielectric ring at R̂P = 102. (Values of the
parameters used for plotting this figure are those for Case II described in § 11.3.)

FIGURE 35. The polarization position angle ψS as a function of the polar coordinate θP
of the observation point for the radiation generated by an electric current whose direction
is everywhere perpendicular to the axis of rotation at R̂P= 102. (Values of the parameters
used for plotting this figure are those for Case II described in § 11.3.)

integrals representing the regularized values of the fields (§ 8) that have had to be
evaluated numerically (§ 11) are free of any singularities.

The unusual coincidence and proximity of so many critical points, in particular the
shrinking (as R̂−2

P ) of the separation between the cusp locus C and the locus of saddle
points S with the distance R̂P of the observer from the source (figure 11), results in
an emission that not only is more intense than a corresponding conventional radiation
(figure 26) but in addition decays more slowly with distance than predicted by the
inverse-square law: time-averaged value of the radial component of its flux density
diminishes with R̂P as R̂−αP with an exponent α whose values range between 1 and 2
(rather than being equal to 2, as in a spherically decaying radiation) within the fixed
solid angle into which it is beamed (see figures 25, 29 and 33).

At observation points for which projections of the velocities of all volume elements
of the distribution pattern of the source along the radiation direction are subluminal,
there are no contributions toward the value of the radiation field from any stationary
points. The radiation in such regions of space (where it may be regarded as a
superluminal generalization of synchrotron radiation) obeys the inverse-square law but
is still much stronger than that from an identical stationary or subluminally rotating
source. It can be seen from figure 26 that even where it has the same characteristics
as a conventional radiation (i.e. at polar angles 0 6 θP 6 56.4◦ in the case of the
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example plotted in figure 26), the radial component of the time-averaged Poynting
vector for the radiation from the rotating source is an order of magnitude larger
than that for the radiation from its stationary counterpart. (Note that the Poynting
vector has been normalized in the same way in both cases shown in figure 26: it has
been divided by the mean value of the power, emitted by the rotating source, that
propagates across the sphere R̂P = 10 per unit solid angle.)

The angular position and extent of the non-spherically decaying component of the
radiation (depicted in figures 23, 28 and 32) is determined by the values of the linear
speeds of the rotating distribution pattern of the polarization current at the inner and
outer radii of the dielectric that hosts this current (figure 1). The sudden changes in
the value of the flux density across the boundaries of the non-spherically decaying
radiation beam reflect the presence or absence of source elements that approach the
observer along the radiation direction with the speed of light and zero acceleration
at the retarded time. At observation points within the transition intervals across these
boundaries – transition intervals that become narrower the larger the distance of the
observer from the source – the value of the field does not receive contributions from
all the stationary points.

The exponent α in the power-law decay R−αP of the flux density of the intense
beam itself varies with both the angular position and the distance of the observer.
To show these variations I have presented the plots of the angular distribution of
the flux density for the non-spherically decaying component of the radiation (using
a logarithmic scale) at the six distances R̂P = 10, 102, . . . , 106 in the same figure
(figures 22, 27 and 31) by moving up the distributions for R̂P > 102 relative to that for
R̂P= 10 each by the number of decibels (20, 40, . . . , 100) that it would have decayed
had it been obeying the inverse-square law R̂−2

P . The fact that in figures 22, 27 and 31
the distributions for longer distances lie above those for shorter distances in each of
these figures, instead of being coincident, means that the plotted flux densities decay
more slowly than predicted by the inverse-square dependence R̂−2

P . From the separation
between the distributions for different distances one can infer not only the best fit to
the value of α at each polar angle (figures 25, 29 and 33) but also an estimate of the
slow dependence of the value of α on distance (see figure 24).

The angular distributions in figure 27 differ from those shown in figures 22 and 31
because an additional mechanism of focusing comes into play when the observation
point is closer to the equatorial plane than half the width of the source distribution
normal to this plane. In that case the space–time distance between the observation
point and the source points is stationary also with respect to the axial coordinate z of
any volume element of the source distribution that lies at the same distance from the
equatorial plane as the observation point. This gives rise to an intense narrow beam
propagating along the equatorial plane whose angular width decreases as R−1

P with
distance (figure 28). The flux density of this narrowing beam decays faster than that
of the non-spherically decaying radiation outside the equatorial plane: it decays with
a value of α that nearly equals 2 (figure 29). So, the power that propagates into the
solid angle subtended by this equatorial beam decreases as R1−α

P ' R−1
P with distance.

Even in the case of the emission depicted in figure 28, the decreasing power
carried by the equatorial beam is not sufficient to compensate for the change R̂2−α

P
with distance of the power carried by the radiation beam that decays non-spherically.
The way the present radiation meets the requirements of the conservation of energy
is through having an energy density whose derivative with respect to time at points
inside the non-spherically decaying beam is negative when time-averaged (instead
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of being zero as in a conventional radiation). In the equation of continuity stating
the conservation of energy ((C 1) or its time-averaged free-space version (C 32)),
the positive flux of energy out of a closed surface is thus balanced by the negative
temporal rate of change of the energy contained in the volume bounded by that
surface (appendix C).

This is confirmed by the fact that, for the non-spherically decaying radiation beam,
time-averaged value of the temporal rate of change of the electromagnetic energy
density decays as R−βP with an exponent β whose value and angular distribution are
related to those of the exponent α. That the change per unit time in the amount of
electromagnetic energy contained inside a shell bounded by two spheres centred on
the source compensates for the difference in the fluxes of power across these spheres
is corroborated by the numerical results presented in figures 25 and 38.

The above two related features of the present radiation (its non-spherical decay with
distance and the decrease in its energy density with time) which distinguish it from
any other known radiation, stem from the transient nature of the process by which it
is emitted. Because of the nonlinearity of the relationship between the retarded time t
and the observation time tP (figures 4 and 36), the retarded distribution of the present
source bears no resemblance to its actual distribution shown in figure 1. In the case
of the example in figure 36, its retarded distribution consists of several disjoint parts
that continually change shape in the course of a rotation period. Even though the
retarded distribution of the source has the same shape at the beginning and the end
of each rotation period, the rate at which it changes shape with time is not the same
in any two rotation periods (see the final paragraphs of appendix C). At points where
they approach the observer with the speed of light along the radiation direction, the
boundaries of the retarded distribution of the present source change with time at a rate
that depends on the time elapsed since the source was switched on monotonically. The
fact that the present radiation never attains a steady state in which the time-averaged
value of the temporal rate of change of its energy density vanishes can thus be traced
back to a corresponding transient feature of its source: to the monotonically varying
rate at which the topology of the retarded distribution of the source changes with time.
The slower rate of decay of the flux density of this radiation with distance is, in
turn, required by the conservation of energy wherever the time-averaged value of the
temporal rate of change of its energy density is negative.

