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ON PRIMENESS AND NILPOTENCE IN STRUCTURAL
MATRIX NEAR-RINGS

by ENOCH K. S. LEE
(Received 29th July 1994)

The structure of completely prime ideals in any structural matrix near-rings is determined. Partial descriptions
are obtained for prime, nil, nilpotent, and locally nilpotent ideals of structural matrix near-rings. Their
associated radicals are also studied in this paper.

1991 Mathematics subject classification: 16Y30.

The concept of matrix near-rings was introduced by Meldrum and van der Walt [9].
Many interesting results have been obtained along this line since then. The investigation
of “structural” matrix near-rings was initiated by van der Walt and van Wyk. A
structural matrix near-ring “.,(B,R)” is considered as a subnear-ring of the matrix
near-ring “.#,(R)” and is determined by virtue of the shape of the Boolean matrix “B”.
Booth and Groenewald [4], Groenewald [5] have studied certain concepts of primeness
in matrix near-rings. Lee [7] studied prime ideals and their associated radicals in
structural matrix near-rings and completely determined 1-prime and equiprime ideals of
A ,(B, R). Partial results related to prime and completely prime ideals were obtained
there. (Note different notation for 1-prime ideals was used by Groenewald [5).) We
continue to investigate various concepts of primeness in this paper. The structure of
completely prime ideals of structural matrix near-rings is described completely. More-
over, we study prime, nil, nilpotent, and locally nilpotent ideals and their associated
radicals in some class of structural matrix near-rings. (For more on matrix near-rings
see [8], where a substantial bibliography on the subject can be found.)

1. Preliminaries and notation

Throughout this paper, the word “near-ring” means a right zero-symmetric near-ring
with an identity element 1. Near-rings shall be denoted by the letter R (except where
noted). By a subnear-ring of a near-ring R, we shall always mean a subnear-ring
containing the identity element 1 of R. By an ideal in R, we shall always mean a 2-sided
ideal in R. Let R" denote the direct sum of n copies of (R, +) where n is a fixed natural
number. Elements of R” are written as 4, 7, and so on. If aeR and d=(u,,...,u,)eR",
then i-a is defined to be (u,aq,...,u,a). Denote the n-tuple with 1 in the i-th component
and O elsewhere by £. A nonempty subset X of R is called left or right invariant
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according to whether RX< X or XRc X. A nonempty subset of R is said to be 2-sided
invariant if it is both left and right invariant.
The n x n elementary matrices are defined as functions from R" to itself as:

f:j= lif'nj

for 1<i, j<n,reR where f": R—R is left multiplication by r and i; and =n; are the i-th
coordinate injection and the j-th coordinate projection, respectively. The subnear-ring of
M(R") generated by:

{fi|reR1<i, j<n}

is called an nxn matrix near-ring over R, denoted by .#,(R), and each element of
A ,(R) is called a matrix.

Let B be a Boolean matrix of size n where b;;=0 or 1 is the element in the i-th row
and j-th column, for 1<, j<n. We assume that B satisfies the following two conditions:

(1) b;=1for 1 Zi<n; and
(2) bik=1 Whenever b|1=blk= 1. .
We write

u ~;vif and only if nu=mn;o for all j such that b;;=1.
Observe that if b;;=0, then &; ~;0 where 0=(0,...,0). Let .#,(B, R) denote the set:
{XeM(R)|(V1Zi<nVi,5e R (il ~; 7= n,Xid=n,X0)}.

In [11], van der Walt and van Wyk proved that .#,(B, R) is a subnear-ring of .#,(R).
We call .#,(B, R) the n x n structural matrix near-ring over R with respect to B.

Definition 1.1. Let £ <.#,(B,R),LSR,1<j<n. Then

() [TR, p={(u,,...,u,) e R"|u; =0 if b;=0};

(2) Z,={xeR|AXeL)Fue[](R, )x=n;X0)};

(3) I_[(]a L)={(“19“-’un)ER"|uk€L if bjk= 1};

(@) L9={Xe#,(B,R)| X(IR, N<LI(,L)}.

Basic properties concerning the above four sets were developed in [7]). The author
there showed that LY =(R"(j, L): R"(j, R)) where the right-hand term was studied in [11]

by van der Walt and van Wyk.
The next definition is necessary to our investigation on primeness and nilpotence.

Definition 1.2. Let B denote the set of natural numbers:
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{ke{l,...,n} | if 1 éhén and h¢k, then bkh=0 or bhk=0}
where n is the size of the Boolean matrix B=[b;].

Remark. If B is an upper or a lower triangular matrix, then 8 ={1,...,n}. However
B =0 if each entry b;; of B is 1.

