ON PRIMENESS AND NILPOTENCE IN STRUCTURAL MATRIX NEAR-RINGS

by ENOCH K. S. LEE

(Received 29th July 1994)

The structure of completely prime ideals in any structural matrix near-rings is determined. Partial descriptions are obtained for prime, nil, nilpotent, and locally nilpotent ideals of structural matrix near-rings. Their associated radicals are also studied in this paper.

1991 Mathematics subject classification: 16Y30.

The concept of matrix near-rings was introduced by Meldrum and van der Walt [9]. Many interesting results have been obtained along this line since then. The investigation of "structural" matrix near-rings was initiated by van der Walt and van Wyk. A structural matrix near-ring " $\mathcal{M}_n(B, R)$ " is considered as a subnear-ring of the matrix near-ring " $\mathcal{M}_n(R)$ " and is determined by virtue of the shape of the Boolean matrix "B". Booth and Groenewald [4], Groenewald [5] have studied certain concepts of primeness in matrix near-rings. Lee [7] studied prime ideals and their associated radicals in structural matrix near-rings and completely determined 1-prime and equiprime ideals of $\mathcal{M}_n(B, R)$. Partial results related to prime and completely prime ideals were obtained there. (Note different notation for 1-prime ideals was used by Groenewald [5].) We continue to investigate various concepts of primeness in this paper. The structure of completely prime ideals of structural matrix near-rings is described completely. Moreover, we study prime, nil, nilpotent, and locally nilpotent ideals and their associated radicals in some class of structural matrix near-rings. (For more on matrix near-rings see [8], where a substantial bibliography on the subject can be found.)

1. Preliminaries and notation

Throughout this paper, the word "near-ring" means a right zero-symmetric near-ring with an identity element 1. Near-rings shall be denoted by the letter R (except where noted). By a subnear-ring of a near-ring R, we shall always mean a subnear-ring containing the identity element 1 of R. By an ideal in R, we shall always mean a 2-sided ideal in R. Let R^n denote the direct sum of n copies of (R, +) where n is a fixed natural number. Elements of R^n are written as \bar{u} , \bar{v} , and so on. If $a \in R$ and $\bar{u} = (u_1, \ldots, u_n) \in R^n$, then $\bar{u} \cdot a$ is defined to be $(u_1 a, \ldots, u_n a)$. Denote the n-tuple with 1 in the i-th component and 0 elsewhere by $\bar{\varepsilon}_i$. A nonempty subset X of R is called left or right invariant

according to whether $RX \subseteq X$ or $XR \subseteq X$. A nonempty subset of R is said to be 2-sided invariant if it is both left and right invariant.

The $n \times n$ elementary matrices are defined as functions from R^n to itself as:

$$f'_{ij} = \iota_i f' \pi_i$$

for $1 \le i, j \le n, r \in R$ where $f^r: R \to R$ is left multiplication by r and ι_i and π_j are the i-th coordinate injection and the j-th coordinate projection, respectively. The subnear-ring of $M_0(R^n)$ generated by:

$$\{f_{ij}^r \mid r \in R, 1 \leq i, j \leq n\}$$

is called an $n \times n$ matrix near-ring over R, denoted by $\mathcal{M}_n(R)$, and each element of $\mathcal{M}_n(R)$ is called a matrix.

Let B be a Boolean matrix of size n where $b_{ij}=0$ or 1 is the element in the i-th row and j-th column, for $1 \le i, j \le n$. We assume that B satisfies the following two conditions:

- (1) $b_{ii}=1$ for $1 \le i \le n$; and
- (2) $b_{ik} = 1$ whenever $b_{ij} = b_{jk} = 1$.

We write

 $\bar{u} \sim_i \bar{v}$ if and only if $\pi_j \bar{u} = \pi_j \bar{v}$ for all j such that $b_{ij} = 1$.

Observe that if $b_{ij} = 0$, then $\bar{e}_i \sim_i \bar{0}$ where $\bar{0} = (0, \dots, 0)$. Let $\mathcal{M}_n(B, R)$ denote the set:

$$\big\{X\in\mathcal{M}_n(R)\,\big|\,(\forall\,1\leqq i\leqq n,\,\forall\bar{u},\bar{v}\in R^n)(\bar{u}\sim_i\bar{v}\Rightarrow\pi_iX\bar{u}=\pi_iX\bar{v})\big\}.$$

In [11], van der Walt and van Wyk proved that $\mathcal{M}_n(B, R)$ is a subnear-ring of $\mathcal{M}_n(R)$. We call $\mathcal{M}_n(B, R)$ the $n \times n$ structural matrix near-ring over R with respect to B.

Definition 1.1. Let $\mathcal{L} \leq \mathcal{M}_n(B, R), L \subseteq R, 1 \leq j \leq n$. Then

- (1) $\prod (R, j) = \{(u_1, \ldots, u_n) \in R^n \mid u_i = 0 \text{ if } b_{ij} = 0\};$
- (2) $\mathcal{L}_{(j)} = \{x \in R \mid (\exists X \in \mathcal{L})(\exists \bar{u} \in \prod (R, j))(x = \pi_j X \bar{u})\};$
- (3) $\coprod (j, L) = \{(u_1, \ldots, u_n) \in R^n \mid u_k \in L \text{ if } b_{jk} = 1\};$
- (4) $L^{(j)} = \{X \in \mathcal{M}_n(B,R) \mid X(\prod(R,j)) \subseteq \coprod(j,L)\}.$

Basic properties concerning the above four sets were developed in [7]. The author there showed that $L^{(j)} = (R^n(j, L): R^n(j, R))$ where the right-hand term was studied in [11] by van der Walt and van Wyk.

The next definition is necessary to our investigation on primeness and nilpotence.

Definition 1.2. Let B denote the set of natural numbers:

$$\{k \in \{1,\ldots,n\} \mid \text{ if } 1 \leq h \leq n \text{ and } h \neq k, \text{ then } b_{kh} = 0 \text{ or } b_{hk} = 0\}$$

where n is the size of the Boolean matrix $B = [b_{ii}]$.