As explained in §§ 2 and 4.1, the source I have analysed can be identified with
a single Fourier component of any charge-current whose distribution pattern rotates
rigidly. The description of this source in (2.1) entails two frequencies: the rotation
frequency of the distribution pattern of the source, ω, and the frequency of the
radiation generated by the source mω, where the harmonic number m can be arbitrarily
large. Each value of m designates a given Fourier component both of a member of
the set of source distributions in question and of its radiation. The emphasis in this
paper has been on establishing the existence of a new class of solutions of Maxwell’s
equations by analysing a simple prototype of its required source in detail. The choice
of the values of the parameters of the specific examples of this prototype (including
the choice m = 10) for which I have numerically evaluated the characteristics of
the emission has likewise been made to emphasize the feasibility of experimentally
realizing such sources in the laboratory (see also Ardavan et al. 2004b). The effects
illustrated by these examples are not only expected to be generic but also to be much
stronger when the integer m is large (§ 7.5).

The results reported in this paper are therefore relevant not only to long-range
transmitters in communications technology but also to astrophysical objects containing
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rapidly rotating neutron stars (such as pulsars) for which the value of m exceeds 108.
Numerical computations based on the force-free, MHD and particle-in-cell formalisms
have now firmly established (see, e.g. Spitkovsky 2006; Kalapotharakos et al. 2012)
that not only does the distribution pattern of the charge-current in the magnetospheres
of such objects rotate rigidly with a superluminally moving outer part, thus belonging
to the same class of source distributions as the one I have analysed, but in addition
it entails current sheets and so the superposition of a large number of monochromatic
source distributions of the type considered in this paper. Tchekhovskoy et al. (2016)
have concocted an analytic expression for the fields in the magnetosphere of an
oblique rotator that fits the results of these numerical simulations very well. The
distribution of the charge-current associated with the magnetospheric current sheet
that is formed outside the light cylinder is described according to their analytic
expression by a Dirac delta function. This current sheet would not of course have
a vanishing width once the dissipation processes that take place within it are taken
into account more accurately than can be accounted for by the force-free or MHD
approximations. Nevertheless, the fact that the Dirac delta function has an infinite
number of matching Fourier components makes it clear that the parameter m does
indeed have a wide range of values for the distribution of the plasma that constitutes
the magnetosphere of any rapidly rotating non-aligned neutron star.

The thickness of the magnetospheric current sheet in such objects (which sets
a lower limit on the wavelength of the radiation this source can emit by the
present emission mechanism) is dictated by microphysical processes that are not
well understood. The standard Harris solution of the Vlasov–Maxwell equations that
is commonly used in analysing a current sheet is not applicable in the present case
because the current sheet in a pulsar magnetosphere moves faster than light and so
has no rest frame. The large value of the harmonic number m associated with a thin
current sheet together with the power-law dependence of the Poynting flux of the
present radiation on m (§ 8) suggest, however, that the frequency of the radiation
that is generated in the magnetosphere of a rapidly rotating non-aligned neutron star
can encompass a broad spectrum ranging from radio waves to gamma rays. This
multi-wavelength radiation escapes the dense plasma constituting the neutron star’s
magnetosphere in the same way that the radiation generated by the accelerating
charged particles invoked in most current attempts at modelling the pulsar radiation
does.

It is often presumed that the plasma equations used in the numerical computations
of the magnetospheric structure of an oblique rotator should, at the same time, predict
any radiation that the resulting structure would be capable of emitting (Spitkovsky
2006; Kalapotharakos et al. 2012). Irrespective of the formalism on which they
are based (whether MHD, force-free or particle-in-cell), the plasma equations used
in these computations are formulated in terms of the electric and magnetic fields
(as opposed to potentials). I have already shown in § 3, however, that the gauge
freedom offered by the solution of Maxwell’s equations in terms of potentials plays
an indispensable role in the prediction of the present radiation. The absence of
high-frequency radiation (and, specifically, the type of radiation I have described)
is in fact hardwired into the numerical computations that have been performed
to determine the magnetospheric structure of an oblique rotator by the imposition
of the standard boundary conditions on the fields in the far zone (see § 3). The
observed fact, too, that the spin-down power in young pulsars is much greater than
the electromagnetic power they emit indicates that the physical principles underlying
the mechanism of radiation in these objects are independent of those dictating their
magnetospheric structure.
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That the magnetospheric current sheet may be responsible for the observed radiation
from rapidly rotating neutron stars has already been put forward in the literature but
with an emphasis on the microscale structure of the sheet and magnetic reconnection
(Uzdensky & Spitkovsky 2014; Philippov et al. 2019, and the references therein).
According to the results obtained here, in contrast, it is the accelerated motion at
a superluminal speed of the sharply localized macroscopic distribution pattern of
this current sheet that underlies its candidacy as a possible source of the radiation
received from such objects. Microphysical processes play no role in determining the
topology and motion of the distribution pattern of the current sheet, i.e. the features
that dictate the distinctive characteristics of the radiation it would generate by the
present emission mechanism. Determination of the thickness of the current sheet
does go beyond the approximations used in the numerical computations (Uzdensky
& Spitkovsky 2014) and would require a consideration of these processes on plasma
scales but it would be possible to incorporate this thickness in the description of
the macroscopic charges and currents that are associated with the current sheet
a posteriori. This thickness can be incorporated, for example, in the formulation of
the semi-analytic expressions that are provided by Tchekhovskoy et al. (2016).

Before the results of this paper can be applied to the astrophysical objects that
have originally motivated the present study (Ardavan 1981), however, it would be
necessary not only to explore a very different region of the parameter space but also
to replace the simple monochromatic source distribution of figure 1 (for which the
radiation is azimuthally symmetric) by one describing the magnetospheric structure
of an oblique rotator (such as that reported in Spitkovsky 2006; Kalapotharakos et al.
2012; Tchekhovskoy et al. 2016). Moreover, an exploration of the parameter space of
even the simple prototype of superluminally rotating sources described in § 2, which
would be needed for adapting its design to its various applications in technology
(Ardavan & Ardavan 2010) remains to be done.