Example 1.3. Suppose R is a ring with identity and

1 1 10
1 11 0}. .
B= is of size 4.
0 010
1 1 11

Observe that we can identify .#,(B, R) with

R R R O
R R RO
0 0 RO
R R R R

A routine calculation shows that each completely prime ideal of .#,(B,R) must be
either

P = or P4 =

nN e ™™
N O o
- Iia -I- - - -
o o o
x © xn X
O X
N A ™
wv o o o

where P is a proper completely prime ideal of R. (See Definition 1.1(4) for the meaning
of P or P®) Note that the corresponding set B is equal to {3,4}.

The next lemma is the starting point to our approach:

Lemma 14. Let ke B. Then we have:

(1) my(J](R, k))=0 whenever h#k and by,=1;

(2) 7~y (& r,) whenever F=(r,,...,r,)e[](R,k);

(3) X Yé,=(n X & )(n, Yé,) whenever X and Y e # (B, R).

Proof. From the assumption that ke B if b,,=1 and h#k, then we have b,, =0. This
implies m,([ [(R, k)) =0. Part (1) follows. Let 7=(ry,...,r,)€[[(R,k). To show 7 ~,(&r),
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it suffices to show n,7F=m,(g,-r;) for all h such that b,,=1. Assume b,,=1. If h#k, then
b, =0. By Definition 1.1(1), we have =, /=0 and =,(g,-r,)=0. If h=k, then n,r=r, and
7,(&, - i) =ri. Thus part (2) follows. In the following, we assume X and Y are matrices of
M ,(B,R). (Recall: Y][(R,k)<[[(R,k) [7, Proposition 2.8].) Since & e[](R,k), we have
Yéker[(R, k). Take r=Y¢, and r,=n,Y% in part (2). Then we have Y&, ~, (& (7, YE)).
Use Proposition 2.2 of [11] to show that XY¢, ~, X(§,(n,YE,)) and hence n, X YE, =
X (& (n, Yg,)). Finally, apply Lemma 2.1 [4] to obtain n, X Y& =(n, X &)(n, YE,). Part
(3) is immediate.

Proposition 1.5. Assume ke B.
(1) Let L be a right invariant subset of R. Then we have:
X e L™ if and only if m, Xg, L.
(2) Let L and H be right invariant subsets of R. Then LY H® =(LH)®,

Proof. (1) Suppose X € L®. We then have n,X&.e L. Conversely, suppose m, X&.€ L.
To show X e L™, it suffices to show m,XFe L for all Fe][(R,k) and for all h such that
by, =1. Therefore we assume by, =1. Part (2) of Lemma 1.4 gives 7 ~ (& r,). Invoke
Proposition 2.2 of [11] to obtain X7 ~, X(é,-r,). We then have n,Xr=n,X(& r)=
(n, X&)r,. If h#k, then n,(X £)=0 by Lemma 1.4(1) (note that Xéker[(R, k)) and hence
n,Xr=0eL. If h=k, then n,Xf=(nXé&)r,eL-r, and so n,XFeL. Consequently,
Xel®,

(2) Let C and D be clements of L® and H®, respectively. Part (1) yields that
7, Cé e L and n,Dé, e H. The previous lemma gives n,CD¢, =(n,Cég)(n, D¢,)e LH. Using
part (1), we then have CDe(LH)".

2. Prime ideals and radicals

Recall that a proper ideal P of R is (1) a prime ideal if for any ideals A and B of R
such that ABS P implies A< P or BS P; (2) a completely prime ideal if for any elements
a and b of R such that abe P implies ae P or be P.

We list the following useful results which are Theorems 3.1 and 3.2 of [7],
respectively.

Theorem 2.1. Let P be a prime ideal of R. Then PY is a prime ideal of .#,B,R)
Jor 1<iZn.

Theorem 2.2. Let 2 be a completely prime ideal of #,(B,R). Then 2, is a completely
prime ideal of R for 1 Zi<n.

These two results provide partial descriptions of prime and completely prime ideals of
any structural matrix near-rings. We shall determine all completely prime ideals of any
structural matrix near-rings in this section. Furthermore, a better description is obtained
for the prime case.
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Theorem 2.3. Let P be a completely prime ideal of R and ke®B. Then P® is a
completely prime ideal of # (B, R).

Proof. Let X and Y be elements of .#,(B, R) such that XYe P%. Apply Proposition
1.5(1) to obtain 7, X Y&, € P and then use Lemma 1.4(3) to yield (m; X&,)(r, Yé,) € P. Since
P is completely prime, we have n, X¢,€ P or n,Yé, e P. By Proposition 1.5(1) again, we
have X e P® or Ye PW,

The following technical lemma will be useful in the sequel.

Lemma 24. Let & be an ideal of M ,(B,R) and ke B. Then X €(% )" if and only if
[ €¥ where x=m, X&,.

