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The structure of completely prime ideals in any structural matrix near-rings is determined. Partial descriptions
are obtained for prime, nil, nilpotent, and locally nilpotent ideals of structural matrix near-rings. Their
associated radicals are also studied in this paper.

1991 Mathematics subject classification: 16Y30.

The concept of matrix near-rings was introduced by Meldrum and van der Walt [9].
Many interesting results have been obtained along this line since then. The investigation
of "structural" matrix near-rings was initiated by van der Walt and van Wyk. A
structural matrix near-ring "Jfn(B,R)" is considered as a subnear-ring of the matrix
near-ring "J?n(R)" and is determined by virtue of the shape of the Boolean matrix "B".
Booth and Groenewald [4], Groenewald [5] have studied certain concepts of primeness
in matrix near-rings. Lee [7] studied prime ideals and their associated radicals in
structural matrix near-rings and completely determined 1-prime and equiprime ideals of
J(n(B,R). Partial results related to prime and completely prime ideals were obtained
there. (Note different notation for 1-prime ideals was used by Groenewald [5].) We
continue to investigate various concepts of primeness in this paper. The structure of
completely prime ideals of structural matrix near-rings is described completely. More-
over, we study prime, nil, nilpotent, and locally nilpotent ideals and their associated
radicals in some class of structural matrix near-rings. (For more on matrix near-rings
see [8], where a substantial bibliography on the subject can be found.)

1. Preliminaries and notation

Throughout this paper, the word "near-ring" means a right zero-symmetric near-ring
with an identity element 1. Near-rings shall be denoted by the letter R (except where
noted). By a subnear-ring of a near-ring R, we shall always mean a subnear-ring
containing the identity element 1 of R. By an ideal in R, we shall always mean a 2-sided
ideal in R. Let R" denote the direct sum of n copies of (R, +) where n is a fixed natural
number. Elements of R" are written as it, v, and so on. If aeR and u = (ul,...,un)eR",
then ua is defined to be (u1a,...,ulla). Denote the n-tuple with 1 in the i-th component
and 0 elsewhere by £,. A nonempty subset X of R is called left or right invariant
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346 ENOCH K. S. LEE

according to whether RX^X or XR^X. A nonempty subset of R is said to be 2-sided
invariant if it is both left and right invariant.

The nxn elementary matrices are defined as functions from R" to itself as:

for 1 ^ i , j^n,reR where f:R-*R is left multiplication by r and i, and ni are the i-th
coordinate injection and the 7-th coordinate projection, respectively. The subnear-ring of
M0(R") generated by:

is called an nxn matrix near-ring over R, denoted by Jtn(R), and each element of
Jin{R) is called a matrix.

Let B be a Boolean matrix of size n where b,j = 0 or 1 is the element in the i-th row
and j-th column, for 1 ^ i , j^n. We assume that B satisfies the following two conditions:

(1) bu=\ for l ^ i S « ;

(2) bik=l whenever bij = bjk=\.

We write

u ~ ; v if and only if nju=nfi for all j such that b^ = 1.

Observe that if fcy = 0, then £,• ~ ,0 where 0=(0,...,0). Let J(n(B,R) denote the set:

{Xe Jtn(R) I(VI g jgn, Vu,DGKn)(u ~,v => rt.Xu = n(Xv)}.

In [11], van der Walt and van Wyk proved that J(n(B,R) is a subnear-ring of Jtn(R).
We call Jin(B,R) the nxn structural matrix near-ring over R with respect to B.

Definition 1.1. Let £C£Mn(B,R),L^R,\^j^n. Then

(1) X\(R,j) = {(uu...,un)eR"\ui = O if fco = O};

(2)

(3)

(4) L^ = {Xe Jtn(B, R) \ X$\{R, j)) £ \}(h L)}.

Basic properties concerning the above four sets were developed in [7]. The author
there showed that LU)=(Rn(j,L):Rn(j,R.)) where the right-hand term was studied in [11]
by van der Walt and van Wyk.

The next definition is necessary to our investigation on primeness and nilpotence.