These notwithstanding, the mere fact that the inhomogeneous Maxwell equations
possess solutions corresponding to physically tenable sources that describe the
emission of non-spherically decaying radiation has far-reaching implications: not
only for communications technology and the radiation mechanism of astrophysical
objects containing rapidly rotating neutron stars (such as pulsars) but also for the
interpretation of other observed phenomena in astrophysics. It has implications, for
example, for the interpretation of the energetics of the multi-wavelength emissions
(such as radio and gamma-ray bursts) whose sources lie at cosmological distances
(∼1028 cm). It is widely accepted that some of these objects release as much energy
as 1054 ergs (i.e. an energy comparable to that which would be released by the
annihilation of the Sun) over a short time interval of the order of a second (Piron
2016; Chatterjee et al. 2017). The unquestioned assumption on which this consensus
is based is that the radiation fields of all sources necessarily decay as predicted by
the inverse-square law. This assumption is brought into question by the results of
the present analysis, however. Given that the emission from such objects could in
principle be decaying non-spherically with distance, an alternative interpretation of the
same observational data based on the findings of the present paper would yield much
lower, physically more realistic, estimates of the energy released by these objects.
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Appendix A. Hadamard’s finite part of a divergent integral: an illustrative
example

The need for introducing Hadamard’s regularization in the theory of generalized
functions, in which the order of integration and differentiation can be interchanged, is
illustrated by considering the derivative of the function represented by the following
double integral:

F(z)=
∫
∞

z
dx
∫
∞

0
dy f (x)δ(y3

− x+ z), z > 0, (A 1)

where the function f (x) and its derivative f ′(x) are continuous with finite supports and
δ is the Dirac delta function. Performing the integration with respect to x prior to
differentiating this integral, we obtain

F(z)=
∫
∞

0
dy f (y3

+ z), (A 2)

and hence

F′(z)=
∫
∞

0
dy f ′(y3

+ z), (A 3)

where a prime denotes differentiation with respect to the argument of the function.
The right-hand sides of (A 2) and (A 3) are both well defined and finite.

On the other hand, if we interchange the order of integration and differentiation
(disregarding limits of integration as in Hadamard 2003), we obtain

F′(z)=
∫
∞

z
dx
∫
∞

0
dy f (x)δ′(y3

− x+ z). (A 4)

Evaluation of the x integral in this expression reproduces (A 3), i.e. yields an
expression with a finite value for F′(z). However, the evaluation of the y integral
results in the following alternative expression for the same function

F′(z)=
2
9

∫
∞

z
dx

f (x)
(x− z)5/3

, (A 5)

which is divergent.
The paradox is resolved once one interprets the divergent integral in (A 5) as a

generalized function and equates it to its Hadamard’s finite part (see, e.g. Hoskins
2009). Integrating the right-hand side of (A 5) by parts to obtain

F′(z)= −
f (x)

3(x− z)2/3

∣∣∣∣∞
z

+
1
3

∫
∞

z
dx

f ′(x)
(x− z)2/3

(A 6)
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and discarding the divergent (integrated) term in (A 6), we find that the following
expression for the Hadamard finite part of F′(z)

Fp{F′(z)} =
∫
∞

z
dx

f ′(x)
3(x− z)2/3

=

∫
∞

0
dη f ′(η3

+ z) (A 7)

has the same value as that found in (A 3). In other words, there is no discrepancy
between the values of the two single integrals in (A 3) and (A 5) if these integrals are
interpreted as generalized rather than classical functions.

An alternative way of calculating the Hadamard finite part of the divergent integral
in (A 5) is (i) to subtract from the function f (x) as many terms of its Taylor expansion
about the singular point x= z as are needed to render the singularity of the integrand
integrable, (ii) to add to the integrand what has thus been subtracted from it and
(iii) to integrate the added terms discarding all divergent contributions, i.e. to let

Fp{F′(z)} =
2
9

∫
∞

z
dx

f (x)− f (z)
(x− z)5/3

−
f (z)

3(x− z)2/3

∣∣∣∣
x=∞

=
2
9

∫
∞

z
dx

f (x)− f (z)
(x− z)5/3

(A 8)

in the present case. That this equals the right-hand side of (A 7) follows from an
integration by parts for which the integrated term now vanishes (Hadamard 2003;
Hoskins 2009).

Appendix B. Why a conventional approach to the problem does not work
My previous works on the radiation by superluminal sources (Ardavan 1998, 1999;

Ardavan et al. 2004c, 2007, 2008a) have been criticized (Hannay 2000; Hewish 2000;
Hannay 2001, 2006, 2008, 2009; McDonald 2004; Kalapotharakos et al. 2012) either
on the basis of the wave or the plasma equations for the fields (e.g. (3.1)), or on the
basis of the following classical form of the retarded potential

Aµ(xP, tP)=
1
c

∫
d3x

jµ(x, tret)

R
, (B 1)

with
tret = tP − R/c, (B 2)

which is obtained by performing the integration with respect to t in (3.7). The fact
that the customarily used retarded solutions of the wave equations for the fields (as
opposed to those for the potentials) do not in the present case satisfy the required
boundary conditions at infinity has already been discussed in § 3. In this appendix
I also explain why a simple-minded approach based on (B 1) fails to capture the
unconventional features of the radiation from an extended source whose distribution
pattern rotates superluminally. Together with § 3, the analysis that follows supersedes
my published replies (Ardavan 2000; Ardavan, Ardavan & Singleton 2004a, 2006;
Ardavan et al. 2008b, 2009a) to the critiques of my earlier works on this problem.

Let us apply (B 1) to the experimentally realized source distribution described in § 2,
for which the cylindrical components of the current density j = ∂P/∂t are described
by the real part of

jr,ϕ,z = imωsr,ϕ,z(r, z) exp[−im(ϕ −ωt)], rL 6 r 6 rU,−z0 6 z 6 z0, 0 6 ϕ −ωt< 2π

(B 3)
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FIGURE 36. The function ϕ̂ret versus ϕ for the following fixed set of values of
(r, z; rP, ϕP, zP, tP) at which ∆ is positive: r̂= 10, ẑ= 0, r̂P= 89.13, ϕP=π/2, ẑP= 45.34,
tP = 98.92ω−1. In this example the time and location of the observer is such that the
detected field receives simultaneous contributions from the first three rotation cycles of the
source point with the initial (t= 0) position ϕ= 0, i.e. from 06 ϕ6 6π. The range Rϕ of
ϕ for which ϕ̂ret falls between 0 and 2π consists of the four disjoint intervals ϕ1 6ϕ <ϕ2,
2π6ϕ <ϕ3, ϕ4 6ϕ <ϕ5 and ϕ6<ϕ<ϕ7 representing the azimuthal extent of the retarded
distribution of the source. The points (0, ϕ1) and (ϕ2, 2π, ϕ5) of the intersections of the
above curve with the lines ϕ̂ret= 0 and ϕ̂ret= 2π coalesce onto inflection points when the
coordinates (r, z; rP, zP) assume values for which ∆ vanishes and the source point lies on
the cusp locus C of the bifurcation surface.

(see (2.1), (2.7), (4.1) and (4.3)). The resulting expression for, say, the z component
of the vector potential is

Az =
imω

c

∫ rU

rL

r dr
∫ z0

−z0

dz sz

∫
Rϕ

dϕ
exp(−imϕ̂ret)

R
, (B 4)

where

ϕ̂ret = ϕ −ωtret

= ϕ + [(ẑ− ẑP)
2
+ r̂2

P + r̂2
− 2r̂Pr̂ cos(ϕ − ϕP)]

1/2
−ωtP, (B 5)

with r̂ = rω/c, ẑ = zω/c, etc., and Rϕ is the range of ϕ over which the constraint
0 6 ϕ̂ret < 2π is satisfied, i.e. is the support of the retarded distribution of the source.
(For a discussion of the significance and indispensability of this constraint see § 4.1.)