Remark. If B is an upper or a lower triangular matrix, then $\mathfrak{B} = \{1, ..., n\}$. However $\mathfrak{B} = \emptyset$ if each entry b_{ij} of B is 1.

Example 1.3. Suppose R is a ring with identity and

$$B = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$
 is of size 4.

Observe that we can identify $\mathcal{M}_4(B,R)$ with

$$\begin{pmatrix} R & R & R & 0 \\ R & R & R & 0 \\ 0 & 0 & R & 0 \\ R & R & R & R \end{pmatrix}.$$

A routine calculation shows that each completely prime ideal of $\mathcal{M}_4(B,R)$ must be either

$$P^{(3)} = \begin{pmatrix} R & R & R & 0 \\ R & R & R & 0 \\ 0 & 0 & P & 0 \\ R & R & R & R \end{pmatrix} \text{ or } P^{(4)} = \begin{pmatrix} R & R & R & 0 \\ R & R & R & 0 \\ 0 & 0 & R & 0 \\ R & R & R & P \end{pmatrix}$$

where P is a proper completely prime ideal of R. (See Definition 1.1(4) for the meaning of $P^{(3)}$ or $P^{(4)}$.) Note that the corresponding set \mathfrak{B} is equal to $\{3,4\}$.

The next lemma is the starting point to our approach:

Lemma 1.4. Let $k \in \mathfrak{B}$. Then we have:

- (1) $\pi_h(\prod(R,k)) = 0$ whenever $h \neq k$ and $b_{kh} = 1$;
- (2) $\bar{r} \sim_k (\bar{\varepsilon}_k \cdot r_k)$ whenever $\bar{r} = (r_1, \dots, r_n) \in \prod (R, k)$;
- (3) $\pi_k X Y \bar{\varepsilon}_k = (\pi_k X \bar{\varepsilon}_k)(\pi_k Y \bar{\varepsilon}_k)$ whenever X and $Y \in \mathcal{M}_n(B, R)$.

Proof. From the assumption that $k \in \mathfrak{B}$ if $b_{kh} = 1$ and $h \neq k$, then we have $b_{hk} = 0$. This implies $\pi_h(\prod(R,k)) = 0$. Part (1) follows. Let $\bar{r} = (r_1, \ldots, r_n) \in \prod(R,k)$. To show $\bar{r} \sim_k (\bar{\epsilon}_k \cdot r_k)$,

it suffices to show $\pi_h \bar{r} = \pi_h(\bar{\epsilon}_k \cdot r_k)$ for all h such that $b_{kh} = 1$. Assume $b_{kh} = 1$. If $h \neq k$, then $b_{hk} = 0$. By Definition 1.1(1), we have $\pi_h \bar{r} = 0$ and $\pi_h(\bar{\epsilon}_k \cdot r_k) = 0$. If h = k, then $\pi_h \bar{r} = r_k$ and $\pi_h(\bar{\epsilon}_k \cdot r_k) = r_k$. Thus part (2) follows. In the following, we assume X and Y are matrices of $\mathcal{M}_n(B, R)$. (Recall: $Y \prod (R, k) \subseteq \prod (R, k)$ [7, Proposition 2.8].) Since $\bar{\epsilon}_k \in \prod (R, k)$, we have $Y\bar{\epsilon}_k \in \prod (R, k)$. Take $\bar{r} = Y\bar{\epsilon}_k$ and $r_k = \pi_k Y\bar{\epsilon}_k$ in part (2). Then we have $Y\bar{\epsilon}_k \sim_k (\bar{\epsilon}_k \cdot (\pi_k Y\bar{\epsilon}_k))$. Use Proposition 2.2 of [11] to show that $XY\bar{\epsilon}_k \sim_k X(\bar{\epsilon}_k \cdot (\pi_k Y\bar{\epsilon}_k))$ and hence $\pi_k XY\bar{\epsilon}_k = \pi_k X(\bar{\epsilon}_k \cdot (\pi_k Y\bar{\epsilon}_k))$. Finally, apply Lemma 2.1 [4] to obtain $\pi_k XY\bar{\epsilon}_k = (\pi_k X \bar{\epsilon}_k)(\pi_k Y\bar{\epsilon}_k)$. Part (3) is immediate.

Proposition 1.5. Assume $k \in \mathfrak{B}$.

(1) Let L be a right invariant subset of R. Then we have:

$$X \in L^{(k)}$$
 if and only if $\pi_k X \bar{\varepsilon}_k \in L$.

- (2) Let L and H be right invariant subsets of R. Then $L^{(k)}H^{(k)}\subseteq (LH)^{(k)}$.
- **Proof.** (1) Suppose $X \in L^{(k)}$. We then have $\pi_k X \bar{\varepsilon}_k \in L$. Conversely, suppose $\pi_k X \bar{\varepsilon}_k \in L$. To show $X \in L^{(k)}$, it suffices to show $\pi_h X \bar{r} \in L$ for all $\bar{r} \in \prod (R, k)$ and for all h such that $b_{kh} = 1$. Therefore we assume $b_{kh} = 1$. Part (2) of Lemma 1.4 gives $\bar{r} \sim_k (\bar{\varepsilon}_k \cdot r_k)$. Invoke Proposition 2.2 of [11] to obtain $X\bar{r} \sim_k X(\bar{\varepsilon}_k \cdot r_k)$. We then have $\pi_h X \bar{r} = \pi_h X(\bar{\varepsilon}_k \cdot r_k) = (\pi_h X \bar{\varepsilon}_k) r_k$. If $h \neq k$, then $\pi_h (X \bar{\varepsilon}_k) = 0$ by Lemma 1.4(1) (note that $X \bar{\varepsilon}_k \in \prod (R, k)$) and hence $\pi_h X \bar{r} = 0 \in L$. If h = k, then $\pi_h X \bar{r} = (\pi_k X \bar{\varepsilon}_k) r_k \in L \cdot r_k$ and so $\pi_h X \bar{r} \in L$. Consequently, $X \in L^{(k)}$.
- (2) Let C and D be elements of $L^{(k)}$ and $H^{(k)}$, respectively. Part (1) yields that $\pi_k C \bar{\varepsilon}_k \in L$ and $\pi_k D \bar{\varepsilon}_k \in H$. The previous lemma gives $\pi_k C D \bar{\varepsilon}_k = (\pi_k C \bar{\varepsilon}_k)(\pi_k D \bar{\varepsilon}_k) \in LH$. Using part (1), we then have $CD \in (LH)^{(k)}$.