Definition 1.2. Let 95 denote the set of natural numbers:
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{ke{l,...,n}\ if 1^ / i gnand h*k, then bkh=0 or bhk=0}

where n is the size of the Boolean matrix B = [fey].

Remark. If J3 is an upper or a lower triangular matrix, then 93 = { l , . . . ,n} . However
93 = 0 if each entry bki of B is 1.

Example 1.3. Suppose R is a ring with identity and

B = is of size 4.

Observe that we can identify

1 1 1 0

0 0 1 0

U 1 I U

B, R) with

R R R 0

R R R 0

0 0 R 0

R R R R

A routine calculation shows that each completely prime ideal of J(A(B,R) must be
either

p(3)_

(R R R 0

R R R 0

0 0 P 0

/? K /? R)

or/*4 ) =
D D D (\

I\ I\ M\ \J

0 0 R 0

l,R R R P

where P is a proper completely prime ideal of R. (See Definition 1.1(4) for the meaning
of P(3) or P(4).) Note that the corresponding set 93 is equal to {3,4}.

The next lemma is the starting point to our approach:

Lemma 1.4. Let /ce93. Then we have:

(1) nh(Y\(R,k)) = 0 whenever h^k and bkh=l;

(2) f~k(ek-rk) whenever F=(ri,...,rn)eY[(R,k);

(3) nkXYek={nkXek)(nkYek) whenever X and YeJ?n{B,R).

Proof. From the assumption that fee93 if bkh= 1 and /i#fc, then we have bhk=0. This
implies nh([\(R,k)) = 0. Part (1) follows. Let F=(rl,...,rn)eY\(R,k). To show r ~ l k (£t r l ) ,

https://doi.org/10.1017/S0013091500023063 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500023063


348 ENOCH K. S. LEE

it suffices to show nhr = nh{Ek-rk) for all h such that bkh=l. Assume bkh=\. If h¥=k, then
bhk = 0. By Definition 1.1(1), we have nhf=0 and nh(ek • rk) = 0. If h = k, then nhf=rk and
nh(ekrk) = rk. Thus part (2) follows. In the following, we assume X and Y are matrices of
J(n(B,R). (Recall: YY\(R,k)^Y\(R>k) C7> Proposition 2.8].) Since ekeY\(R,k), we have
yrejke]~I(R,k). Take r=Yek and rfc = 7ity£k in part (2). Then we have Yek ~k(ek-(nkYek)).
Use Proposition 2.2 of [11] to show that X Yek ~ k X(ek • (nk Yek)) and hence nkXYek =
nkX(ek-(nkYEk)). Finally, apply Lemma 2.1 [4] to obtain nkXYek=(nkXek)(nkYek). Part
(3) is immediate.

Proposition 1.5. Assume ke%5.

(1) Let L be a right invariant subset ofR. Then we have:

X e L(k) if and only if nkXek e L.

(2) Let L and H be right invariant subsets of R. Then Lm H(k) ^(LH)(k\

Proof. (1) Suppose XeLik). We then have nkXskeL. Conversely, suppose nkXekeL.
To show XeLlk), it suffices to show nhXfsL for all fe]^[(R, k) and for all h such that
bkh=l. Therefore we assume bkh=\. Part (2) of Lemma 1.4 gives f~k(ek-rk). Invoke
Proposition 2.2 of [11] to obtain Xr ~kX(ek-rk). We then have nhXr = nhX{Ek-rk) =
(nhXek)rk. If h¥=k, then nh{Xek) = 0 by Lemma 1.4(1) (note that Xeke f\(R,k)) and hence
nhXf=0eL. If h = k, then nhXf=(nkXEk)rkeL-rk and so nhXreL. Consequently,

(2) Let C and D be elements of L(k) and H{k), respectively. Part (1) yields that
nkCekeL and nkDekeH. The previous lemma gives nkCDek = (nkCek)(nkDek)eLH. Using
part (1), we then have CDe(LH){k).