Proof. Proposition 1.5(1) shows that Xe(%,)* if and only if x=mXg €%y,
However Proposition 2.6 of [7] shows that xe %, if and only if f§, e %.

Proposition 2.5. Let 2 be a proper completely prime ideal of .#,(B,R). Then there
exists k€ B such that (24,))® =2. Hence (\{(24,)* | keB}=2.

Proof. Since 2 is proper, there exists k such that f}, ¢ 2. Next we prove that [} ¢ 2
implies (2,,))¥ = 2. So assume f, ¢ 2 for some k and assume X ¢ 2. Thus fL, X[ ¢2 A
routine calculation shows that f5 X[ =f%, where x=m,Xg,. Hence X ¢(2,)* by the
previous lemma. Recall that 2<(2,)"” for 1<i<n [7, Proposition 2.13(2)]. Therefore
we obtain (2,,)®’=2. Now we want to show that such k must be an element of B.
Assume for purposes of contradiction that k¢ 8. Then there exists h such that h+#k and
bu=by,=1. Since fLfLfi=fL¢9, we have fl,¢2 However fL fi,=0€2 implies
fied or fl,e2 This is a contradiction! We then have keB. The last part is now an
immediate consequence.

We use (XD to denote the ideal of R generated by the nonempty subset X of R. If
there can be no confusion, we write (X for (X )z.

Lemma 2.6. Let 2 be a prime ideal of # (B,R) and fi,¢2 for some k. Then f},e2 if
and Only ifbkh=0 or bhk=0‘

Proof. First we prove that (f}>-(f};>={0} whenever b;;=0. Assume b;;=0. Note
that fL(R"<[](R, j), thus fLe([[(R,j): R" = {X e #,(B,R)| X(R)<T](R, j)}. Note it
was shown [7, Lemma 2.10] that the set (H(R, j):R") is an ideal of .#,(B, R). We then
obtain {fI;><([](R, j):R"). Since b;=0, we have fX]](R,;)={0}. This implies
fi<{fi>={0} and hence {f}>-{f};>={0}. Now we are ready to prove our claim that
fi»€2 if and only if b,,=0 or b, =0. Since fi,¢2, we have (fL>Z2 If b,=0 or
b =0, then either (fg> <{fm>={0} or {(fi> {fu>={0}. In either case we have
fih€2 If f1,€2 and if we assume that b,,=b, =1, then f},=f1,fLfi €2 This is not
possible. So if f,€ 2, then b,,=0 or b, =0.

https://doi.org/10.1017/50013091500023063 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500023063

350 ENOCH K. S. LEE

Proposition 2.7. Let 2 be a prime ideal of #,(B,R) and keB. If fi,¢2, then
(20)% =2 and 39, is a prime ideal of R.
k) k)

Proof. Assume f4¢2. Let Xe(24,)® and Fe[](R,k). First we want to show
fuXF=f57 where x=mn,Xé. Since keB, we have 7 ~,(§ r,). Furthermore X7 ~,
(X&)-r,. This implies n XrF=(mn, X&) r, and hence fLXF=(fLX&) r=f5F where
x=m,X¢&. From the fact that (fiuMR"<[](R,k), we obtain fLX{fh>=SalS k-
The right-hand term is in 2, since fi,€2 (see Lemma 2.4). Thus we have
Sid20) < f > and then {fh>(2)®<fh> are subsets of 2. This forces (2" < 2.
Hence (2,)®=2. Now let L and H be ideals of R such that LH < 9,,. Proposition 1.5
gives that LYH® c(LH)® =(2,,)* = 4. Therefore LY <2 or H¥ < 4. Eventually L< 9,
or Hc 9,,; and 2, is prime.

Let P,(R) (resp. Spec,(R)) be the intersection (resp. the set) of all proper prime or
completely prime ideals of R according to v=0 or 2.

Theorems 2.2 and 2.3 and Proposition 2.5 give a complete description of all
completely prime ideals of .#,(B,R). Moreover Theorem 2.1 and Proposition 2.7
describe prime ideals of all those structural matrix near-rings .#,(B,R) such that
B={1,...,n}. Note if B is an upper or a lower triangular matrix, then the correspond-
ing set B is equal to {1,...,n}.

Theorem 2.8. (1) If B={l,...,n}, then:

Specy(#,(B, R))={P?| PeSpecy(R),1<i<n}.
(2) Spec,(#,(B, R))={P"| PeSpec,(R), e B}.

Note that if B is empty, then Spec,(.#,(B,R)) is empty. For example, we have
Spec,(# (B, R))=Spec,(.# (B, R)) =0 whenever each entry b;; of B is equal to 1.

