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On Some Non-Riemannian Quantities
in Finsler Geometry

Zhongmin Shen

Abstract. In this paper we study several non-Riemannian quantities in Finsler geometry. These non-

Riemannian quantities play an important role in understanding the geometric properties of Finsler

metrics. In particular, we study a new non-Riemannian quantity defined by the S-curvature. We show

some relationships among the flag curvature, the S-curvature, and the new non-Riemannian quantity.

1 Introduction

There are several non-Riemannian quantities in Finsler geometry, such as the dis-

tortion, the (mean) Cartan torsion, the S-curvature, the (mean) Berwald curvature,

and the (mean) Landsberg curvature. We view the distortion and the (mean) Cartan

torsion as non-Riemannian quantities of order zero, and the S-curvature, the (mean)

Berwald curvature, and the (mean) Landsberg curvature as non-Riemannian quan-

tities of order one. Differentiating these quantities along geodesics, we obtain some

non-Riemannian quantities of order two.

Let F be a Finsler metric on an n-dimensional manifold M. In this paper we will

consider two non-Riemannian quantities Ξ = Ξidxi and H = Hi jdxi ⊗ dx j on the

tangent bundle TM:

Ξi := S·i|m ym − S|i ,(1.1)

Hi j :=
1

2
S·i· j|m ym,(1.2)

where S denotes the S-curvature of F, and “·” and “|” denote the vertical and hori-

zontal covariant derivatives, respectively, with respect to the Chern connection. We

shall prove that H can be expressed by Ξ directly (Lemma 2.1).

One of the fundamental problems in Finsler geometry is to understand Finsler

metrics of special curvature properties. We would like to investigate the following

three classes of Finsler metrics with special non-Riemannian curvature properties:

(i) Almost isotropic S-curvature:

(1.3) S = (n + 1)cF + η,

where c = c(x) is a scalar function and η is a 1-form on M with dη = 0,
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(ii) Almost vanishing Ξ-curvature:

(1.4) Ξi = −(n + 1)F2
( θ

F

)

yi
,

where θ = ai(x)yi is a 1-form on M,

(iii) Almost vanishing H-curvature:

(1.5) Hi j =
n + 1

2
θFyi y j ,

where θ = ai(x)yi is a 1-form on M.

By (1.1) and (1.2), one can easily show that (1.3) implies (1.4) and (1.5) with

θ = cxm (x)ym. However, the converse is not true. There are Finsler metrics with

Ξ = 0 and H = 0, but the S-curvature is not almost isotropic. See Example 1.1. By

Lemma 2.1, H =
1
2
(Ξi· j + Ξ j·i), one can see that (1.4) implies (1.5), but the converse

might not be true.

We also would like to investigate Finsler metrics with special Riemannian curva-

ture properties. In particular, we consider Finsler metrics of almost isotropic flag

curvature defined as follows,

(1.6) K =
3θ

F
+ σ,

where σ = σ(x) is a scalar function and θ = ai(x)ym is a 1-form on M.

The non-Riemannian quantities S, Ξ, and H are closely related to the flag curva-

ture. First we have the following known results.

Theorem 1.1 ([4, 12]) Let F be a Finsler metric of scalar flag curvature on an n-

dimensional manifold M.

(i) If S is almost isotropic, given by (1.3), then the flag curvature is almost isotropic,

given by (1.6) with θ = cxm (x)ym.

(ii) For a 1-form θ, H almost vanishes, given by (1.5), if and only if the flag curvature

is almost isotropic, given by (1.6). In particular, H = 0 if and only if K = σ
(constant when n ≥ 3).

It is shown that every Randers metric of almost isotropic flag curvature must be of

almost isotropic S-curvature ([16]). But this is not true for general Finsler metrics.

See Example 1.1.

In this paper, we shall prove the following theorem.