2. Prime ideals and radicals

Recall that a proper ideal P of R is (1) a prime ideal if for any ideals A and B of R such that $AB \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$; (2) a completely prime ideal if for any elements a and b of R such that $ab \in P$ implies $a \in P$ or $b \in P$.

We list the following useful results which are Theorems 3.1 and 3.2 of [7], respectively.

- **Theorem 2.1.** Let P be a prime ideal of R. Then $P^{(i)}$ is a prime ideal of $\mathcal{M}_n(B,R)$ for $1 \le i \le n$.
- **Theorem 2.2.** Let \mathcal{Q} be a completely prime ideal of $\mathcal{M}_n(B,R)$. Then $\mathcal{Q}_{(i)}$ is a completely prime ideal of R for $1 \le i \le n$.

These two results provide partial descriptions of prime and completely prime ideals of any structural matrix near-rings. We shall determine all completely prime ideals of any structural matrix near-rings in this section. Furthermore, a better description is obtained for the prime case.

Theorem 2.3. Let P be a completely prime ideal of R and $k \in \mathfrak{B}$. Then $P^{(k)}$ is a completely prime ideal of $\mathcal{M}_n(B,R)$.

Proof. Let X and Y be elements of $\mathcal{M}_n(B,R)$ such that $XY \in P^{(k)}$. Apply Proposition 1.5(1) to obtain $\pi_k XY\bar{\varepsilon}_k \in P$ and then use Lemma 1.4(3) to yield $(\pi_k X\bar{\varepsilon}_k)(\pi_k Y\bar{\varepsilon}_k) \in P$. Since P is completely prime, we have $\pi_k X\bar{\varepsilon}_k \in P$ or $\pi_k Y\bar{\varepsilon}_k \in P$. By Proposition 1.5(1) again, we have $X \in P^{(k)}$ or $Y \in P^{(k)}$.

The following technical lemma will be useful in the sequel.

Lemma 2.4. Let \mathscr{L} be an ideal of $\mathscr{M}_n(B,R)$ and $k \in \mathfrak{B}$. Then $X \in (\mathscr{L}_{(k)})^{(k)}$ if and only if $f_{kk}^x \in \mathscr{L}$ where $x = \pi_k X \bar{\varepsilon}_k$.

Proof. Proposition 1.5(1) shows that $X \in (\mathcal{L}_{(k)})^{(k)}$ if and only if $x = \pi_k X \bar{\varepsilon}_k \in \mathcal{L}_{(k)}$. However Proposition 2.6 of [7] shows that $x \in \mathcal{L}_{(k)}$ if and only if $f_{kk}^x \in \mathcal{L}$.

Proposition 2.5. Let 2 be a proper completely prime ideal of $\mathcal{M}_n(B, R)$. Then there exists $k \in \mathcal{B}$ such that $(2_{(k)})^{(k)} = 2$. Hence $\bigcap \{(2_{(k)})^{(k)} | k \in \mathcal{B}\} = 2$.

Proof. Since \mathcal{Q} is proper, there exists k such that $f_{kk}^1 \notin \mathcal{Q}$. Next we prove that $f_{kk}^1 \notin \mathcal{Q}$ implies $(\mathcal{Q}_{(k)})^{(k)} = \mathcal{Q}$. So assume $f_{kk}^1 \notin \mathcal{Q}$ for some k and assume $X \notin \mathcal{Q}$. Thus $f_{kk}^1 X f_{kk}^1 \notin \mathcal{Q}$. A routine calculation shows that $f_{kk}^1 X f_{kk}^1 = f_{kk}^x$ where $x = \pi_k X \bar{\epsilon}_k$. Hence $X \notin (\mathcal{Q}_{(k)})^{(k)}$ by the previous lemma. Recall that $\mathcal{Q} \subseteq (\mathcal{Q}_{(i)})^{(i)}$ for $1 \le i \le n$ [7, Proposition 2.13(2)]. Therefore we obtain $(\mathcal{Q}_{(k)})^{(k)} = \mathcal{Q}$. Now we want to show that such k must be an element of \mathfrak{B} . Assume for purposes of contradiction that $k \notin \mathfrak{B}$. Then there exists k such that $k \ne k$ and k and k implies k

We use $\langle X \rangle_R$ to denote the ideal of R generated by the nonempty subset X of R. If there can be no confusion, we write $\langle X \rangle$ for $\langle X \rangle_R$.

Lemma 2.6. Let 2 be a prime ideal of $\mathcal{M}_n(B,R)$ and $f_{kk}^1 \notin 2$ for some k. Then $f_{hh}^1 \in 2$ if and only if $b_{kh} = 0$ or $b_{hk} = 0$.

