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Lattice gauge theory

41.1 Introduction

In this chapter, we shall discuss very briefly the main idea behind the lattice approach in
QCD. More detailed discussions and some introductions can be found in different textbooks
on lattice gauge theories [489] and some non-specialized reviews. (see e.g., Yndurain’s book
[46] or Dosch’s review [51]). More recent reviews on the lattice results can be found in
different contributions at the annual Lattice conferences (Nucl. Phys. B (Proc, Suppl.)). The
starting point is the Euclidian generating functional:

Z =
∫

Dψ(x)Dψ̄(x) exp

{
−S ≡

∫
d4x LQCD

}
, (41.1)

where the QCD action S is positive, thus providing the convergence factor. It is convenient
to write the Lagrangian in a matrix notation:

Gµν ≡
∑

a

λa

2
Ga

µν , (41.2)

where λa are the generators of the SU (3)c gauge transformation group:

U (x) = exp

{
ig

λa

2
Aa(x)

}
. (41.3)

Therefore, it reads:

LQCD(x) = 1

2

∑
µν

G2
µν(x) + ψ̄(x)(∂µγµ + m)ψ(x) − igψ̄γµ Aµ(x)ψ(x) , (41.4)

where, in this notation, the gauge transformations become:

Aµ(x) → U−1(x)Aµ(x)U (x) + i

g
U−1(x)∂µ(x)U (x)

Gµν(x) → U−1(x)Gµν(x)U (x) ,

ψ(x) → U−1(x)ψ(x) . (41.5)

Next we introduce the essential ingredients for the lattice formulation of QCD. Here,
one expects that all expressions introduced below are well-defined, and, in principle, can be
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41 Lattice gauge theory 397

evaluated numerically. This feature has made lattice gauge theory one of the most important
non-perturbative methods for QCD. The functional integral introduced before has to be
understood as the limiting value of a high-dimensional volume integral where the fields at
the lattice points i, j , . . . are the integration variables. For definiteness, we shall consider
a finite hypercube lattice, with lattice spacing a and volume V = (Na)4 with periodic
boundary conditions. The physical (continuum) limit is reached for V → ∞ first and after
a → 0. The lattice provides a regularization as a is finite, such that UV divergences do
not occur. As long as N is bounded from above, IR divergences are prevented. The UV
divergences will reappear as 1/a or/and log a, when one goes to the continuum limit, where
a → 0.

� A point on the lattice is denoted by its coordinates in units of a, i.e. by the integers: (n) ≡
(n1, n2, n3, n4), representing the point with coordinates X = (an1, an2, an3, an4).

� The neighbour of the point (n) in the µ-direction is denoted by (n + µ).
� The link from point n to its neighbour in the µ-direction, n + µ is denoted by (n, n + µ). Its plays

an essential rôle in the lattice.

41.2 Gluons on the lattice: the Wegner–Wilson action

� An element of the gauge group is attached to each link, while its inverse is attached to the link in
the opposite direction [490,491]:

(n, n + µ) → U (n, n + µ) , (n + µ, n) → U−1(n, n + µ) , (41.6)

where the group elements U (n, n + µ) can be expressed by the generators λa/2 of the group as:

U (n, n + µ) = exp

{
ig

aλa

2
Aa

µa(n)

}
. (41.7)

� In a local gauge theory, an element of the gauge group is attached to each point on the lattice:

U (n) = exp

{
ig

λa

2
�a(n)

}
. (41.8)

The gauge transformation for the group element U (n, n + µ) is defined as:

U (n, n + µ) → U (n)U (n, n + µ)U−1(n + µ) , (41.9)

where one may notice that there is no inhomogeneous term on the lattice version of gauge
transformation.

� The continuum limit is achieved by connecting quantities attached to neighbouring lattice points
through the Taylor expansion and retaining the lowest-order contribution in the lattice spacing a:

U (n + µ) = U (x) + a∂µU (x) + O(a2) . (41.10)

Using the expansion:

U (n, n + µ) = 1 + iag
λa

2
Aa(x) + O(a2) , (41.11)

the gauge tranformation in Eq. (41.9), becomes the one of the continuum limit in Eq. (41.5).
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Fig. 41.1. Plaquette: a group element U (n, n + µ) is attached to each link.