Theorem 1.2 Let F be a Finsler metric of scalar flag curvature on an n-dimensional

manifold M. Then for a 1-form θ on M, Ξ almost vanishes, given by (1.4), if and only if

K is almost isotropic, given by (1.6). In particular, Ξ = 0 if and only if K = σ (constant

when n ≥ 3).
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According to a theorem by Akbar-Zadeh, every Finsler metric of constant flag

curvature on a compact manifold M must be Riemannian if K = σ < 0 [1]. Thus for

a Finsler metric of scalar flag curvature on a compact manifold with Ξ = 0, if K < 0,

then it must be Riemannian. In fact, this is true under a weaker condition on the flag

curvature.

Theorem 1.3 Let (M, F) be a compact Finsler manifold with Ξ = 0. If the flag

curvature is negative, then it must be Riemannian.

The condition Ξ = 0 cannot be dropped in Theorem 1.3. Take an arbitrary com-

pact Riemannian manifold (M, α) of negative constant curvature and an arbitrary

smooth function f on M. Consider a Randers metric F = α + εd f with sufficiently

small number ε. F has negative flag curvature, but it is not Riemannian unless ε = 0.

Thus the condition Ξ = 0 cannot be dropped in Theorem 1.3. There are Randers

metrics on Sn with positive constant curvature and Ξ = 0 [13] [3]. Thus the con-

dition K < 0 cannot be dropped in Theorem 1.3. We do not know whether or

not Theorem 1.3 is still true if the non-Riemannian condition Ξ = 0 is replaced by

H = 0.

We go back to discussing the relationship between the S-curvature S and the

Ξ-curvature. As we have shown above, if the S-curvature is almost isotropic, S =

(n + 1)cF + η, then Ξ satisfies (1.4) with θ = cxm (x)ym. The converse might not be

true in general (Example 1.1). However, for Randers metrics, they are equivalent.

More generally, we have the following theorem.

Theorem 1.4 Let F = α + β be a Randers metric on an n-dimensional manifold M.

The S-curvature is almost isotropic, given by (1.3), if and only if the non-Riemannian

quantity Ξ almost vanishes, given by (1.4). In particular, S = (n + 1)cF for some

constant c if and only if Ξ = 0.

We do not know whether or not Theorem 1.4 is still true for the non-Riemannian

quantity H.

Example 1.1 Let F = (α + β)2/α, where

α :=

√

|y|2 − (|x|2|y|2 − 〈x, y〉2)

(1 − |x|2)2
, β :=

〈x, y〉

(1 − |x|2)2
.

F is a projectively flat metric on the unit ball Bn(1) ⊂ Rn with K = 0. By The-

orem 1.1(ii), we see that H = 0. By Theorem 1.2, we see that Ξ = 0. F is an

(α, β)-metric. In [6], we classified (α, β)-metrics of isotropic S-curvature. By [6,

Theorem 1.2], we can see that F is not of isotropic S-curvature. Actually, by a direct

computation, we can verify that S is not almost isotropic.

2 Preliminaries

Let F be a Finsler metric on an n-dimensional manifold M. It induces a spray G on

TM. In local coordinates in TM, it is expressed by

G = yi ∂

∂xi
− 2Gi ∂

∂yi
,
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where Gi
=

1
4
g il{[F2]xm y l ym − [F2]xl}. Geodesics in M are just the projections of

integral curves of G. Put

Π =
∂Gm

∂ym
.

This is an important local quantity. Note that Π is a local scalar function that depends

on the choice of a particular coordinate system.

When F is a Berwald metric, namely, Gi
=

1
2
Γ

i
jk(x)y j yk are quadratic in y, then

Π = Γ
m
jm ym is a local exact 1-form. In fact, by a theorem of Szabo, there is a Rie-

mannian metric α =
√

ai j(x)yi y j such that the spray coefficients Gi of F coincide

the spray coefficients Ḡi
=

1
2
Γ̄

i
jk(x)y j yk of α. Then we have

Π = Γ
m
jm y j

= Γ̄
m
jm y j

= ym ∂

∂xm

(

ln
√

det(ai j)
)

.