Proof. First we prove that $\langle f_{ij}^1 \rangle \cdot \langle f_{jj}^1 \rangle = \{0\}$ whenever $b_{ij} = 0$. Assume $b_{ij} = 0$. Note that $f_{ij}^1(R^n) \subseteq \prod(R,j)$, thus $f_{ij}^1 \in (\prod(R,j):R^n) = \{X \in \mathcal{M}_n(B,R) \mid X(R^n) \subseteq \prod(R,j)\}$. Note it was shown [7, Lemma 2.10] that the set $(\prod(R,j):R^n)$ is an ideal of $\mathcal{M}_n(B,R)$. We then obtain $\langle f_{ij}^1 \rangle \subseteq (\prod(R,j):R^n)$. Since $b_{ij} = 0$, we have $f_{ii}^1(\prod(R,j)) = \{0\}$. This implies $f_{ii}^1 \langle f_{jj}^1 \rangle = \{0\}$ and hence $\langle f_{ii}^1 \rangle \cdot \langle f_{jj}^1 \rangle = \{0\}$. Now we are ready to prove our claim that $f_{hh} \in \mathcal{D}$ if and only if $b_{hh} = 0$ or $b_{hk} = 0$. Since $f_{hk}^1 \notin \mathcal{D}$, we have $\langle f_{kk}^1 \rangle \not\subseteq \mathcal{D}$. If $b_{kh} = 0$ or $b_{hk} = 0$, then either $\langle f_{kk}^1 \rangle \cdot \langle f_{hh}^1 \rangle = \{0\}$ or $\langle f_{hh}^1 \rangle \cdot \langle f_{kk}^1 \rangle = \{0\}$. In either case we have $f_{hh}^1 \in \mathcal{D}$. If $f_{hh}^1 \in \mathcal{D}$ and if we assume that $b_{hh} = b_{hk} = 1$, then $f_{kk}^1 = f_{kh}^1 f_{hh}^1 f_{hk}^1 \in \mathcal{D}$. This is not possible. So if $f_{hh}^1 \in \mathcal{D}$, then $b_{kh} = 0$ or $b_{hk} = 0$.

Proposition 2.7. Let 2 be a prime ideal of $\mathcal{M}_n(B, R)$ and $k \in \mathfrak{B}$. If $f_{kk}^1 \notin \mathcal{Q}$, then $(\mathcal{Q}_{(k)})^{(k)} = 2$ and $\mathcal{Q}_{(k)}$ is a prime ideal of R.

Proof. Assume $f_{kk}^1 \notin \mathcal{Q}$. Let $X \in (\mathcal{Q}_{(k)})^{(k)}$ and $\bar{r} \in \prod (R, k)$. First we want to show $f_{kk}^1 X \bar{r} = f_{kk}^x \bar{r}$ where $x = \pi_k X \bar{\varepsilon}_k$. Since $k \in \mathfrak{B}$, we have $\bar{r} \sim_k (\bar{\varepsilon}_k \cdot r_k)$. Furthermore $X \bar{r} \sim_k (X \bar{\varepsilon}_k) \cdot r_k$. This implies $\pi_k X \bar{r} = (\pi_k X \bar{\varepsilon}_k) \cdot r_k$ and hence $f_{kk}^1 X \bar{r} = (f_{kk}^1 X \bar{\varepsilon}_k) \cdot r_k = f_{kk}^x \bar{r}$ where $x = \pi_k X \bar{\varepsilon}_k$. From the fact that $\langle f_{kk}^1 \rangle \langle R^n \rangle \subseteq \prod (R, k)$, we obtain $f_{kk}^1 X \langle f_{kk}^1 \rangle = f_{kk}^x \langle f_{kk}^1 \rangle$. The right-hand term is in \mathcal{Q} , since $f_{kk}^x \in \mathcal{Q}$ (see Lemma 2.4). Thus we have $f_{kk}^1(\mathcal{Q}_{(k)})^{(k)} \langle f_{kk}^1 \rangle$ and then $\langle f_{kk}^1 \rangle \langle \mathcal{Q}_{(k)} \rangle^{(k)} \langle f_{kk}^1 \rangle$ are subsets of \mathcal{Q} . This forces $(\mathcal{Q}_{(k)})^{(k)} \subseteq \mathcal{Q}$. Hence $(\mathcal{Q}_{(k)})^{(k)} = \mathcal{Q}$. Now let L and L be ideals of L such that $L \subseteq \mathcal{Q}_{(k)}$. Proposition 1.5 gives that $L \subseteq \mathcal{Q}_{(k)} \subseteq (L \cap L)^{(k)} \subseteq (L \cap L)^{(k)} \subseteq (L \cap L)^{(k)} \subseteq \mathcal{Q}$. Therefore $L \subseteq \mathcal{Q}_{(k)} \subseteq \mathcal{Q}$. Eventually $L \subseteq \mathcal{Q}_{(k)}$ or $L \subseteq \mathcal{Q}_{(k)}$, and $L \subseteq \mathcal{Q}_{(k)}$ is prime.

Let $P_{\nu}(R)$ (resp. $Spec_{\nu}(R)$) be the intersection (resp. the set) of all proper prime or completely prime ideals of R according to $\nu = 0$ or 2.

Theorems 2.2 and 2.3 and Proposition 2.5 give a complete description of all completely prime ideals of $\mathcal{M}_n(B,R)$. Moreover Theorem 2.1 and Proposition 2.7 describe prime ideals of all those structural matrix near-rings $\mathcal{M}_n(B,R)$ such that $\mathfrak{B} = \{1, \ldots, n\}$. Note if B is an upper or a lower triangular matrix, then the corresponding set \mathfrak{B} is equal to $\{1, \ldots, n\}$.

Theorem 2.8. (1) If $\mathfrak{B} = \{1, ..., n\}$, then:

$$\mathbf{Spec}_0(\mathcal{M}_n(B,R)) = \{ P^{(i)} \mid P \in \mathbf{Spec}_0(R), 1 \le i \le n \}.$$

(2)
$$\operatorname{Spec}_2(\mathcal{M}_n(B,R)) = \{P^{(i)} \mid P \in \operatorname{Spec}_2(R), i \in \mathfrak{B}\}.$$

Note that if \mathfrak{B} is empty, then $\operatorname{Spec}_2(\mathcal{M}_n(B,R))$ is empty. For example, we have $\operatorname{Spec}_2(\mathcal{M}_n(B,R)) = \operatorname{Spec}_2(\mathcal{M}_n(B,R)) = \emptyset$ whenever each entry b_{ij} of B is equal to 1.