� The Wegner–Wilson loop [490,491] corresponds to the product of group elements U (n, n + µ)
along a closed contour L . It is defined as:

W [L] = U (n, n + µ)U (n + µ, n + µ + λ) · · · U (n + ν, n) . (41.12)

Using the property UU−1 = 1 and the fact that the trace is cyclic: TrABC = TrBCA = . . . , it is
easy to show that, under the gauge transformations in Eq. (41.9):

T r W [L] is gauge invariant . (41.13)

� A Plaquette is the simplest non-trivial Wegner–Wilson loop, which is the product of four group
elements attached to a square with a sidelength a and lattice points as corners (see Fig. 41.1).

P(n, µ, ν) = U (n + µ, n + µ + ν)U (n + µ + ν, j + ν)U ( j + ν, j)U ( j, j + µ)

= U (n + µ, n + µ + ν)U−1(n + ν, j + µ + ν)U−1( j, j + ν)U ( j, j + µ)

= e[iga Aν (n+µ)]e [−iga Aµ(n+ν)]e[−iga Aν (n)]e[−iga Aµ(n)] (41.14)

Using the Campbell–Hausdorff formula:

eax eay � eax+ay+a2[x,y]+O(a3) , (41.15)

with each pair of the previous exponentials, one obtains:

P(n, µ, ν) = e{−iag(Aν (n+µ)−Aµ(n+ν))+a2g2[Aν (n+µ),Aµ(n+ν)]/2+iO(a3)}

× e{−iag(Aν (n)−Aµ(n))+a2g2[Aν (n),Aµ(n)]/2+iO(a3)} , (41.16)

Using the Taylor expansion:

Aµ( j + ν) = Aµ(n) + a∂ν Aµ(n) + O(a2) , (41.17)

and applying again Eq. (41.15), one can deduce the form of the plaquette in the continuum
limit:

P(n, µ, ν) = e{ia2g2[Gµν (n)+O(a)]} , (41.18)

with the usual definition of the field tensor:

Gµν(x) ≡ Ga
µν

λa

2
= ∂µ Aν(x) − ∂ν Aµ(x) − ig[Aν, Aµ] . (41.19)
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41 Lattice gauge theory 399

In terms of the plaquette, one can now define a positive real and gauge-invariant action
on the lattice:

Sg = − 1

g2

∑
n

∑
µ<ν

Tr{P(n, µ, ν) + P†(n, µ, ν)} . (41.20)

It is customary to express the action in terms of the variable:

β ≡ 2Nc

g2
. (41.21)

In the continuum limit, one can write:

Sg = − 1

g2

∑
n

∑
µ<ν

2Re Tr exp{ia2gGµν(n) + O(a)}

= − 1

g2

∑
n

∑
µ,ν

Re Tr
{

1 + ia2gGµν(n) − 1

2
a4g2Gµν(n)Gµν(n)

}
, (41.22)

where the sum over µ, ν gets a factor 1/2 because µν and νµ define the same plaquette.
Using the fact that Trλa = 0, one recovers the usual continuum action given in Eq. (41.4):

Sg = 1

2

∑
n

∑
µ,ν

a4Gµν(n)Gµν(n) + O(a6) + constant . (41.23)

The vacuum expectation value of a function of the fields F[U (n, n + µ)] is:

〈F[U (n, n + µ)]〉 = 1∫ DU eSg

∫
DU eSg F[U (n, n + µ)] , (41.24)

where the invariant measure on the group attached to the link is:

DU ≡
∏
n,ν

dU (n, n + ν) . (41.25)

For an Abelian group, the measure is:

dU (n, n + ν) = d(a Aν(n)) with : −π/a ≤ Aν(n) ≤ π/a . (41.26)