2. Prime ideals and radicals

Recall that a proper ideal P of R is (1) a prime ideal if for any ideals A and B of R
such that AB<^P implies A^P or B^P; (2) a completely prime ideal if for any elements
a and b of R such that abeP implies aeP or 6e P.

We list the following useful results which are Theorems 3.1 and 3.2 of [7],
respectively.

Theorem 2.1. Let P be a prime ideal of R. Then P(0 is a prime ideal of Mn(B, R)
for l^i^n.

Theorem 2.2. Let 2. be a completely prime ideal of J(n{B,R). Then M(i) is a completely
prime ideal of R for 1 ^ i ̂  n.

These two results provide partial descriptions of prime and completely prime ideals of
any structural matrix near-rings. We shall determine all completely prime ideals of any
structural matrix near-rings in this section. Furthermore, a better description is obtained
for the prime case.
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Theorem 2.3. Let P be a completely prime ideal of R and /ce93. Then P(lt) is a
completely prime ideal of Jln{B, R).

Proof. Let X and Y be elements of Jfn(B,R) such that XYePik). Apply Proposition
1.5(1) to obtain nkXYekeP and then use Lemma 1.4(3) to yield (nkXek)(nkYek)eP. Since
P is completely prime, we have nkXekeP or nkYzkeP. By Proposition 1.5(1) again, we
have XeP™ ox YePm.

The following technical lemma will be useful in the sequel.

Lemma 2.4. Let £C be an ideal of Jin{B,R) and /ce93. Then X e{SCwYk) if and only if
where x = KkXsk.

Proof. Proposition 1.5(1) shows that Xe(if(k))
(k) if and only if x = nkXeke&ik).

However Proposition 2.6 of [7] shows that x e £?{k) if and only if fkk

Proposition 2.5. Let 1 be a proper completely prime ideal of Jfn(B,R). Then there
exists /ce93 such that (2{k))

m = 2. Hence f){{2(k))
m\keS5}=l

Proof. Since 2 is proper, there exists k such that f\k $ 2. Next we prove that fk\ $ 2
implies (2(k))

m = 2. So assume f\ki2 for some k and assume X$2. Thus flkXflk<£2. A
routine calculation shows that fkkXflk=fkk where x = nkXEk. Hence X $ (2{k)f

k) by the
previous lemma. Recall that .2£(J2(I))

(I) for l ^ J ^ n [7, Proposition 2.13(2)]. Therefore
we obtain (2m)lk) = 2. Now we want to show that such k must be an element of 33.
Assume for purposes of contradiction that k $ 93. Then there exists h such that h # k and
bhk = bkh=l. Since fihf\,hflk=fiki2, we have fl

hh$2. However fl
kkflh = 0e2 implies

flke2 or flhe2. This is a contradiction! We then have ke93. The last part is now an
immediate consequence.

We use (X}R to denote the ideal of R generated by the nonempty subset X of R. If
there can be no confusion, we write <X> for

Lemma 2.6. Let 2 be a prime ideal of Jtn{B,R) and f[k$2 for some k. Then flhe2. if
and only if bkh = 0 or bhk = 0.

Proof. First we prove that </,'•>• <//,•> = {0} whenever fc(,= 0. Assume b,v = 0. Note
that fljj(Rn)^U(RJ)' thus f)je(Y\(R,jy.Rn) = {XeJ{n(B,R)\X(Rn)zU(RJ)}- Note it
was shown [7, Lemma 2.10] that the set ([\(R, j): R") is an ideal of Jfn{B,R). We then
obtain </],->£([](£,j):R"). Since btj=0, we have fh(T\(R>J)) = {°}- T h i s implies
/«</];) = {0} a nd hence </«> • </];> = {0}. Now we are ready to prove our claim that
flhe2 if and only if bkh=0 or bhk = 0. Since flk42, we have (flk}£2. If bfch = 0 or
ftM = 0, then either </^>- </^> = {0} or </A

1
h><A1

k> = {0}. In either case we have
flhe2. If fl

hhe2 and if we assume that bkh = bhk=l, then flk=flhf{hflke2. This is not
possible. So if f\hs2, then b H =0 or bkk = 0.
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Proposition 2.7. Let 2 be a prime ideal of Jin(B,R) and fce93. / / flk$2, then
(2(k))

ik) = 2 and 2{k) is a prime ideal of R.