Figure 36 shows the dependence of the function ϕ̂ret on the coordinate ϕ for a fixed
set of values of (r, z; rP, ϕP, zP, tP) at which the discriminant ∆ defined in (4.18)
is positive. (ϕ̂ret differs from the function g defined in (4.8) and plotted in figure 4
only by ϕ̂P which is constant for fixed space–time coordinates of the observation
point.) Note that the (r, z)-coordinates of the source point are here kept fixed and
the coordinate ϕ = ϕ̂ + ωt marks the continually increasing azimuthal position of the
source element which was located at ϕ = ϕ̂ at the time t= 0 on the circle r= const.,
z= const. Given that ϕ̂ thus labels each volume element of the rotating source by its
azimuthal position at t = 0, the vertical and horizontal axes in figure 36 respectively
show which source elements on the circle r= const., z= const., make a contribution
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toward the radiation received at (rP, ϕP, zP; tP) and during which rotation period, i.e.
over which ϕ-interval.

The source density in (B 1) is evaluated on the collapsing sphere |x− xP| = c(tP −

t) in the space of source points whose centre lies on the observation point xP and
whose radius shrinks to zero at the observation time tP. If the speed of the source is
sufficiently higher than c so that the separation between the neighbouring extrema of
the curve shown in figure 36 is greater than 2π (as in figure 36), then this sphere
could be intersected by the rotating source element several times (3, 5, 7, . . . times)
as it collapses. In other words, there could then be an odd number of simultaneously
received contributions that are made by the same source element over a retarded time
interval exceeding one rotation period (Bolotovskii & Bykov 1990).

The illustrative example depicted in figure 36 shows that, during the first three
rotation cycles 0 6 ϕ < 6π, certain source elements (the ones labelled by values of
ϕ̂ret close to 2π) make their contributions toward the field observed at (rP, ϕP, zP; tP)
at five retarded times (i.e. when passing through five distinct azimuthal positions),
while each of the other source elements makes its contribution at three retarded times.
This figure also shows that there are intervals of ϕ within the cycles 0 6 ϕ < 6π
from which no contribution reaches the field observed at (rP, ϕP, zP; tP). According
to figure 36, the source elements whose ϕ̂ labels satisfy the constraint 0 6 ϕ̂ret < 2π
are those whose retarded positions lie in the intervals ϕ1 6 ϕ < ϕ2, 2π 6 ϕ < ϕ3,
ϕ4 6 ϕ < ϕ5 and ϕ6 < ϕ < ϕ7. Thus in contrast to the retarded distribution of a
stationary or subluminally moving source which occupies an azimuthal interval of
length 2π at most, the volume over which the integration in (B 1) extends for ∆> 0 is
so stretched around the rotation axis and perforated as to occupy an azimuthal interval
of length 6π. For ∆ < 0, on the other hand, ϕ̂ret is a monotonic function of ϕ (see
figure 4) and so the range Rϕ consists of the single cycle 0 6 ϕ < 2π.

Hence, for the example shown in figure 36, the volume integral in (B 4) assumes
the form

Az =
imω

c

∫ rU

rL

r dr
∫ z0

−z0

dz sz(r, z)

×

[
H(∆)

(∫ ϕ2

ϕ1

+

∫ ϕ3

2π

+

∫ ϕ5

ϕ4

+

∫ ϕ7

ϕ6

)
dϕ

exp(−imϕ̂ret)

R

+H(−∆)
∫ 2π

0
dϕ

exp(−imϕ̂ret)

R

]
, (B 6)

in which the Heaviside step functions take account of the fact that the contributing
source distribution at the retarded time consists, in general, of both volume elements
that approach the observer along the radiation direction with a speed exceeding c, for
which ∆> 0, and elements that approach the observer with a speed lower than c, for
which ∆< 0 (see § 5.1). The limits ϕj ( j= 1, 2, . . . , 7) of the ϕ-integrations are given,
as functions of (r, z, rP, zP; tP), by the solutions of the transcendental equations ϕ̂ret= 0
and ϕ̂ret = 2π.

Because the limits of integration in this alternative formulation of the retarded
potential depend on the space–time coordinates of the observation point, calculation
of the field entails the use of Leibniz’s formula for the differentiation of a definite
integral whose derivative receives contributions also from the variations of its limits

d
dx

∫ α(x)

β(x)
f (x, ξ) dξ = f (x, α)

dα
dx
− f (x, β)

dβ
dx
+

∫ α(x)

β(x)

∂f
∂x

dξ (B 7)
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(see, e.g. Courant 1967). If we differentiate Az with respect to tP, for example, the
resulting expression would contain terms that involve the derivatives ∂ϕj/∂tP of the
limits of integration ϕj. Differentiating the transcendental equation ϕ̂ret=0 with respect
to tP, we find that

∂ϕj

∂tP
=

ω

1+ r̂r̂P sin(ϕ − ϕP)/R̂

∣∣∣∣
ϕ=ϕj

=
ω

∂g/∂ϕ

∣∣∣∣
ϕ=ϕj

, (B 8)

in which the function g is that defined in (4.8) (see (4.20)).
At the points of intersection of the cusp locus C (described by (4.24)) with

the source distribution, where the roots (0, ϕ1) and (ϕ2, 2π, ϕ5) of ϕ̂ret = 0 and
ϕ̂ret = 2π coalesce onto inflection points (see figure 4), not only ∂g/∂ϕ|ϕ=ϕj but
also ∂2g/∂ϕ2

|ϕ=ϕj vanishes (see § 4.3). At such points, the terms in the derivative of
the potential that arise from the differentiation of the limits of integration in (B 6)
contain divergent factors as demonstrated by (B 8). The divergence of the derivatives
of the limits of integration contravenes the conditions for the differentiability of the
ϕ-integrals in (B 6) as classical functions, i.e. contravenes the validity of Leibniz’s
formula (Courant 1967).

The fact that the source cannot be infinitely long lived, i.e. that its trajectory has to
have a boundary, is essential to the validity of the above result. Because the integrand
in (B 4) is a periodic function of ϕ, the contributions toward the value of Az from the
ϕ intervals in a given rotation cycle over which the curve ϕ̂ret(ϕ) falls outside the
strip 0 6 ϕ̂ret < 2π are compensated, in the case of an infinitely long-lived source, by
the contributions from the ϕ intervals in other rotation cycles over which this curve
lies inside the strip. In other words, the sum of all contributions for a source whose
trajectory extends over −∞<ϕ<∞ amounts to the contribution that would have been
attributed to a single cycle had the constraint 06 ϕ̂ret< 2π been overlooked. However,
this does not hold true in the case of the source element depicted in figure 36 (which
is turned on at t = 0 when it is at ϕ = 0) because its trajectory only extends over
0< ϕ <∞. The contributions towards the value of Az from the three intervals 2π 6
ϕ 6 ϕ3, ϕ4 6 ϕ 6 ϕ5 and ϕ6 6 ϕ 6 ϕ7 jointly compensate for the missing contribution
from the interval 0 6 ϕ 6 ϕ1 of the first rotation cycle but the contribution from the
missing interval ϕ2 6 ϕ6 2π of this cycle remains un-compensated. Consequently, the
divergent contribution from the derivative of ϕ2 towards the value of the field is not
cancelled out by any other contribution in this case.