Denote by γ the size of the set \mathfrak{B} . We can now describe the size of the sets $\mathbf{Spec}_0(\mathcal{M}_n(B,R))$ and $\mathbf{Spec}_2(\mathcal{M}_n(B,R))$. We write |X| the cardinal of any set X. Then we have:

Theorem 2.9. (1) If $\mathfrak{B} = \{1, ..., n\}$, then:

$$\left|\operatorname{Spec}_{0}(\mathcal{M}_{n}(B,R))\right| = n \cdot \left|\operatorname{Spec}_{0}(R)\right|.$$

(2)
$$\left|\operatorname{Spec}_{2}(\mathcal{M}_{n}(B,R))\right| = \gamma \cdot \left|\operatorname{Spec}_{2}(R)\right|$$
.

Proof. Observe that if h and k are in \mathfrak{B} and if $h \neq k$, then it is impossible to have $b_{hk} = b_{kh} = 1$. Now the result follows immediately from Theorem 2.8.

Theorem 2.10. (1) If $\mathfrak{B} = \{1, ..., n\}$, then:

$$\mathbf{P}_0(\mathcal{M}_n(B,R)) = \bigcap \left\{ (\mathbf{P}_0(R))^{(i)} \mid 1 \leq i \leq n \right\}.$$

(2)
$$\mathbf{P}_2(\mathcal{M}_n(B,R)) = \bigcap \{ (\mathbf{P}_2(R))^{(i)} \mid i \in \mathfrak{B} \}.$$

Remark. In part (2), if \mathfrak{B} is empty, then $P_2(\mathcal{M}_n(B,R)) = \mathcal{M}_n(B,R)$.

Example 2.11. (1) Suppose B is one of the following:

Then \mathfrak{B} is empty. Hence $P_2(\mathcal{M}_4(B,R)) = \mathcal{M}_4(B,R)$. The structural matrix near-ring with respect to the last Boolean matrix is, in fact, the matrix near-ring $\mathcal{M}_4(R)$. Note that the second Boolean matrix is not even symmetric.

(2) Suppose B is one of the following:

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Then $\mathfrak{B} = \{1, 2, 3\}$. Hence $\mathbf{P}_0(\mathcal{M}_3(B, R)) = \bigcap \{(\mathbf{P}_0(R))^{(i)} \mid 1 \le i \le 3\}$ and $\mathbf{P}_2(\mathcal{M}_3(B, R)) = \bigcap \{(\mathbf{P}_2(R))^{(i)} \mid 1 \le i \le 3\}$. Furthermore we have $|\mathbf{Spec}_0(\mathcal{M}_3(B, R))| = 3 \cdot |\mathbf{Spec}_0(R)|$ and $|\mathbf{Spec}_2(\mathcal{M}_3(B, R))| = 3 \cdot |\mathbf{Spec}_2(R)|$.

(3) Suppose

$$B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

Then $\mathfrak{B} = \{2\}$. We have $\mathbf{P}_2(\mathcal{M}_3(B, R)) = (\mathbf{P}_2(R))^{(2)}$ and $|\mathbf{Spec}_2(\mathcal{M}_3(B, R))| = |\mathbf{Spec}_2(R)|$.

(4) Suppose

$$B = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}.$$

Then $\mathfrak{B} = \{3,4\}$ and $\mathbf{P}_2(\mathcal{M}_4(B,R)) = (\mathbf{P}_2(R))^{(3)} \cap (\mathbf{P}_2(R))^{(4)}$ and $|\mathbf{Spec}_2(\mathcal{M}_4(B,R))| = 2 \cdot |\mathbf{Spec}_2(R)|$.

A (zero-symmetric) near-ring R is called 2-primal if the prime radical, $P_0(R)$, is equal to the set of all nilpotent elements. We say an ideal I of R is 2-primal if R/I is a 2-primal near-ring. It was shown in [2] that R is 2-primal if and only if $P_0(R) = P_2(R)$. Furthermore, the authors there investigated the following conditions:

- (1) every prime ideal of R is a completely prime ideal;
- (2) every ideal of R is a 2-primal ideal.

They showed that these two conditions are equivalent. Denote by \mathfrak{R}_0^2 the class of all (zero-symmetric) near-rings which satisfy these two conditions. It was shown in [3] that if R is a ring (not necessarily with identity), then R is a 2-primal ring (resp. is in \mathfrak{R}_0^2) if and only if the ring of all $n \times n$ upper triangular matrices over R is a 2-primal ring (resp. is in \mathfrak{R}_0^2). We extend this result to structural matrix near-rings.

Theorem 2.12. Let B be a Boolean matrix such that $\mathfrak{B} = \{1, ..., n\}$. Then R is a 2-primal near-ring (resp. is in \mathfrak{R}_0^2) if and only if $\mathcal{M}_n(B, R)$ is a 2-primal near-ring (resp. is in \mathfrak{R}_0^2).

Proof. Use Theorem 2.10 to obtain $P_0(\mathcal{M}_n(B,R)) = \bigcap \{(P_0(R))^{(i)} \mid 1 \le i \le n\}$ and $P_2(\mathcal{M}_n(B,R)) = \bigcap \{(P_2(R))^{(i)} \mid 1 \le i \le n\}$. Assume R is 2-primal. Therefore $P_0(R) = P_2(R)$. Obviously we then have $P_0(\mathcal{M}_n(B,R)) = P_2(\mathcal{M}_n(B,R))$ and hence $\mathcal{M}_n(B,R)$ is 2-primal. Conversely, we assume $\mathcal{M}_n(B,R)$ is 2-primal. So $P_0(\mathcal{M}_n(B,R)) = P_2(\mathcal{M}_n(B,R))$. (Recall: R can be identified with a subnear-ring of $\mathcal{M}_n(B,R)$. See 3.4 Corollary of [9].) Proposition 3.4 of [2] yields that $P_0(R) = R \bigcap P_0(\mathcal{M}_n(B,R)) = R \bigcap P_2(\mathcal{M}_n(B,R)) = P_2(R)$. So R is 2-primal. Similarly, we can show R is in \Re_0^2 if and only if $\mathcal{M}_n(B,R)$ is in \Re_0^2 .