Proof. Assume fl
kk$± Let Xe(2(k)Y

k) and FeY\(R,k). First we want to show
fkkXf=fkkr where x = nkXek. Since fce23, we have f ~ k (ek • rk). Furthermore Xf~k

(Xek)-rk. This implies nkXr = (nkXek)-rk and hence flkXr = (flkXek)-rk=fkkf where
x = nkXek. From the fact that </>k>(/n<=[](*,*), we obtain AW/*1* > = /£*</,!*>.
The right-hand term is in 2, since fike2 (see Lemma 2.4). Thus we have
flk(2ik))

ik)VL> and then </^>(J(fc))
((l)</it> are subsets of 2. This forces (2{k))

ik)<=±
Hence (£{k))

{k) = 2. Now let L and H be ideals of/? such that LH^2(k). Proposition 1.5
gives that LmHm£{LH)ik)c(j,k))W = J. Therefore L(<I)<=J2 or / / w g l Eventually Ls^» ,
or H9^( k ) ; and ^(fc) is prime.

Let Pv(i?) (resp. Specv(K)) be the intersection (resp. the set) of all proper prime or
completely prime ideals of R according to v = 0 or 2.

Theorems 2.2 and 2.3 and Proposition 2.5 give a complete description of all
completely prime ideals of J?n(B,R). Moreover Theorem 2.1 and Proposition 2.7
describe prime ideals of all those structural matrix near-rings Jfn(B,R) such that
95 = {l,.. . ,n}. Note if B is an upper or a lower triangular matrix, then the correspond-
ing set 93 is equal to {1, . . . , n}.

Theorem 2.8. (1) / / 93 = {1,. . . , n}, then:

Spec0Mrn(B, R)) = {P") | Pe Speco(K), 1 g i^ n}.

(2) Spec2(^n(B, R)) = {/><" | P eSpec2(K), i6 23}.

Note that if 93 is empty, then Spec2(^n(B, R)) is empty. For example, we have
Spec2(^n(B,R)) = Spec2(^rn(B,R)) = 0 whenever each entry bi} of B is equal to I.

Denote by y the size of the set 93. We can now describe the size of the sets
Speco(^n(B,/?)) and Spec2(^n(B,i?)). We write \X\ the cardinal of any set X. Then we
have:

Theorem 2.9. (1) / / 93 = {1,..., n}, then:

(2)

Proof. Observe that if h and k are in 93 and if h^k, then it is impossible to have
k = bkh= 1. Now the result follows immediately from Theorem 2.8.

Theorem 2.10. (1) 7/93 = {l,...,n}, then:

P0(^n(B, R)) = P) {(PoW)<011

(2) P2(^Tn(B, R)) = fl {(P2(R))(i) | ie23}.
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Remark. In part (2), if 93 is empty, then P2{J(n{B, R)) = Mn(B, R).

Example 2.11. (1) Suppose B is one of the following:

fl 0 0 l)

0 1 1 0

0 1 1 0

U o o i)

i oo l
1 1 1 1

1 1 1 1

U oo i)

, or

1 1 1 1

1 1 1 1

1 1 1 1

U i i \)

Then 93 is empty. Hence P2(^4(B, R)) = M±{B, R). The structural matrix near-ring with
respect to the last Boolean matrix is, in fact, the matrix near-ring Ji^K). Note that the
second Boolean matrix is not even symmetric.

(2) Suppose B is one of the following:

'\

0

0

1

1

0

r
I
I

i

I
0

0

1

0

r
1

1
J

'1

0

0

0

1

0

r
1

1 ,

Then 93 = {1,2,3}. Hence P0(J?3(B,R)) = () { (PoW' l 1 = '^3} and P2(^T3(B,K)) =
P| {(P2(/?))0)j l g i ^ 3 } . Furthermore we have |Speco(^3(B,R))| = 3|Speco(/?)| and

(3) Suppose

B =

f\

0

1

0

1

0

r
0

i

Then 93 = {2}. We have P2(^r3(B,/?)) = (P2(K))(2) and |Spec2(^3(B,/?))| =

(4) Suppose

1 1 0}

B =
1 1 1 0
0 0 1 0

U 1 1 U
)f]{P2(R))w and |Spec2(^T4(B,i?))| =Then 93 = {3,4} and

2-|Spec2(K)|.