Thus the alternative formulation (B 1) of the retarded potential merely replaces
the singularity of the integrand in (4.12), i.e. the singularity of the derivative of the
Green’s function for the problem, by the singularity of the derivatives of the limits
of integration. In contrast to the singularity of the derivative of the Green’s function
which can be rigorously handled by Hadamard’s regularization technique (Hadamard
2003), however, the singularity encountered in this appendix vitiates the applicability
of (B 1) to sources whose radiation field has to be found by differentiating the
expression for their retarded potential (see § 3).

Appendix C. How the requirements of the conservation of energy are met by the
radiation described in this paper

In this appendix I show explicitly that, notwithstanding the non-spherical decay of
their amplitudes, the radiation fields E and B that are derived in the present paper
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do comply with the statement of conservation of energy embodied in the Poynting
theorem∫

D
d3xP

∂

∂tP

(
E2
+B2

8π

)
+

∫
∂D

d2xP ·

( c
4π

E×B
)
=−

∫
D

d3xP j ·E (C 1)

(see Jackson 1999). Here ∂D stands for the closed surface bounding the volume D.
In the case of a conventional radiation, for which the phase difference between E
and ∂E/∂tP and between B and ∂B/∂tP is π/2, time-averaged value of the first term
in (C 1) vanishes so that in free space where j= 0 the flux of energy into any closed
region (e.g. into the volume bounded by two spheres centred on the source) equals
the flux of energy out of it. In the present case, on the other hand, time-averaged rate
of change of the energy density of the non-spherically decaying radiation contained
within a closed region of space is as shown in this appendix negative, so that the flux
of energy into that region can be smaller than the flux of energy out of it.

The dependence of the radiation field described by (4.12) on the observation time tP
arises through the variable φ in the expression for the Green’s function Gnj in (4.17).
Differentiating (4.12) with respect to tP and noting that ∂δ(g − φ)/∂tP = ω∂δ(g −
φ)/∂ϕ̂ according to (4.9), we obtain[

∂E/∂tP
∂B/∂tP

]
=−

2∑
n=1

3∑
j=1

∫
S

r̂ dr̂ dϕ̂ dẑ
∂2Gnj

∂ϕ̂2

[
unj
vnj

]
. (C 2)

(Note that, according to (B 7), the dependence on ϕ̂ of the limits of integration
in (4.17) does not contribute toward the values of the derivatives of Gnj with respect
to ϕ̂.) The ϕ̂-integral in this expression can be evaluated in exactly the same way as
in (4.56) (see § 4.6). Breaking up the volume of integration in the expression for the
derivative of one of the radiation fields, e.g. ∂E/∂tP, into the domains of validity of
Gin

nj, Gout
nj and Gsub

nj , we can write the ϕ̂-integral over unj in (C 2) as

Iϕ̂ϕ̂ ≡
∫ 2π

0
dϕ̂ unj

∂2Gnj

∂ϕ̂2

= H(∆)

[(∫ ϕ̂−

0
+

∫ 2π

ϕ̂+

)
dϕ̂ unj

∂2Gout
nj

∂ϕ̂2
+

∫ ϕ̂+

ϕ̂−

dϕ̂ unj
∂2Gin

nj

∂ϕ̂2

]

+H(−∆)
∫ 2π

0
dϕ̂ unj

∂2Gsub
nj

∂ϕ̂2
. (C 3)

If we now integrate every term of the above expression by parts, recall that ϕ̂ = 0
labels the same source point as does ϕ̂ = 2π, and use the fact that the exact version
of Gnj given in (4.17) is periodic in ϕ̂ as well as in ϕ (with the same period 2π), we
arrive at

Iϕ̂ϕ̂ = H(∆)


[

unj

(
∂Gin

nj

∂ϕ̂
−
∂Gout

nj

∂ϕ̂

)]ϕ̂=ϕ̂+
ϕ̂=ϕ̂−

−

(∫ ϕ̂−

0
+

∫ 2π

ϕ̂+

)
dϕ̂
∂unj

∂ϕ̂

∂Gout
nj

∂ϕ̂

−

∫ ϕ̂+

ϕ̂−

dϕ̂
∂unj

∂ϕ̂

∂Gin
nj

∂ϕ̂

−H(−∆)
∫ 2π

0
dϕ̂
∂unj

∂ϕ̂

∂Gsub
nj

∂ϕ̂
, (C 4)

https://doi.org/10.1017/S0022377819000382 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000382


82 H. Ardavan

an expression that reduces to

Iϕ̂ϕ̂ =H(∆)

[
unj

(
∂Gin

nj

∂ϕ̂
−
∂Gout

nj

∂ϕ̂

)]ϕ̂=ϕ̂+
ϕ̂=ϕ̂−

−

∫ 2π

0
dϕ̂
∂unj

∂ϕ̂

∂Gnj

∂ϕ̂
, (C 5)

once the integrals over ∂Gin
nj/∂ϕ̂, ∂Gout

nj /∂ϕ̂ and ∂Gsub
nj /∂ϕ̂ are combined in the light

of (4.54).
The integral in (C 5) differs from the integral Iϕ̂ which was evaluated in (4.56)–

(4.58) only in that ∂unj/∂ϕ̂ here replaces unj in Iϕ̂ . Performing another integration by
parts, as in the evaluation of Iϕ̂ , we obtain

Iϕ̂ϕ̂ =H(∆)

[
unj

(
∂Gin

nj

∂ϕ̂
−
∂Gout

nj

∂ϕ̂

)
−
∂unj

∂ϕ̂

(
Gin

nj −Gout
nj

)]ϕ̂=ϕ̂+
ϕ̂=ϕ̂−

+

∫ 2π

0
dϕ̂
∂2unj

∂ϕ̂2
Gnj (C 6)

from (C 5). It can be seen from the last paragraph of § 4.5 that Gin
nj and ∂Gin

nj/∂ϕ̂ both
diverge at ϕ̂ = ϕ̂± (figures 9 and 10). The physically relevant part of Iϕ̂ϕ̂ is given
by the right-hand side of (C 6) without the divergent terms involving Gin

nj|ϕ̂=ϕ̂± and
∂Gin

nj/∂ϕ̂|ϕ̂=ϕ̂± ,

Fp{Iϕ̂ϕ̂} =H(∆)
[

Gout
nj
∂unj

∂ϕ̂
− unj

∂Gout
nj

∂ϕ̂

]ϕ̂=ϕ̂+
ϕ̂=ϕ̂−

+

∫ 2π

0
dϕ̂
∂2unj

∂ϕ̂2
Gnj, (C 7)

where Fp{Iϕ̂ϕ̂} denotes the Hadamard finite part of the divergent integral Iϕ̂ϕ̂ (see
Hadamard 2003; Hoskins 2009). This procedure applies also to the expression for
∂B/∂tP in (C 2) except that unj in (C 3)–(C 7) is everywhere replaced by vnj. Hence,[