Therefore, Π is actually a local exact 1-form.

Let dV = f dx1 · · · dxn be a volume form on M. The S-curvature of (F, dV ) is

given by

S = Π− ym ∂

∂xm

(

ln f
)

.

This is a well-defined geometric quantity ([14]). If dV = dVF is the Busemann–

Hausdorff volume form, the corresponding S-curvature is called the S-curvature of

F. Note that if the S-curvature is almost isotropic with respect to one volume form,

then it is almost isotropic with respect to any volume form.

Lemma 2.1

(2.1) Hi j =
1

4

{

Ξi· j + Ξ j·i

}

.

Proof By (1.1) and (1.2), we can express Ξi and Hi j by

Ξi = Πyi xm ym −Πxi − 2Πyi ym Gm.(2.2)

Hi j =
1

2

{

Πyi y j xm ym − 2Πyi y j ym Gm −Πy j ym

∂Gm

∂yi
−Πyi ym

∂Gm

∂y j

}

.(2.3)

It follows from (2.2) and (2.3) that

(2.4) Hi j =
1

4

{ ∂Ξi

∂y j
+
∂Ξ j

∂yi

}

.

Since Ξi· j =
∂Ξi

∂y j , we get (2.1).

The quantity Ξ = Ξidxi can be expressed in terms of the Riemannian curvature

R = Ri
k

δ
δxi ⊗ dxk or the mean Cartan torsion I = Iidxi . The following lemma is well

known.
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Lemma 2.2 ([4, 8, 9, 11])

(2.5) Ξi = − 1
3
{2Rm

i·m + Rm
m·i} = Ii|p|q y p yq + ImRm

i .

By Lemma 2.2, we immediately obtain two corollaries.

Corollary 2.3 ([10]) For any R-quadratic Finsler metric, there is a two-form ξ =

ξi j(x)dxi ∧ dx j such that Ξi = ξi j y j . Hence Hi j = 0.

Proof Assume that F is R-quadratic, namely, Ri
k = R i

j kl y
j y l, where R i

j kl = R i
j kl(x)

denotes the hh-curvature of the Berwald connection, which depends only on the

position x ∈ M.

We have

Rm
i·m = R m

m il y
l + R m

j im y j

Rm
m·i = R m

i ml y
l + R m

j mi y j .

Thus

Ξi = − 1
3
{2R m

m il + 2R m
l im + R m

i ml + R m
l mi}y l

By the Bianchi identities, we get Ξi = R m
m li y l. Note that ξi j := R m

m i j(x) is anti-

symmetric in i and j, i.e., ξi j + ξ ji = 0. Thus ξ := ξi jdxi ∧ dx j is a two-form on M.

By (2.4), we see that Hi j = 0.

The fact that H = 0 for all R-quadratic Finsler metrics is due to X. Mo [10].

Corollary 2.4 Let F = F(x, y) be a Finsler metric on an n-dimensional manifold.

Suppose that F is of scalar flag curvature K = K(x, y). Then

(2.6) Ξi = −
n + 1

3
F2K·i .

Proof Suppose that F is of scalar flag curvature K = K(x, y). Then

Rm
i = K{F2δm

i − gi p y p ym}.

Differentiating Rm
i , we get

Rm
i·m = F2K·i − (n − 1)Kgi p y p

Rm
m·i = (n − 1)F2K·i + 2(n − 1)Kgi p y p.

Thus

2Rm
i·m + Rm

m·i = (n + 1)F2K·i .

Plugging it into (2.5) we obtain Ξi = − n+1
3

F2K·i .
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3 Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2 This follows from Corollary 2.4 directly. We can rewrite (2.6)

as follows:

Ξi + (n + 1)F2
( θ

F

)

·i
= −

n + 1

3
F2
(

K −
3θ

F

)

·i
,

where θ is an arbitrary 1-form on M. Thus (1.4) holds if and only if (1.6) holds for

some scalar function σ = σ(x).