A (zero-symmetric) near-ring R is called 2-primal if the prime radical, P0(fl), is equal
to the set of all nilpotent elements. We say an ideal / of R is 2-primal if R/I is a 2-
primal near-ring. It was shown in [2] that R is 2-primal if and only if P0(/?) = P2(R).
Furthermore, the authors there investigated the following conditions:
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(1) every prime ideal of R is a completely prime ideal;

(2) every ideal of R is a 2-primal ideal.

They showed that these two conditions are equivalent. Denote by 9?o t n e c l a s s of all
(zero-symmetric) near-rings which satisfy these two conditions. It was shown in [3] that
if R is a ring (not necessarily with identity), then R is a 2-primal ring (resp. is in 9?o) >f
and only if the ring of all n x n upper triangular matrices over R is a 2-primal ring (resp.
is in 9?Q)- We extend this result to structural matrix near-rings.

Theorem 2.12. Let B be a Boolean matrix such that 93 = {l , . . . ,n} . Then R is a
2-primal near-ring (resp. is in 9?Q) ' / and only if Jtn(B, R) is a 2-primal near-ring (resp. is
in «§).

Proof. Use Theorem 2.10 to obtain P0(^n(B,R)) = f]{(P0(R)f)\l^i^n} and
P2(J?n(B,R)) = f){(P2(R))m\l^i^n}. Assume R is 2-primal. Therefore P0(R) = P2(R).
Obviously we then have PQ(Jtn(B,R)) = P2(J{n(B,R)) and hence J!n(B,R) is 2-primal.
Conversely, we assume Mn(B,R) is 2-primal. So P0(Mn(B,R)) = P2(Jtn(B,R)). (Recall: R
can be identified with a subnear-ring of J(n(B, R). See 3.4 Corollary of [9].) Proposition
3.4 of [2] yields that P0(R) = R f] P0(J!n(B,R)) = R f] P2(Jfn(B,R)) = P2(R). So R is
2-primal. Similarly, we can show R is in 9?Q if a n d o n ' y if -^n(^> K) is in 9?Q.

3. Nil, nilpotent, and locally nilpotent ideals

In this section we discuss nil, nilpotent, and locally nilpotent ideals of structural
matrix near-rings. Nil and Levitzki nil radicals are studied. A subset X of a near-ring is
locally nilpotent if every finite subset of X is nilpotent. In a near-ring R, the nil radical
(resp. Levitzki nil radical) is the sum of all nil ideals (resp. locally nilpotent ideals).

In [10], van der Walt gave a description of nilpotent ideals in any matrix near-ring,
that is:

the ideal / of R is nilpotent if and only if / + is nilpotent in J(n(R).

Note / + is the ideal of J(n(R) generated by the set {f"h,\ael, 1 ^ i , j^n}. We begin our
investigation of nilpotence with the following result.

Proposition 3.1. Let JT be a nil (resp. nilpotent, locally nilpotent) 2-sided invariant
subset of Jtn(B, R). Then JT(1) is a nil (resp. nilpotent, locally nilpotent) 2-sided invariant
subset of R for 1 ^ i ̂  n.

Proof. We prove the nil case. The other two cases can be proved in a similar way.
Assume X is a nil 2-sided invariant subset of J(n(B,R). We then have xeJf(i) if and
only if / ? ; e X [7, Proposition 2.6]. Note / j f = (/£)"• = 0 for some m^ 1 since Jf is nil.
This forces xm = 0. We have the result.
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Observe that in the preceding if JT is nilpotent of index m, then JT(I) is nilpotent of
index at most m.