∂E/∂tP
∂B/∂tP

]
= −

2∑
n=1

3∑
j=1

{∫
S

r̂ dr̂ dϕ̂ dẑ Gnj
∂2

∂ϕ̂2

[
unj
vnj

]

+

∫
S ′

r̂ dr̂ dẑ H(∆)
[

Gout
nj
∂

∂ϕ̂

[
unj
vnj

]
−

[
unj
vnj

]
∂Gout

nj

∂ϕ̂

]ϕ̂=ϕ̂+
ϕ̂=ϕ̂−

}
(C 8)

according to (C 2), (C 3) and (C 7).
In the case of the charge and current densities associated with the polarization

distribution (2.1) for which the source term [unj vnj] assumes the form given in (5.1),
the above expression becomes[

∂E/∂tP
∂B/∂tP

]
= imω

2∑
n=1

3∑
j=1

{
m2
∫
S

r̂ dr̂ dϕ̂ dẑ exp(−imϕ̂)Gnj

[
ũnj
ṽnj

]

+

∫
S ′

r̂ dr̂ dẑ H(∆)
[

ũnj
ṽnj

] [
exp(−imϕ̂)

(
imGout

nj +
∂Gout

nj

∂ϕ̂

)]ϕ̂=ϕ̂+
ϕ̂=ϕ̂−

}
.

(C 9)

This can in turn be written as[
∂E/∂tP
∂B/∂tP

]
= imω

{[
E
B

]
+

2∑
n=1

3∑
j=1

∫
S ′

r̂ dr̂ dẑ H(∆)
[

ũnj
ṽnj

] [
exp(−imϕ̂)

∂Gout
nj

∂ϕ̂

]ϕ̂=ϕ̂+
ϕ̂=ϕ̂−

}
(C 10)
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in the light of (4.60), (5.7) and (5.8). The first term in (C 10) arises from the sinu-
soidal oscillations of the field [E B] at the frequency mω as in any monochromatic
radiation field. However, the second term which arises from the retardation effects
reflected in the discontinuities of the Green’s function Gnj, is not normally encountered
in the case of a conventional radiation.

The Green’s function Gnj depends on ϕ̂ both through the limits of integration
in (4.17) and through the variable φ which appears in the argument of the Dirac
delta function in this equation (see (4.9)). However, since the integrand in (4.17)
has the same value at both limits of integration and the derivatives of the limits of
integration both equal unity, derivative of Gnj with respect to ϕ̂ receives a non-zero
contribution only from the dependence of the delta function on ϕ̂ (see (B 7)),

∂Gnj

∂ϕ̂
=−

∞∑
k=1

∫ ϕ̂+2kπ

ϕ̂+2(k−1)π
dϕ hnjδ

′(g− φ), (C 11)

where δ′ stands for the derivative of the delta function with respect to its argument
and hn1

hn2
hn3

= 1

R̂n

cos(ϕ − ϕP)
sin(ϕ − ϕP)

1

 . (C 12)

Integrating the right-hand side of (C 11) by parts, we obtain

∂Gnj

∂ϕ̂
=

∞∑
k=1

∫ ϕ̂+2kπ

ϕ̂+2(k−1)π
dϕ

∂

∂ϕ

(
hnj

∂g/∂ϕ

)
δ(g− φ), (C 13)

where the Jacobian ∂g/∂ϕ stems from the fact that ∂δ(g− φ)/∂ϕ = δ′(g− φ)∂g/∂ϕ.
As in § 4.5, a uniform asymptotic approximation to this integral, for small c1, can be
found by the method of Chester et al. (1957) in the time domain (Burridge 1995).

We have seen that, where it is analytic (i.e. for all x 6= xP), the function g(ϕ) can be
transformed into the cubic function defined in (4.25). Inserting (4.25) and its derivative

∂g
∂ϕ
=
ν2
− c2

1

dϕ/dν
(C 14)

in (C 13), we find that

∂Gnj

∂ϕ̂
=

∞∑
k=1

H
∫
∞

−∞

dν
[
−

Fnj

(ν2 − c2
1)

2
+

F′nj

ν2 − c2
1

]
δ

(
1
3
ν3
− c1

2ν + c2 − φ

)
, (C 15)

where

Fnj =

(
dϕ
dν

)3
∂2g
∂ϕ2

hnj, (C 16)

F′nj =

(
dϕ
dν

)2
∂hnj

∂ϕ
, (C 17)

and H is the step function defined in (4.29).
The leading term in the asymptotic expansion of the integral in (C 15) receives

contributions only from the first term in the integrand of this integral: the factor |ν2
−

c2
1| in the ratio of the two terms relegates the contribution from F′nj to the higher-order
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terms of the expansion (see Chester et al. 1957). Replacing the integral in (C 15) by
the leading term in its asymptotic expansion for small c1, we obtain

∂Gnj

∂ϕ̂
'−

∞∑
k=1

H
∫
∞

−∞

dν
Pnj +Qnjν

(ν2 − c2
1)

2
δ

(
1
3
ν3
− c1

2ν + c2 − φ

)
, c1� 1, (C 18)

where
Pnj =

1
2(Fnj|ϕ=ϕ− + Fnj|ϕ=ϕ+), (C 19)

and
Qnj =

1
2 c1
−1(Fnj|ϕ=ϕ− − Fnj|ϕ=ϕ+). (C 20)

According to (4.21) and (4.50),

Pnj = 2c2
1qnj, and Qnj = 2pnj, (C 21)

where the functions pnj and qnj, which were encountered in the asymptotic expansion
of Gnj itself in (4.31), have the values given by (4.52) and (4.53).