Proof of Theorem 1.3 The argument is similar to the proof of the main theorem in

[15]. By Deicke’s theorem, it suffices to prove that the mean Cartan torsion vanishes.

By assumption Ξ = 0. It follows from (2.5) that

(3.1) Ii|p|q y p yq + ImRm
i = 0.

For a vector y ∈ TxM, let Iy ∈ TxM be defined by gy(Iy , v) = Ii(x, y)vi . Let σ = σ(t)

be an arbitrary geodesic. Since F is complete, one may assume that σ is defined on

(−∞,∞). Let I(t) := Iσ̇(t). Equation (3.1) restricted to σ(t) becomes

(3.2) Dσ̇Dσ̇I(t) + Rσ̇(t)(I(t)) = 0.

Thus, the mean Cartan torsion is a Jacobi field along any geodesic. Let

ϕ(t) := gσ̇(t)

(

I(t), I(t)
)

.

It follows from (3.2) that

ϕ ′ ′(t) = 2gσ̇(t)

(

Dσ̇Dσ̇I(t), I(t)
)

+ 2gσ̇(t)

(

Dσ̇I(t),Dσ̇I(t)
)

= −2gσ̇(t)

(

Rσ̇(t)(I(t)), I(t)
)

+ 2gσ̇(t)

(

Dσ̇I(t),Dσ̇I(t)
)

.

(3.3)

By assumption, K < 0. Thus gσ̇(t)(Rσ̇(t)(I(t)), I(t)) ≤ 0. It follows from (3.3) that

ϕ ′ ′(t) ≥ 0. Thus ϕ(t) is convex and nonnegative. Suppose that ϕ ′(to) 6= 0 for some

to. If ϕ ′(to) < 0, then

ϕ(t) ≥ ϕ(to) − ϕ ′(to)(to − t), t < to.

If ϕ ′(to) > 0, then

ϕ(t) ≥ ϕ(to) + ϕ ′(to)(t − to), t > to.

One can see that limt→+∞ ϕ(t) = ∞ or limt→−∞ ϕ(t) = ∞. This implies that the

mean Cartan torsion is unbounded, which contradicts the assumption. Therefore,

ϕ ′(t) = 0 and hence ϕ ′ ′(t) = 0. It follows from (3.3) that Rσ̇(t)(I(t)) = 0. Since σ is

arbitrary, one can conclude that Ry(Iy) = 0. Since K < 0, we conclude that Iy = 0.

By Deicke’s theorem [2], F is Riemannian.
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4 Randers Metrics

Consider a Randers metric F = α + β, where α =
√

ai j(x)yi y j and β = bi(x)yi . Let

∇β = bi; j yidx j denote the covariant derivative of β with respect to α. Let

ri j := 1
2
(bi; j + b j;i), si j := 1

2
(bi; j − b j;i), s j := bisi j ,

ei j := ri j + bis j + b jsi , e j := biei j .

qi j := rimsm
j , ti j := simsm

j ,

q j := biqi j = rmsm
j , t j := biti j = smsm

j

wi j := qi j + bit j + sis j .

Here and hereafter, we use ai j to raise and lower the indices of tensors defined by bi

and bi; j . We shall also denote yi := ai j y j . The index “0” means the contraction with

yi . For example, ek0 := ekl y
l, e00 := ekl y

k y l, and so on.

The following lemma is known.

Lemma 4.1 ([5]) For a Randers metric F = α + β, the following are equivalent:

(i) S = (n + 1)cF;

(ii) e00 = 2c(α2 − β2).

To prove Theorem 1.4 it suffices to prove that Ξi = −(n + 1){θyi F − θFyi} implies

that e00 = 2c(α2 − β2).

The spray coefficients of F are given by

(4.1) Gi
= Ḡi + Hi ,

where

Hi := Pyi + αsi
0, P =

e00

2F
− s0.