Lemma 3.2. Let H and L be right invariant subsets and let JceSB. Then Hm + L{k) =

Proof. Suppose A e(H + L)(k). Then nkAekeH + L. Write nkAik = x + y where xeH
and yeL. We have fy

kkellk). (Recall: yeL if and only if fy
kkeUk) [7, Lemma 2.12(1)].)

Note that nk(A-flk)ek = xeH. This implies A-f{k is in H(k). (See Proposition 1.5(1).)
Hence A e H{k) + L(k). Conversely, we suppose A e H w + Lw. Write A = X+Y where
Are//( t ) and YeLik). Then nkXekeH and T i ^ e L . Moreover we have 7tk(A" + y )£ t e t f+
L. Using Proposition 1.5 again, we obtain that A is in (H + L){k).

Definition 3.3. Recall B = [by] is an nxn Boolean matrix with 1 ̂ i , j : gn . We will
denote by Am subsets of {l , . . . ,n} defined inductively for any natural numbers m as
follows:

A1 = { j | if bjk=l, then k = j};

\ m

Am + i = U | i f h y * = l and fc#j, then fceAm}\ (J A,,

Observe that AIIf
>)Ap=0 if a#jS. The sets Am may be empty for some m. For

instance, if B is the Boolean matrix as described in Example 2.11(4), then A! = {3} but
A2,A3 ) . . . are empty. However if the Boolean matrix B satisfies the condition that
© = {l , . . . ,n} , then the set {l , . . . ,n} is equal to a finite, disjoint union of nonempty sets
A1 ;. . . ,AA. (See Proposition 3.4 below.)

Proposition 3.4. Let B be an nxn Boolean matrix such that S = { l , . . . , n } . Then there
is a natural number X less than or equal to n such that { 1 , . . . , M } is the disjoint union of
nonempty sets A 1 , . . . ,A A .

Proof. We first show Ax is nonempty. Assume for purpose of contradiction that Aj
is empty. For convenience sake we let Ji,J2>--- be elements of the set {1,. . . ,«}. Since
95 = {1,...,«} and Al=<t>, for any j t there exists j 2 such that ji^jz and bjlh=l.
Similarly there exists j 3 such that j2^J3 and bhji = \. Moreover we have ji^j3. (Note:
if )i = hi t n e n bj2jl = bhh=l. This implies both bUjl and bhU are equal to 1; a
contradiction to the assumption of 95.) Continue this process to obtain a collection of
natural numbers ii,j2,-- of {l , . . . ,n} such that: (1) jh¥=jk whenever h^k and; (2)
bJhJk= 1 whenever h<k. Since the set {1,..,«} is finite, there are jh,jk such that h^k but
jh = jk- This is not possible. Thus A j#0 . Now if A1 = { l , . . . ,n} , then A=l and hence we
are done. Assume Ai^={l,...,n}. We can show A 2 ^ 0 similarly. Inductively, if we have
nonempty sets A;,i = l, . . . ,m, such that At [j A2 1J---U A m #{ l , . . . , «} , then A m + 1 # 0 .
This process must terminate in finitely many steps. Hence the result follows.
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Hereafter we stipulate that the Boolean matrix B satisfies the condition that
23 = { l , . . . , n} , except where noted. Denote by X the number of nonempty, disjoint sets
Aj, . . . ,AA such that {l, . . . , / i} = Uf=1 Af. From the preceding, X is uniquely determined
by B.

Lemma 3.5. Let Al,...,Ax be a collection of X nonzero structural matrices of
J(n(B,R). Assume that KkAiEk = 0 whenever l^i^X and fceA,. Then AX...A1=O.