For the purposes of calculating ∂E/∂tP and ∂B/∂tP by means of the expression
in (C 10), we need to evaluate ∂Gnj/∂ϕ̂ only outside the bifurcation surface, i.e. for
|χ | > 1 (see (4.37) and (4.44)). In this region, the argument of the delta function
in (C 18) has a single zero at ν = νout given in (4.36). The integration with respect
to ν in (C 18) therefore results in

∂Gout
nj

∂ϕ̂
= −

∞∑
k=1

H
Pnj +Qnjν

|ν2 − c2
1|

3

∣∣∣∣
ν=νout

= −

∞∑
k=1

H
2 sinh3 ( 1

3 arccosh|χ |
)

c5
1|χ

2 − 1|3/2

[
c1qnj + 2pnjsgn(χ) cosh

(
1
3

arccosh|χ |
)]

,

(C 22)

and hence
∂Gout

nj

∂ϕ̂

∣∣∣∣
χ=±1

=−
2

27c5
1
[c1qnj ± 2pnj], c1� 1. (C 23)

Note that the summation over k drops out of (C 23) because its summand depends on
k only through H|ϕ̂=ϕ̂± and the sum

∑
∞

k=1 H|ϕ̂=ϕ̂± equals unity.
Equation (C 23) now yields the following expression for the factor that contains

∂Gout
nj /∂ϕ̂|ϕ̂=ϕ̂± in (C 10):

[
exp(−imϕ̂)

∂Gout
nj

∂ϕ̂

]ϕ̂=ϕ̂+
ϕ̂=ϕ̂−

= −

(
2
3

)3 pnj cos
(

2
3 mc3

1

)
−

1
2 ic1qnj sin

(
2
3 mc3

1

)
c5

1

× exp[−im(c2 + ϕ̂P)], (C 24)

where (4.9) and (4.26) have been used to express ϕ̂− and ϕ̂+ in terms of c1 and c2.
When the cusp curve of the bifurcation surface of the observation point intersects
the source distribution (i.e. in the case relevant to the present discussion in which
the Poynting flux decays non-spherically), the r̂-integration in (C 10) extends over the
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interval r̂C 6 r̂ 6 r̂U (see figure 11). Inserting (C 24) in (C 10) and writing the integral
over S ′ as a double integral, we obtain the following expression:[

∂E/∂tP
∂B/∂tP

]
= imω

{[
E
B

]
+

(
2
3

)3

exp(−imϕ̂P)

2∑
n=1

3∑
j=1

∫ ẑ0

−ẑ0

dẑ
∫ r̂U

r̂C

r̂ dr̂
[

ũnj
ṽnj

]
× exp(−imc2)c−5

1

[
−pnj cos

(
2
3

mc3
1

)
+

1
2

ic1qnj sin
(

2
3

mc3
1

)]}
,

m� 1, θL 6 θP 6 θU, π− θU 6 θP 6π− θL, (C 25)

where θL and θU are the polar angles defined in (7.7) and (7.8). Both terms of the
integrand in this equation are singular at the boundary r̂ = r̂C of the domain of
integration where c1 vanishes (see (7.41)). While the singularity of the term involving
sin((2/3)mc3

1) is like that of (r̂ − r̂C)
−1/2 and so is integrable, the singularity of the

term involving cos((2/3)mc3
1) which is like that of (r̂ − r̂C)

−5/2 needs to be handled
by means of the Hadamard regularization technique.

If we denote the divergent integral over r̂ in (C 25) by[
I
J

]
=

2∑
n=1

3∑
j=1

∫ r̂U

r̂C

r̂ dr̂ exp(−imc2)

[
ũnj
ṽnj

]
pnjc−5

1 cos
(

2
3

mc3
1

)
, (C 26)

then the first step in finding its Hadamard’s finite part is to cast it into the following
canonical form by simultaneously multiplying and dividing its integrand by (r̂− r̂C)

5/2,[
I
J

]
=

∫ r̂U

r̂C

dr̂
[

Ũ
Ṽ

]
(r̂− r̂C)

−5/2, (C 27)

in which[
Ũ
Ṽ

]
=

2∑
n=1

3∑
j=1

r̂ exp(−imc2)pnjc−5
1 cos

(
2
3

mc3
1

)
(r̂− r̂C)

5/2

[
ũnj
ṽnj

]
. (C 28)

This form of the integrand consists of two factors: the factor [Ũ Ṽ] which is a
regular function of (r̂− r̂C)

1/2 throughout the integration domain (see (7.41)) and the
factor (r̂ − r̂C)

−5/2 which explicitly specifies the order of the singularity. Hadamard’s
finite part of the integral in (C 27) can be found by expressing its integrand in terms
of ξ = (r̂− r̂C)

1/2, performing four consecutive integrations by parts and discarding the
integrated terms that diverge at ξ = 0. Since the integrated terms at r̂= r̂U vanish for
any current density that smoothly vanishes at this boundary of the source distribution,
this procedure results in

Fp
{[

I
J

]}
= Fp

{
2
∫ (r̂U−r̂C)

1/2

0
dξ ξ−4

[
Ũ
Ṽ

]}

= −
1
3

∫ (r̂U−r̂C)
1/2

0
dξ ln(ξ)

∂4

∂ξ 4

[
Ũ
Ṽ

]
(C 29)

(see Hadamard 2003; Hoskins 2009, and appendix A). To evaluate the above
expression numerically, it is of course necessary to remove the indeterminacy of
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[Ũ Ṽ] at ξ = 0 before performing the differentiations by replacing the numerator
and the denominator in (C 28) each by its individual Taylor expansion in a small
neighbourhood (ξ 6 R̂−2

P ) of this point.
Replacing the divergent integral in (C 25) by its Hadamard finite part, given by

(C 29), we arrive at[
∂E/∂tP
∂B/∂tP

]
= imω

{[
E
B

]
+

(
2
3

)3

exp(−imϕ̂P)

∫ ẑ0

−ẑ0

dẑ
[
−Fp

{[
I
J

]}

+
1
2

i
2∑

n=1

3∑
j=1

∫ r̂U

r̂C

dr̂ r̂qnj exp(−imc2)

[
ũnj
ṽnj

]
c−4

1 sin
(

2
3

mc3
1

)]}
(C 30)

for m� 1 and θL 6 θP 6 θU or π− θU 6 θP 6 π− θL, i.e. for polar angles at which
the cusp curve of the bifurcation surface intersects the source distribution across its
entire ẑ-extent (see figure 11). As in (8.2), the right-hand side of the above equation
depends on the observation time tP through the oscillating factor exp(−imϕ̂P) which
multiplies all its terms. Hence, if we denote the time-averaged rate of change of the
energy density in the non-spherically decaying part of the radiation field by ∂U/∂tP,
then

∂U
∂tP
=

1
4π

〈
Re(E) ·Re

(
∂E
∂tP

)
+Re(B) ·Re

(
∂B
∂tP

)〉
=

1
8π

Re
(

E∗ ·
∂E
∂tP
+B∗ ·

∂B
∂tP

)
,

(C 31)
where the angular brackets denote averaging with respect to tP over an integral
multiple of the oscillation period 2π/(mω). (Note that E∗ · ∂E/∂tP + B∗ · ∂B/∂tP is
not necessarily real in the present case.) This shows that the first term in (C 30),
which arises from the sinusoidal oscillations of the field [E B] at the frequency
mω, makes no contribution towards the value of the time-averaged quantity ∂U/∂tP

because the factor i in this term renders its oscillations out of phase with those
of [E B] by π/2. The second term in (C 30), which is particular to the present
radiation process, on the other hand, results in a value for ∂U/∂tP that is clearly
non-zero.