For a non-Abelian SU (N )c group, one has:

dU (n, n + ν) =
√

det

[
1 − cos a Aν(n)

(a Aν(n))2

] N 2
c −1∏

b=1

d
(
a Ab

ν(n)
)
. (41.27)

41.3 Quarks on the lattice

In this section, we turn to the less understood subject of the formulation of quarks (fermions)
on the lattice, where the complications are already present at the free-field level. Since
fermions obey Pauli exclusion principle, they are described at the classical level by anti-
commuting variables forming the so-called Grassmann algebra, which anticommute them-
selves but commute with complex numbers. To each lattice points, with coordinates (n),
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400 IX QCD non-perturbative methods

are attached Nc × 8 anticommuting quantities:

ψc
α(n) , ψ̄c

α(n) , (41.28)

where the spinor α runs from 1 to 4, the colour index c from 1 to Nc. The field transform
as:

ψc
α(n) → Ucc′ψc′

α (n) , ψ̄c
α(n) → U−1

cc′ ψ
c′
α (n) , (41.29)

Therefore terms like:

ψ̄c
α(n)ψc

α(n) , ψ̄c
α(n + µ)Ucc′ (n + µ, n)ψc′

α (n) , (41.30)

are gauge invariant. It is usual to start from the free continuum Lagrangian in Eq. (41.4):

Lfree = ψ̄(x)(∂γµ + m)ψ(x) , (41.31)

which possesses a SU (n f )L × SU (n f )R global symmetry in the massless limit m = 0. As
in previous section, one introduces a four-dimensional hypercubic lattice of N 4 sites. To
each site n, one associates an independent four-component spinor variable:

ψn ≡ ψ(an) → ψ(x) (41.32)

characterizing the quark fields. For simplifying the lattice action, one defines the derivative
symetrically:

∂µψ → 1

2a
(ψn+µ − ψn−µ) . (41.33)

Therefore, the lattice action reads:

Sfree =
∑
n,k

ψ̄n Mnkψk (41.34)

with:

Mnk = 1

2
a3

∑
µ

γµ(δk,n+µ − δk,n−µ) + a4mδnk . (41.35)

Now, one can put this action into a path integral:

Zfree =
∫

DψDψ̄ e−S , (41.36)

where:

Dψ ≡
∏

k

dψk , (41.37)

after a relatively long, though straightforward manipulation, one finds:

Zfree = (−1)2N+1

(2N + 1)!
det M . (41.38)
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41 Lattice gauge theory 401

The quark propagator can be obtained by inverting M , which one can do with the help
of a (finite) Fourier transform:

(M−1)nk = a−4(2N + 1)−4
∑

j

M̃−1
j exp

{
2iπ

2N + 1

∑
µ

jµ(n − k)µ

}
, (41.39)

and by using the relation:

N∑
jµ=−N

exp
2iπ

2N + 1
jµ(n − k)µ = (2N + 1)δnµkµ

. (41.40)

Therefore, one finds:

S( j) = M̃−1
j =

(
m + i

a

∑
µ

γµ sin
2π jµ

2N + 1

)−1

. (41.41)

In the case of a large lattice, one has:

2π jµ
2N + 1

≡ apµ , (41.42)

which leads to the p-space propagator:

S(p) =
(

m + i

a

∑
µ

γµ sin apµ

)−1

. (41.43)

Replacing the sum over j by integrals:

1

2N + 1

N∑
jµ=−N

→ a
∫ +π/a

−π/a

dpµ

2π
, (41.44)

Equation (41.39) becomes:

(M−1)nk =
∫ +π/a

−π/a

d4 p

(2π )4

ei
∑

µ pµ(an−ak)µ

m + (i/a)
∑

µ γµ sin apµ

. (41.45)

In the continuum limit (a → 0, an → x, ak → y), this previous equation becomes:

(M−1)nk → S(x − y) =
∫ +∞

∞

d4 p

(2π )4

ei
∑

µ pµ(x−y)µ

m + i
∑

µ γµ pµ

, (41.46)

which is the Euclidian propagator. However, by analysing Eq. (41.43), for example in the
case m = 0, one can see that, for finite a, it has too many poles as the denominator van-
ishes for pµ = 0 and pµ = π/a. On the hypercube lattice, one has 24 = 16 poles instead
of one! This fermion doubling is catastrophic as one loses asymptotic freedom, the exis-
tence of the U (1) anomaly (the 16 fermions contribute with alternate signs to the anomaly
triangle), . . . Several solutions to this fermion doubling problem have been proposed in the
literature [489]. One of the most popular is the one proposed by Wilson [492]. It consists
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of adding to the Lagrangian a quadratic term:

LW
q = mψ̄nψn + 4r

a
ψ̄nψn + 1

2a

∑
µ

{(r + γµ)ψn+µ + (r − γµ)ψn−µ} , (41.47)

where r is arbitrary. In the large lattice limit, the corresponding p-space propagator is:

SW (p) =
(

m + 1

a

∑
µ

[
iγµ sin apµ + r

a
(1 − cos apµ)

])−1

. (41.48)

One can notice that for small momentum, the new term is of the order of a and thus drops
out. When a component p is near π/a, the addition increases the mass of the unwanted
state by 2r/a:

m + r

a

∑
ν

(1 − cos apν) = m + 2rnπ

a
, (41.49)

where the sum ν runs over apν = π , and nπ is the number of extra particles. Therefore, in
the continuum limit, all extra states have infinite mass and then decouple. Only one species
of physical particle mass m survives for apµ = 0. However, it was shown [493] that the
propagator in Eq. (41.48) breaks chiral invariance. One hopes that, working with Wilson
fermions, one can recover chiral symmetry in the continuum limit.

41.4 Quark and gluon interactions

Now, one can formulate the quark and gluon interactions on the lattice. In the case of Abelian
theory:

Lfree + LAψ = mψ̄nψn

+ 1

2a
ψ̄n

∑
µ

γµ[U (n, n + µ)ψn+µ − U (n − µ, n)ψn−µ] , (41.50)

which is invariant under the gauge transformation in Eq. (41.9) of the link matrices (gλa/2 ≡
e electric charge). Using the expansions:

lim
a→0

U (n, n + µ) = 1 − iag Aµ + O(a2) , (41.51)

and:

lim
a→0

ψ(n + µ) = ψ(n) + a∂µψ(n) + O(a2) , (41.52)

it is easy to show that the previous Lagrangian gives the correct continuum limit:

lim
a→0

{Lfree + LAψ } = mψ̄(x)ψ(x) + ψ̄(x)γ µ∂µψ(x) − ieψ̄(x)γ µ Aµψ(x) . (41.53)

https://doi.org/10.1017/9781009290296.054 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.054


41 Lattice gauge theory 403

In QCD, the interaction between quarks and gluons can be introduced as in the Abelian
case. For Wilson fermions, the action reads:

Sgq = a4
∑

n

ψ̄n

(
m + 4r

a

)
ψn

+ 1

2a

∑
n,µ

ψ̄n[(r + γµ)U (n, n + µ)ψn+µ + (r − γµ)U−1(n − µ, n)ψn−µ] .

(41.54)

The continuum limit of the action can also be obtained:

lim
a→0

Sgq = a4

{
m

∑
n

ψ̄nψn + 1

2

∑
n,ν

[ψ̄nγµ∂muψn − ∂µψ̄nγµψn

− igψ̄nγµψn Aµ] + r

2a
∂µ[ψ̄nγ

µψn]

}
. (41.55)

The last term vanishes after summation over n (integration over x), such that the contin-
uum limit reproduces the usual QCD action in Eq. (41.4). Therefore, the corresponding full
generating functional for Wilson fermions is:

Z =
∫

DU Dψ Dψ̄ e−(Sg+Sgq ) , (41.56)

where the measures have been defined in Eqs. (41.25) and (41.37). One should notice that
unlike the continuum case, the gauge-fixing term is not necessary to obtain some vacuum
expectation values (except the gluon propagator or some gauge-dependent quantities), as
Eq. (41.56) averages over all gauges. In order to define the Green’s functions, one has
to define the integration over the Grassmann variables. which obey the following general
properties:∫

dη1dη2 · · · dηn (η1η2 · · · ηn) = 1, all other integrals are zero. (41.57)

For instance, one has: ∫
dη1dη2η1η2 = 1 = −

∫
dη1dη2η2η1 ,

∫
dη1dη2η2 = 0 =

∫
dη1η2 . (41.58)

With the previous properties, any analytic function of the Grassmann variables can be inte-
grated. This can be done by Taylor-expanding it and then by applying Eq. (41.57). For in-
stance, the integral over the Grassmann algebra with four generators η̄ j , η j , j = 1, 2 reads:

∫ 2∏
j=1

dη j dη̄ j exp

[
2∑

i, j=1

η̄i Ai jη j

]
=

∫ 2∏
j=1

dη j dη̄ j [η̄1 A11η1η̄2 A22η2 + η̄1 A12η2η̄2 A21η1]

= A11 A22 − A12 A21 = detA . (41.59)

https://doi.org/10.1017/9781009290296.054 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290296.054


404 IX QCD non-perturbative methods

Collecting the different results in the previous section, the vacuum expectation value of
a function of the gauge and fermion fields is defined as:

〈F[Amua(p), ψ̄(n)ψ(k)]〉 = 1

N
∫

DUDψ̄c
α(n)Dψc

α(n)F[Amua(p), ψ̄(n)ψ(k)]e−Slatt

(41.60)
with:

N =
∫

DUDψ̄c
α(n)Dψc

α(n)e−Slatt : Slatt = Sg + Sgq . (41.61)

From the lattice action, one can, for example, derive different Feynman rules on the
lattice. For example, the propagators can be obtained from the quadratic terms of the fields
entering into the action. The quark propagator has been already given in the previous section
(see e.g. Eq. (41.48) for the Wilson fermion). In the Feynman gauge, the gluon propagator
is:

Dcb
µν(p) = δcbδµν

1

2a−2
∑

ρ(1 − cos apρ)
. (41.62)

Feynman rules for the vertices are more involved as the interactions are non-polynomial
functions of the fields, and there are infinite numbers of vertices associated with higher
powers of the lattice spacing a. More discussions can be found in [494].

41.5 Some applications of the lattice

A large spectrum of the lattice applications can be found in the different references given in
the introduction of this chapter. Here, we shall limit with very few examples as an illustration
of the method.

41.5.1 The QCD coupling and the weak coupling regime

We have noticed that for finite a, QCD on the lattice is UV finite, such that we do not
worry to distinguish between bare and renormalized quantities. Hower, for a → 0, loop
diagrams become divergent in the weak coupling limit, and the lattice can be considered as
a regularization procedure with the cut-off 1/a → ∞. To leading order of pQCD, the QCD
coupling reads:

g2(a) = 4π2

β1 log �latta
. (41.63)

The scale �latt can be related to the one of the M S scheme by simply evaluating one-loop
renormalization for αs , including constant terms using the two different schemes and by
equating. The lattice calculation has been done in [495] but is quite cumbersome due to the
peculiarity of the lattice regularization (Lorentz invariance, . . . ). For n f = 0 fermions, one
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41 Lattice gauge theory 405

obtains to one loop:

�latt � �0
mom

83.5
� �0

M S

39
. (41.64)

The present values are (see previous chapters and [16]):

�0
M S

≈ 400 MeV =⇒ �latt ≈ 10 MeV , (41.65)

showing that �latt has a very small value. From Eq. (41.63), one can also derive the leading-
order relation between the lattice spacing a and �latt:

a = �−1
latte

4π2

β1g2(a) (41.66)

valid for small a and for weak coupling:

a�latt, g2(a) � 1 . (41.67)

In order to check if one has reached the continuum limit from the numerical analysis, one
should see if the lattice results behave as predicted by the renormalization group equation.