Proof. Let f=(rl,...,rn)eR". We shall prove a more general result that if t = i,...,X
and if ke\h then nkA,...Alr = 0. We use induction on i = \,...,X. Assume i = l . Suppose
fceAj and l^t^X. From the definition of A, and that of ~k, we have r~kek-rk.
Invoke Proposition 2.2 of [11] to obtain A,...Alf~kA,...Al(£krk). Since 7rk^,efc = O,
we have nkA,...Alf=(nkA,...Al£k)rk = (nkAlsk)...(nkA1£k)rk = O. (See Lemma 2.1 of [4]
and Lemma 1.4(3).) So the result is true when i= 1. Now assume it is true for some i<X.
Suppose /ceA1+1 and i+l^t^X. If j^k and bkj=l, then ye A, (see Definition 3.3). By
the induction hypothesis, we have nJAi...Alf=0. Therefore A,...Alr~
kEk-(nkAi...Alf). Multiply At...Ai+l to both sides of the relation from the left to
obtain At...Alf~kA,...Ai + l(ek-(nkAi...Alf)). Since nkAi+lsk = 0 by assumption,
therefore:

nkA,... Alf=(nkA,... Ai + i£k) • (n^,-. . .Atr)

= (nkA,Ek)... (nkAi+ ,et) • (nkA, ...Atr) = 0.

Thus , by induction, we have that if JceA, and i g t g A , then nkA,...A1r = 0 for any feR".
Consequent ly if we take t = X, then our claim that AX...A1=O follows immediately.
(Note that {l,...,n} = {jf=l\, by Proposition 3.4.)

Lemma 3.6. Let Jf be a nonempty subset of ^n(B,R) and let Xk be the set
{nkHEk\HeJf} for k=\,...,n. If there is a natural number m such that (A^)m = 0 for
each k=l,...,n, then Jtf""x = O.

Proof. Assume there is a natural number m such that (Xk)
m = 0 for all k=l,...,n.

Let Hx,...,HmX be elements of Jf. Note that we use Lemma 1.4(3) to obtain
nkHm...H1Ek = (nkHmEk)...(nkHlEk) and hence nkHm...HlEk = Q for each k = l,...,n.
Similarly, we have:

nk^2m-Hm+iEk=-- =nkHmX...Hm(X-.1) + lSk = 0.

Take Al=Hm...H1,A2 = H2m...Hm+i,..., and Ax = HmX...Hm(X-l)+1 in the preceding
lemma to obtain HmX...Hi =Ax...Al = 0 .

Corollary 3.7. Jtn(B, R) is nil (resp. nilpotent, locally nilpotent) if and only if R is nil
(resp. nilpotent, locally nilpotent).
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Proof. Suppose J(n(B,R) is nilpotent. Since R is isomorphic to a subnear-ring of
Mn[B, R), therefore R is nilpotent. Conversely if R is nilpotent, then Lemma 3.6 shows
that J/n(B, R) is nilpotent. The other two cases can be proved in a similar way.

Similar to the preceding, one can obtain the following:

Proposition 3.8. Let / , , . . . , / „ be nonempty nil (resp. nilpotent, locally nilpotent) subsets
of R. Then f]"=i I\'] is a "'"' (resp. nilpotent, locally nilpotent) subset of Mn(B,R).

Let N(R) be the sum of all proper nil ideals of R and let L(R) be the sum of all
locally nilpotent ideals of R. Note that N and L are radical maps and are called nil
radical and Levitzki radical, respectively. (See [1] and [6].)

Theorem 3.9. (1) N(^B(B, R)) = fl?= l (N(R))"».

(2) (0

Proof. Suppose N(J?) = K. Then (N(K))W = J(n(B,R) for l^i^n. Corollary 3.7 gives
that N(Jln{B,R)) = Jtn(B,R). Thus we are done. Suppose N(J?)^K. Then N(J?n(B, R)) #
Jtn(B,R). The preceding yields f)?=1(N(i?))(I)£N(^n(B,/?)). Furthermore Proposition
3.1 shows that (N(JJB,R)))(i)£N(«) for each i=l,...,«. A moment's thought, we have
((NMUfl,K)))(J))«£(N(K))"-> for i=l , . . . ,n . However N(^n(£,K))£((N(.^n(B,*)))„,)«»
for i=l , . . . ,«. (Recall: «S?c(j£?(i))<'> for any left invariant subset if of Mn(B,R) [7,
Proposition 2.13(2)].) Thus:

We have the result. The proof for the Levitzki radical case is similar.
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