3. Nil, nilpotent, and locally nilpotent ideals

In this section we discuss nil, nilpotent, and locally nilpotent ideals of structural matrix near-rings. Nil and Levitzki nil radicals are studied. A subset X of a near-ring is locally nilpotent if every finite subset of X is nilpotent. In a near-ring R, the nil radical (resp. Levitzki nil radical) is the sum of all nil ideals (resp. locally nilpotent ideals).

In [10], van der Walt gave a description of nilpotent ideals in any matrix near-ring, that is:

the ideal I of R is nilpotent if and only if I^+ is nilpotent in $\mathcal{M}_n(R)$.

Note I^+ is the ideal of $\mathcal{M}_n(R)$ generated by the set $\{f_{ij}^a | a \in I, 1 \le i, j \le n\}$. We begin our investigation of nilpotence with the following result.

Proposition 3.1. Let \mathcal{K} be a nil (resp. nilpotent, locally nilpotent) 2-sided invariant subset of $\mathcal{M}_n(B,R)$. Then $\mathcal{K}_{(i)}$ is a nil (resp. nilpotent, locally nilpotent) 2-sided invariant subset of R for $1 \le i \le n$.

Proof. We prove the nil case. The other two cases can be proved in a similar way. Assume \mathscr{K} is a nil 2-sided invariant subset of $\mathscr{M}_n(B,R)$. We then have $x \in \mathscr{K}_{(i)}$ if and only if $f_{ii}^x \in \mathscr{K}$ [7, Proposition 2.6]. Note $f_{ii}^{xm} = (f_{ii}^x)^m = 0$ for some $m \ge 1$ since \mathscr{K} is nil. This forces $x^m = 0$. We have the result.

Observe that in the preceding if \mathcal{K} is nilpotent of index m, then $\mathcal{K}_{(i)}$ is nilpotent of index at most m.

Lemma 3.2. Let H and L be right invariant subsets and let $k \in \mathfrak{B}$. Then $H^{(k)} + L^{(k)} = (H + L)^{(k)}$.

Proof. Suppose $A \in (H+L)^{(k)}$. Then $\pi_k A \bar{\varepsilon}_k \in H+L$. Write $\pi_k A \bar{\varepsilon}_k = x+y$ where $x \in H$ and $y \in L$. We have $\int_{kk}^{y} \in L^{(k)}$. (Recall: $y \in L$ if and only if $\int_{kk}^{y} \in L^{(k)}$ [7, Lemma 2.12(1)].) Note that $\pi_k (A - \int_{kk}^{y}) \bar{\varepsilon}_k = x \in H$. This implies $A - \int_{kk}^{y}$ is in $H^{(k)}$. (See Proposition 1.5(1).) Hence $A \in H^{(k)} + L^{(k)}$. Conversely, we suppose $A \in H^{(k)} + L^{(k)}$. Write A = X + Y where $X \in H^{(k)}$ and $Y \in L^{(k)}$. Then $\pi_k X \bar{\varepsilon}_k \in H$ and $\pi_k Y \bar{\varepsilon}_k \in L$. Moreover we have $\pi_k (X + Y) \bar{\varepsilon}_k \in H + L$. Using Proposition 1.5 again, we obtain that A is in $(H + L)^{(k)}$.

Definition 3.3. Recall $B = [b_{ij}]$ is an $n \times n$ Boolean matrix with $1 \le i, j \le n$. We will denote by Λ_m subsets of $\{1, ..., n\}$ defined inductively for any natural numbers m as follows:

$$\Lambda_1 = \{j \mid \text{if } b_{jk} = 1, \text{ then } k = j\};$$

$$\Lambda_{m+1} = \{j \mid \text{if } b_{jk} = 1 \text{ and } k \neq j, \text{ then } k \in \Lambda_m\} \setminus \bigcup_{i=1}^m \Lambda_i.$$

Observe that $\Lambda_{\alpha} \cap \Lambda_{\beta} = \emptyset$ if $\alpha \neq \beta$. The sets Λ_m may be empty for some m. For instance, if B is the Boolean matrix as described in Example 2.11(4), then $\Lambda_1 = \{3\}$ but $\Lambda_2, \Lambda_3, \ldots$ are empty. However if the Boolean matrix B satisfies the condition that $\mathfrak{B} = \{1, \ldots, n\}$, then the set $\{1, \ldots, n\}$ is equal to a finite, disjoint union of nonempty sets $\Lambda_1, \ldots, \Lambda_{\lambda}$. (See Proposition 3.4 below.)

Proposition 3.4. Let B be an $n \times n$ Boolean matrix such that $\mathfrak{B} = \{1, ..., n\}$. Then there is a natural number λ less than or equal to n such that $\{1, ..., n\}$ is the disjoint union of nonempty sets $\Lambda_1, ..., \Lambda_{\lambda}$.