41.5.2 Wilson loop, confinement and the strong coupling regime

Here one considers the Green’s function of a pair of a static infinitely heavy (m → ∞)
quark and anti-quark at lattice points j and j + nµ. A gauge-invariant function of such a
state is given by:

J (k) = ψ̄kU (k, k + ν) · · · U (k + (n − 1)ν, k + nν)ψ(k + nν) . (41.68)

Its propagation in the Euclidian space–time is described by the Green’s function:

G(k, l) = 〈J (l)† J (k)〉 , (41.69)

where the lattice point l is displaced with respect to k by r units in four-direction. Since, in the
action, the fermionic variables ψ̄ψ occur quadratically, hence the integration is Gaussian,
such that the integration over the fermion fields will not pose (in principle) any problem. It
is possible to show that for m → ∞, the Green’s function behaves as:

G(k, l) ∼
( p

m

)2n
〈T r W [L]〉U : p ≡ a3/2 (41.70)

where W (L) is the rectangular Wilson loop with corners k, k + ν, l, l + ν, and 〈. . .〉U corre-
sponds to the vacuum expectation value in Eq. (41.24) over the gauge field U . One can sketch
the derivation of this result by considering the integration over the fermion fields at the point
k. In the integrand one has from Eq. (41.68) the term ψ̄(k). The integral will not vanish if
one has an additional factor ψ(k), which one can obtain by expanding the action e−Slatt . This
expansion leads, among others, to the term: pψ̄(k + µ)(r + γµ)U−1(k, k + µ)ψ(k) . After
fermion integration at the point k, the fermion field ψ̄(k) is no longer present, but now we
have a fermion field at the position k + µ and the previous factor p . . . . We thus hopped
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with the fermion field from k to k + µ, such that we may hop from k to j , and from j + ν

to k + ν. For other points, we need to expand the mass term in e−Slatt , which yields a factor
m for each points. The final factor (p/m)2n and the group elements U attached to the links
of the loop are obtained after dividing by the normalization factor N .

On the other hand, one knows that the Wilson loop measures the response of the gauge
fields to an external quark-like source passing around its perimeter. For a timelike loop,
this represents the production of a quark pair at the earliest time, moving them along the
world lines dictated by the sides of the loop, and then annihilating at the latest time. If the
loop is a rectangle of dimensions T and R, a transfer matrix argument suggests that for
large T :

lim
T →∞

〈W [L]〉U = −exp[−E(R)T ] (41.71)

where E(R) is the static quark–anti-quark energy separated by a distance R. In the strong
coupling regime 1/g2 → 0, one obtains to leading order:

〈W [L]〉U ∼
(

1

g

)RT/a2

, (41.72)

showing that in that approximation the static energy of the quarks increases linearly with
the spatial distance R:

lim
R→∞

E(R) = σ R , (41.73)

where σ is called the string tension and characterizes long-distance physics effects. There-
fore a separation of the two quarks would need infinite energy. Unfortunately, this result is
also obtained for Abelian theory. Since we do not observe confinement in QED, we have to
assume that there is a phase transition between the confining phase in the strong-coupling
regime and the deconfined phase in the weak-coupling regime. There is no formal proof
that such a transition does not exist in non-Abelian QCD. A numerical evaluation of the
expectation value 〈W [L]〉U indicates that the area law in Eq. (41.72) is also verified for weak
coupling, strongly indicating that confinement is a consequence of the QCD-Lagrangian.
Phenomenologically, the string tension can be related to the slope of the Regge trajectory
if one uses a string model for describing the hadrons [496]:

α′ = (2πσ )−1 , (41.74)

where using the phenomenological value α′ � 1 GeV−2, one finds:

σ � (400 MeV)2 . (41.75)

Using the previous equations, one can notice that this quantity is proportional to the QCD
coupling g2, i.e. �lattice. This is a remarkable feature as one is able to relate a long-distance
(σ ) to a short-distance (�latt) quantities.
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41.5.3 Some other applications and limitations of the lattice