Let H := [H p]y p . We have

H := [Hm]ym = [Pym + αsm
0]ym = (n + 1)P.

Plugging the formula (4.1) into (2.2), we obtain

Ξi = H·i;m ym − H;i − 2H·i·mHm
= (n + 1){P·i;m ym − P;i − 2P·i·mHm

}

,

where “· ” and “;” denote the vertical and horizontal covariant differentiations with

respect to α, respectively.
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We have

P;i =
1

2(α + β)2

{

e00;iα + e00;iβ − β;ie00

}

− s0;i ,

P·i;m ym
= −

1

2α(α + β)3

{

−2α(α + β)2e0i;0 + 2α(α + β)β;0e0i − 2β;0e00(yi + αbi)

+ (α + β)e00;0 yi + α(α + β)e00;0bi + α(α + β)e00bi;0

}

− si;0,

P·i·mHm
=

1

2(α + β)3

{

2α(α + β)2wi0 − 2w00(α + β)(yi + αbi)

− 2α(α + β)s0e0i + 2e00s0(yi + αbi) − (α + β)e00si0

}

.

Note that

bi;0 = e0i + si0 − siβ − bis0, β;i = e0i − si0 − bis0 − si0.

We obtain the following formula for Ξ:

α(α + β)3
Ξi = (n + 1)

{

Si even + Si oddα
}

,

where

Si even := (α2 + 3β2)(ei;0 − e0;i)α
2

+
{

2(w00 yi − wi0α
2) + 2(w00bi − wi0β)β

}

α2

+
{

e0i;0α
2 − 1

2
e00;0 yi −

1
2
e00;iα

2
}

β +
{

e0i;0β − 1
2
e00;0bi −

1
2
e00;iβ

}

α2

− 2s0(e00bi − e0iβ)α2 + (e00 − 2s0β)(e00 yi − e0iα
2),

Si odd := (3α2 + β2)(ei;0 − e0;i)β

+ 2(w00 yi − wi0α
2)β + 2(w00bi − wi0β)α2

+
{

e0i;0α
2 − 1

2
e00;0 yi −

1
2
e00;iα

2
}

+
{

e0i;0β − 1
2
e00;0bi −

1
2
e00;iβ

}

β

+ (e00 − 2s0β)(e00bi − e0iβ) − 2s0(e00 yi − e0iα
2).

Then

Si oddα
2 − Si evenβ = (α2 − β2)

{

2(ei;0 − e0;i)α
2β + 2(w00bi − wi0β)α2

+ (e0i;0α
2 − 1

2
e00;0 yi −

1
2
e00;iα

2) − 2s0(e00 yi − e0iα
2)
}

+ e2
00(α2bi − βyi).

We assume that Ξi = −(n + 1)F2
(

θ
F

)

·i
. Then

α(α + β)3
Ξi = (n + 1)

{

Ti even + Ti oddα
}

,
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where

Ti even = (3α2 + β2)β(θyi − θiα
2) + (α2 + 3β2)α2(θbi − θiβ)

Ti odd = (α2 + 3β2)(θyi − θiα
2) + (3α2 + β2)β(θbi − θiβ).

Thus

Ti oddα
2 − Ti evenβ = (α2 − β2)

{

(α2 + β2)(θyi − θiα
2) + 2α2β(θbi − θiβ)

}

.

We conclude that

(4.2) e2
00(α2bi − βyi) = (α2 − β2)Mi ,

where Mi is a homogeneous polynomial of degree four with Mi yi
= 0. Contracting

(4.2) with bi
= ai jb j yields

e2
00(α2b2 − β2) = (α2 − β2)Mib

i ,

where b := ‖βx‖α < 1. There is no common factor in (α2b2 − β2) and α2 − β2.

Thus e2
00 is divisible by α2 − β2. Since α2 − β2 is irreducible, e00 must be divisible by

α2 − β2. Therefore there is a scalar function c = c(x) such that

e00 = 2c(α2 − β2).

This proves Theorem 1.4.
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