Proof. We first show Λ_1 is nonempty. Assume for purpose of contradiction that Λ_1 is empty. For convenience sake we let j_1, j_2, \ldots be elements of the set $\{1, \ldots, n\}$. Since $\mathfrak{B} = \{1, \ldots, n\}$ and $\Lambda_1 = \emptyset$, for any j_1 there exists j_2 such that $j_1 \neq j_2$ and $b_{j_1j_2} = 1$. Similarly there exists j_3 such that $j_2 \neq j_3$ and $b_{j_2j_3} = 1$. Moreover we have $j_1 \neq j_3$. (Note: if $j_1 = j_3$, then $b_{j_2j_1} = b_{j_2j_3} = 1$. This implies both $b_{j_1j_2}$ and $b_{j_2j_1}$ are equal to 1; a contradiction to the assumption of \mathfrak{B} .) Continue this process to obtain a collection of natural numbers j_1, j_2, \ldots of $\{1, \ldots, n\}$ such that: (1) $j_h \neq j_k$ whenever $h \neq k$ and; (2) $b_{j_hj_k} = 1$ whenever h < k. Since the set $\{1, \ldots, n\}$ is finite, there are j_h, j_k such that $h \neq k$ but $j_h = j_k$. This is not possible. Thus $\Lambda_1 \neq \emptyset$. Now if $\Lambda_1 = \{1, \ldots, n\}$, then $\lambda = 1$ and hence we are done. Assume $\Lambda_1 \neq \{1, \ldots, n\}$. We can show $\Lambda_2 \neq \emptyset$ similarly. Inductively, if we have nonempty sets $\Lambda_i, i = 1, \ldots, m$, such that $\Lambda_1 \bigcup \Lambda_2 \bigcup \ldots \bigcup \Lambda_m \neq \{1, \ldots, n\}$, then $\Lambda_{m+1} \neq \emptyset$. This process must terminate in finitely many steps. Hence the result follows.

Hereafter we stipulate that the Boolean matrix B satisfies the condition that $\mathfrak{B} = \{1, \ldots, n\}$, except where noted. Denote by λ the number of nonempty, disjoint sets $\Lambda_1, \ldots, \Lambda_{\lambda}$ such that $\{1, \ldots, n\} = \bigcup_{i=1}^{\lambda} \Lambda_i$. From the preceding, λ is uniquely determined by B.

Lemma 3.5. Let A_1, \ldots, A_{λ} be a collection of λ nonzero structural matrices of $\mathcal{M}_n(B, R)$. Assume that $\pi_k A_i \bar{e}_k = 0$ whenever $1 \le i \le \lambda$ and $k \in \Lambda_i$. Then $A_{\lambda} \ldots A_1 = 0$.

Proof. Let $\bar{r} = (r_1, \dots, r_n) \in \mathbb{R}^n$. We shall prove a more general result that if $t = i, \dots, \lambda$ and if $k \in \Lambda_i$, then $\pi_k A_t \dots A_1 \bar{r} = 0$. We use induction on $i = 1, \dots, \lambda$. Assume i = 1. Suppose $k \in \Lambda_1$ and $1 \le t \le \lambda$. From the definition of Λ_1 and that of \sim_k , we have $\bar{r} \sim_k \bar{\epsilon}_k \cdot r_k$. Invoke Proposition 2.2 of [11] to obtain $A_t \dots A_1 \bar{r} \sim_k A_t \dots A_1 (\bar{\epsilon}_k \cdot r_k)$. Since $\pi_k A_1 \bar{\epsilon}_k = 0$, we have $\pi_k A_t \dots A_1 \bar{r} = (\pi_k A_t \dots A_1 \bar{\epsilon}_k) r_k = (\pi_k A_1 \bar{\epsilon}_k) \dots (\pi_k A_1 \bar{\epsilon}_k) r_k = 0$. (See Lemma 2.1 of [4] and Lemma 1.4(3).) So the result is true when i = 1. Now assume it is true for some $i < \lambda$. Suppose $k \in \Lambda_{i+1}$ and $i+1 \le t \le \lambda$. If $j \ne k$ and $b_{kj} = 1$, then $j \in \Lambda_i$ (see Definition 3.3). By the induction hypothesis, we have $\pi_j A_i \dots A_1 \bar{r} = 0$. Therefore $A_i \dots A_1 \bar{r} \sim_k \bar{\epsilon}_k \cdot (\pi_k A_i \dots A_1 \bar{r})$. Multiply $A_t \dots A_{i+1}$ to both sides of the relation from the left to obtain $A_t \dots A_1 \bar{r} \sim_k A_t \dots A_{i+1} (\bar{\epsilon}_k \cdot (\pi_k A_i \dots A_1 \bar{r}))$. Since $\pi_k A_{i+1} \bar{\epsilon}_k = 0$ by assumption, therefore:

$$\pi_k A_t \dots A_1 \bar{r} = (\pi_k A_t \dots A_{i+1} \bar{\varepsilon}_k) \cdot (\pi_k A_i \dots A_1 \bar{r})$$

$$= (\pi_k A_t \bar{\varepsilon}_k) \dots (\pi_k A_{i+1} \bar{\varepsilon}_k) \cdot (\pi_k A_i \dots A_1 \bar{r}) = 0.$$

Thus, by induction, we have that if $k \in \Lambda_i$ and $i \le t \le \lambda$, then $\pi_k A_t \dots A_1 \bar{r} = 0$ for any $\bar{r} \in R^n$. Consequently if we take $t = \lambda$, then our claim that $A_{\lambda} \dots A_1 = 0$ follows immediately. (Note that $\{1, \dots, n\} = \bigcup_{i=1}^{\lambda} \Lambda_i$ by Proposition 3.4.)

Lemma 3.6. Let \mathcal{H} be a nonempty subset of $\mathcal{M}_n(B,R)$ and let X_k be the set $\{\pi_k H \bar{\epsilon}_k \mid H \in \mathcal{H}\}$ for $k=1,\ldots,n$. If there is a natural number m such that $(X_k)^m=0$ for each $k=1,\ldots,n$, then $\mathcal{H}^{m\lambda}=0$.

Proof. Assume there is a natural number m such that $(X_k)^m = 0$ for all k = 1, ..., n. Let $H_1, ..., H_{m\lambda}$ be elements of \mathcal{H} . Note that we use Lemma 1.4(3) to obtain $\pi_k H_m ... H_1 \bar{\varepsilon}_k = (\pi_k H_m \bar{\varepsilon}_k) ... (\pi_k H_1 \bar{\varepsilon}_k)$ and hence $\pi_k H_m ... H_1 \bar{\varepsilon}_k = 0$ for each k = 1, ..., n. Similarly, we have:

$$\pi_k H_{2m} \dots H_{m+1} \bar{\varepsilon}_k = \dots = \pi_k H_{m\lambda} \dots H_{m(\lambda-1)+1} \bar{\varepsilon}_k = 0.$$

Take $A_1 = H_m \dots H_1$, $A_2 = H_{2m} \dots H_{m+1}$, ..., and $A_{\lambda} = H_{m\lambda} \dots H_{m(\lambda-1)+1}$ in the preceding lemma to obtain $H_{m\lambda} \dots H_1 = A_{\lambda} \dots A_1 = 0$.