Some observables like hadron masses, . . . can also be obtained by calculating numerically
Green’s functions of interpolating fields on the lattice. In so doing, let us consider the vector
current:

Jµ(x) = ψ̄(k)γuψ(k) , (41.76)

which has the quantum number of the ρ-meson. After a rotation in the Euclidian space–time,
the two-point correlator reads (we omit indices for simplicity):

�(T ) ≡ 〈J (T )J (0)〉 = 〈J (0)e−H T J (0)〉 (41.77)

Inserting a complete set of energy eigenstates and taking the large T limit, one may select
the lowest ground state ρ-meson contribution:

�(T ) =
∑

n

|〈J (0)|n〉|2e−En T → |〈J (0)|0〉|2e−E0T , (41.78)

where E0 is equal to the ρ-meson mass Mρ . In this way, one can recover the whole hadron
spectrum, . . . However, in practice, there are many difficulties and questions which the
lattice experimentalists should clearly answer. Besides the usual statistical and finite size
(about 1% if the lattice size L ≥ 3 fermi, and mπ L ≥ 6) errors inherent to the numerical
lattice calculations, which can be minimized using modern technology, there are still large
uncertainties related to the uses of field theory on the lattice.

� When one approximates the functional integral by a product of Riemann integrals, when do we
reach the continuum limit ? The renormalization group analysis shows that one should expect an
exponential dependence of the lattice spacing on the coupling constant. This can be reached if the
lattice spacing a is relatively small like the coupling g.

� However, if the lattice spacing a is small say a fraction of a fermi, the lattice should be large
enough in order to accommodate a hadron of a typical size of one fermi. Therefore, the lattice
should at least have 4 × 104 lattice points. Since for SU (3), we have, for each lattice point, eight
groups of integrations and 24 fermionic integrations, it is clear that one needs very sophisticated
integraltion methods. However, even with these sophisticated integration methods, one has to do
some approximations, as an exact evaluation of the fermionic integrals are not possible with most
of the present computers.

� In the case of (quenched approximation), one ignores quark loops, thus simplifying the evaluation
of the integral, but with a brutal non-inclusion of the fermion determinant into the action. This
implies a modification of chiral symmetry (χ S) for mq = 0 as well as the disappearance of the
QCD anomaly: Mη′ ≈ mπ . At present, some progress towards including active quark flavours has
been achieved by some groups.

� Another obstacle is the small values of the light quark masses. Generally, one evaluates the Green’s
functions at large mass and then extrapolates the results to zero quark mass values with the help
of the mass dependence expected from chiral perturbation theory (ChPT) (see next section). For
a typical value of the lattice spacing 1/a � 2 GeV, and keeping the condition mπ L ≥ 6, one
requires L/a ≥ 90 in order to avoid finite volume effects. At present the lattice size L/a is about
32 (quenched) and about 24 (unquenched) which is far below this limit.
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� There are also discretization errors specific to each lattice actions, which are O(a) for the Wilson
(explicit breaking of χ S) and domain walls (extra fifth dimension for preserving χ S) actions. The
errors are O(a2) for the staggered (reduction of quark couplings with high-momenta gluons) and
O(aαs) for the Clover (inclusion of the mixed quark-gluon operator) actions.

� There are also errors due to the mixing of different operators at finite a.
� How good is the separation of the ground state from the rest of the spectra in the large Euclidian

time limit if the mass splitting between the ground state and the first radial excitation is accidentally
small?

The list of difficulties which we have given is not exhaustive but lattice experts know all
of them completely. These difficulties will have to be resolved before reliable lattice results
on the hadron and QCD parameters, will be available. We hope that such difficulties can
be solved gradually in the future. However, it is unfortunate that most non-lattice experts
and especially experimentalists blindly use the present lattice results without asking about
their reliability, although this is, however, difficult to quantify by non-experts in the field.
Some lattice results will be presented in subsequent chapters as a comparison with the QCD
spectral-sum rules results.
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