To confirm that, as expected on physical grounds, the non-zero value of ∂U/∂tP

predicted by (C 30) and (8.2) is in fact negative, I have evaluated this quantity for
the parameters of Case Ia described in § 11.1 with |jz| = 0.01 A m−2. The result is
shown in figure 37 at several distances (R̂P = 10, 102, 103, 104, 105 and 106) within
the angular interval (60◦<θP< 70◦) where the Poynting vector decays non-spherically.
To make the figure more transparent, I have shifted the results for R̂P= 102, 103, 104,
105 and 106 relative to that for R̂P = 10 by multiplying them by 102, 104, 106, 108

and 1010, respectively. Figure 37 shows not only that ∂U/∂tP is negative wherever
the radial component of the Poynting vector decays non-spherically (see figures 22
and 25), but also that its absolute value diminishes with distance like the value of the
radial component of the Poynting vector: as R̂−βP with 1<β < 2.

I have employed the same procedure as that illustrated in (4.9) to find the exponent
β in the power law R̂−βP that best fits the dependence of ∂U/∂tP on distance at various
values of θP. The result, which is shown in figure 38, is consistent with the angular
dependence of α depicted in figure 25.
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FIGURE 37. Time-averaged value of the temporal rate of change of the radiation energy
density for Case Ia (described in § 11.1) at polar angles where the radiation decays
non-spherically. The curves a, b, c, d, e and f respectively correspond to the following
values of the distance R̂P: 10 (blue), 102 (orange), 103 (red), 104 (cyan), 105 (green)
and 106 (black). The radiation frequency and the electric current density have the values
ν = 2.5 GHz and |jz| = 0.01 A m−2, respectively, and the ratio of the radiation to rotation
frequencies is m= 10. To display all six sets of results on the same graph, I have here
multiplied the ordinates of the points for R̂P = 102, 103, 104, 105 and 106 by the factors
102, 104, 106, 108 and 1010, respectively.

FIGURE 38. The exponent β in the dependence R̂−βP of ∂U/∂tP (shown in figure 37) on
distance at polar angles θP where the radiation decays non-spherically.

According to (C 31), the time-averaged version of the Poynting theorem (C 1) in
free space (where j= 0) has the form:∫

D
d3xP

∂U
∂tP
+

∫
∂D

d2xP · S= 0, (C 32)

in which S is the time-averaged Poynting vector defined in (10.2). Because ∂U/∂tP is
negative throughout any volume D that contains the non-spherically decaying radiation
field, this equation can only be satisfied by a positive value of the Poynting flux across
a closed surface ∂D enclosing D. Consider two concentric spheres centred on the
source both of which intersect the volume occupied by the propagating radiation at
a given observation time tP. A positive value of the Poynting flux across the closed
surface consisting of these two spheres means that the total energy that leaves the
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outer sphere per unit time is greater than the total energy that enters the inner sphere
per unit time. This, on the other hand, is possible only if the magnitude of the time-
averaged Poynting vector S diminishes with the distance RP from the source more
slowly than R−2

P . The non-spherical decay of the radiation discussed in this paper
is thus required by the conservation of energy given that the time-averaged rate of
change of the energy density of this radiation is negative.

The fact that the present radiation never attains a steady state can be traced back to
the following transient feature of the retarded distribution of its source. The retarded
distribution of the polarization described by (2.1) is given by

Pr,ϕ,z(r, ϕ, z, tret)= sr,ϕ,z(r, z) cos(mϕ̂ret), 0 6 ϕ̂ret < 2π, (C 33)

where tret and ϕ̂ret are defined in (B 2) and (B 5) (see § 4.1 and appendix B). Because
of the nonlinearity of the relationship between the retarded time t and the observation
time tP, this retarded distribution bears no resemblance to the actual distribution
shown in figure 1. In the case of the example plotted in figure 36, the above equation
describes a retarded distribution of the source whose azimuthal extent consists of the
four disjoint intervals ϕ1 6 ϕ 6 ϕ2, 2π 6 ϕ 6 ϕ3, ϕ4 6 ϕ 6 ϕ5 and ϕ6 6 ϕ 6 ϕ7. For
fixed values of (r̂, ẑ, r̂P, ẑP), the curve shown in figure 36 is lowered by 2π as the
observation time tP advances by 2π/ω without changing shape, so that, in general, the
retarded distribution of the source at a given observation point returns to its original
shape after a rotation period. However, as we shall see below the changes that the
shape of the retarded distribution of this (or any other superluminally rotating) source
undergoes from one period to another occur with different rates during different
periods (see also the retarded distribution of the example analysed in Ardavan et al.
2009a).

The temporal rate of change ∂ϕj/∂tP of the position ϕj(r̂, ẑ, r̂P, ẑP, tP) of each point
on a boundary of the azimuthal support of the retarded distribution of the source
described by (2.1) is given by (B 8). For an observation point (r̂P, ẑP) inside the
envelope of wave fronts emanating from the source element at (r̂, ϕj, ẑ) near either
the sheet φ= φ− or the sheet φ= φ+ of this envelope, the value of ϕj is close to that
of either ϕ− or ϕ+, respectively: recall that the integer k in the expressions for these
angles in (4.19) is selected to correspond to the rotation period whose contribution
reaches the observation point (r̂P, ϕP, ẑP) at the observation time tP. The value of
∂ϕj/∂tP for such an observation point can therefore be obtained by expanding the
denominator in (B 8) in a Taylor series in powers of ϕj−ϕ+ or ϕj−ϕ−. The dominant
term of the resulting series for ϕj ' ϕ± is

∂ϕj

∂tP
'∓

ωR̂±
∆1/2(ϕj − ϕ±)

, |ϕj − ϕ±| � 1, (C 34)

as can be readily seen from the values of the derivative of ∂g/∂ϕ at ϕ= ϕ± in (4.21).
The right-hand side of (C 34) is infinitely large on either sheet of the envelope in

question and changes sign from one sheet to another. It also depends on the integer
k enumerating successive rotations, which appears in the expressions for ϕ± in (4.19),
monotonically. At a fixed observation point close to one of the sheets φ = φ± of
the envelope of wave fronts emanating from the volume element of the source at
(r̂, ϕj, ẑ), the rate ∂ϕj/∂tP monotonically increases or decreases (depending on its sign)
as the number of rotations k executed by the source since t = 0 increases. On the
cusp locus of the envelope where ∆ = 0, this rate is infinitely large. Thus the rate
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at which the boundaries of the azimuthal support of the retarded distribution of the
source change with time depends on the time elapsed since the source was switched
on monotonically.
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