Corollary 3.7. $\mathcal{M}_n(B,R)$ is nil (resp. nilpotent, locally nilpotent) if and only if R is nil (resp. nilpotent, locally nilpotent).

Proof. Suppose $\mathcal{M}_n(B, R)$ is nilpotent. Since R is isomorphic to a subnear-ring of $\mathcal{M}_n(B, R)$, therefore R is nilpotent. Conversely if R is nilpotent, then Lemma 3.6 shows that $\mathcal{M}_n(B, R)$ is nilpotent. The other two cases can be proved in a similar way.

Similar to the preceding, one can obtain the following:

Proposition 3.8. Let I_1, \ldots, I_n be nonempty nil (resp. nilpotent, locally nilpotent) subsets of R. Then $\bigcap_{i=1}^n I_i^{(i)}$ is a nil (resp. nilpotent, locally nilpotent) subset of $\mathcal{M}_n(B, R)$.

Let N(R) be the sum of all proper nil ideals of R and let L(R) be the sum of all locally nilpotent ideals of R. Note that N and L are radical maps and are called nil radical and Levitzki radical, respectively. (See [1] and [6].)

Theorem 3.9. (1)
$$N(\mathcal{M}_n(B,R)) = \bigcap_{i=1}^n (N(R))^{(i)}$$
.

(2)
$$L(\mathcal{M}_n(B,R)) = \bigcap_{i=1}^n (L(R))^{(i)}$$
.

Proof. Suppose N(R) = R. Then $(N(R))^{(i)} = \mathcal{M}_n(B, R)$ for $1 \le i \le n$. Corollary 3.7 gives that $N(\mathcal{M}_n(B,R)) = \mathcal{M}_n(B,R)$. Thus we are done. Suppose $N(R) \ne R$. Then $N(\mathcal{M}_n(B,R)) \ne \mathcal{M}_n(B,R)$. The preceding yields $\bigcap_{i=1}^n (N(R))^{(i)} \subseteq N(\mathcal{M}_n(B,R))$. Furthermore Proposition 3.1 shows that $(N(\mathcal{M}_n(B,R)))_{(i)} \subseteq N(R)$ for each $i=1,\ldots,n$. A moment's thought, we have $((N(\mathcal{M}_n(B,R)))_{(i)})^{(i)} \subseteq (N(R))^{(i)}$ for $i=1,\ldots,n$. However $N(\mathcal{M}_n(B,R)) \subseteq ((N(\mathcal{M}_n(B,R)))_{(i)})^{(i)}$ for $i=1,\ldots,n$. (Recall: $\mathcal{L} \subseteq (\mathcal{L}_{(i)})^{(i)}$ for any left invariant subset \mathcal{L} of $\mathcal{M}_n(B,R)$ [7, Proposition 2.13(2)].) Thus:

$$\mathbf{N}(\mathcal{M}_n(B,R)) \subseteq \bigcap_{i=1}^n ((\mathbf{N}(\mathcal{M}_n(B,R)))_{(i)})^{(i)} \subseteq \bigcap_{i=1}^n (\mathbf{N}(R))^{(i)}.$$

We have the result. The proof for the Levitzki radical case is similar.

REFERENCES

- 1. M. C. Bhandari and P. K. Sexana, A note on Levitski radical of near-ring, Kyungpook Math. J. 20 (1980), 183-188.
- 2. G. Birkenmeier, H. Heatherly and E. Lee, Prime ideals and prime radicals in near-rings, Monatsh. Math. 117 (1994), 179-197.
- 3. G. BIRKENMEIER, H. HEATHERLY and E. LEE, Completely prime ideals and associated radicals, in *Ring Theory* (Proceedings of the Ohio State-Denison Conference, 1992, S. K. Jain and S. T. Rizvi, eds., World Scientific, Singapore, 1993).
- 4. G. L. Booth and N. J. Groenewald, On primeness in matrix near-rings, Arch. Math. 56 (1991), 539-546.
 - 5. N. J. Groenewald, Different prime ideals in near-rings, Comm. Algebra 19 (1991), 2667-2675.
- 6. N. J. Groenewald and P. C. Potgieter, A note on the Levitzki radical of a near-ring, J. Austral. Math. Soc. Ser. A 36 (1984), 416–420.

- 7. E. Lee, Prime ideals in structural matrix near-rings, Tamkang J. Math. 26 (1995), 31-40.
- 8. J. D. P. Meldrum, Matrix near-rings, in Contributions to General Algebra 8 (Proceedings of the Conference on Near-Rings and Near-Fields, July 14-20, 1991, G. Pilz, ed.), Verlag Hölder-Pichler-Tempsky), 189-204.
- 9. J. D. P. Meldrum and A. P. J. van der Walt, Matrix near-rings, Arch. Math. 47 (1986), 312-319.
- 10. A. P. J. VAN DER WALT, On two-sided ideals in matrix near-rings, in Near-Rings and Near Fields (G. Betsch, ed., 1987), 267-271.
- 11. A. P. J. VAN DER WALT and L. VAN WYK, The J_2 -radical in structural matrix near-rings, J. Algebra 123 (1989), 248–261.

MATHEMATICS DEPARTMENT
UNIVERSITY OF SOUTHWESTERN LOUISIANA
LAFAYETTE, LA 70504
U.S.A.

Current address: USL Box 41753 LAFAYETTE, LA 70504, U.S.A.