Denote by y the size of the set B. We can now describe the size of the sets
Spec,(.#,(B, R)) and Spec,(.#,(B, R)). We write | X| the cardinal of any set X. Then we
have:

Theorem 2.9. (1) If B={l,...,n}, then

|Speco(-47,(B, R))| =n-|Speco(R)|.
(2) [Speey(#,(B, R))| =7:|Specy(R)|-

Proof. Observe that if h and k are in B and if h#k, then it is impossible to have
b = by, = 1. Now the result follows immediately from Theorem 2.8.

Theorem 2.10. (1) If B={1,...,n}, then:

Po(#,(B, R) =) {(Po(R)®| 1 Si<n}.
(2) Pa(,(B,R) =) {(P,(R))"|ieB}.
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Remark. In part (2), if B is empty, then P,(.#,(B, R))=.#,(B,R).

Example 2.11. (1) Suppose B is one of the following:

1 0 0 1 1 0 01 1 1 1 1

0110 1 1 11 1 11 1
s , or

0110 1 111 1 1 1 1

1 0 01 1 0 01 1 1 11

Then B is empty. Hence P,(# (B, R)) =.#4(B, R). The structural matrix near-ring with
respect to the last Boolean matrix is, in fact, the matrix near-ring .#,(R). Note that the
second Boolean matrix is not even symmetric.

(2) Suppose B is one of the following:

1 11 1 00 1 01 1 01
01 1], o111, 1 1 149, 1011
0 01 0 01 0 01 0 01

Then B={1,2,3}. Hence Po(s(B,R)=){(Po(R)®|1<i<3} and Py(Ms(B,R)=
{(Po(R)P|1<i<3}. Furthermore we have |Specy(.#5(B,R))|=3"|Specy(R)| and
Spec,(#3(B, R))| = 3Spec,(R)|.

(3) Suppose
1 0 1
B=|0 1 0
I 01
Then B ={2}. We have P,(.#;(B, R))=(P,(R))'® and |Spec,(.#,(B, R))|=|Spec,(R)|.
(4) Suppose

—_ O = =
—_ O e =
—_ o =
- o o ©

Then B={3,4} and P,(,(B,R)=(P,(R)™(Po(R)“ and [Spec,(#y(B,R))=
2*[Specy(R)|.

A (zero-symmetric) near-ring R is called 2-primal if the prime radical, Po(R), is equal
to the set of all nilpotent elements. We say an ideal I of R is 2-primal if R/l is a 2-
primal near-ring. It was shown in [2] that R is 2-primal if and only if Py(R)=P,(R).
Furthermore, the authors there investigated the following conditions:
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(1) every prime ideal of R is a completely prime ideal;
(2) every ideal of R is a 2-primal ideal.

They showed that these two conditions are equivalent. Denote by R3 the class of all
(zero-symmetric) near-rings which satisfy these two conditions. It was shown in [3] that
if R is a ring (not necessarily with identity), then R is a 2-primal ring (resp. is in R2) if
and only if the ring of all n x n upper triangular matrices over R is a 2-primal ring (resp.
is in |3). We extend this result to structural matrix near-rings.

Theorem 2.12. Let B be a Boolean matrix such that B={1,...,n}. Then R is a
2-primal near-ring (resp. is in R3) if and only if #,(B,R) is a 2-primal near-ring (resp. is
in R3).

Proof. Use Theorem 2.10 to obtain Py(#,(B,R))=){(Po(R)?|1<i<n} and
P,(#,(B,R) = {(P(R)?|1<i<n}. Assume R is 2-primal. Therefore Py(R)=P,(R).
Obviously we then have Py(#,(B, R))=P,(4#4,(B,R)) and hence #,(B,R) is 2-primal.
Conversely, we assume .#,(B, R) is 2-primal. So Py(#,(B, R)) =P,(.#,B, R)). (Recall: R
can be identified with a subnear-ring of (B, R). See 3.4 Corollary of [9].) Proposition
3.4 of [2] yields that Po(R)=R () Py(#,(B,R)=R(\P,(A,(B,R)=P,(R). So R is
2-primal. Similarly, we can show R is in R if and only if .#,(B, R) is in RJ.

3. Nil, nilpotent, and locally nilpotent ideals

In this section we discuss nil, nilpotent, and locally nilpotent ideals of structural
matrix near-rings. Nil and Levitzki nil radicals are studied. A subset X of a near-ring is
locally nilpotent if every finite subset of X is nilpotent. In a near-ring R, the nil radical
(resp. Levitzki nil radical) is the sum of all nil ideals (resp. locally nilpotent ideals).

In [10], van der Walt gave a description of nilpotent ideals in any matrix near-ring,
that is:

the ideal I of R is nilpotent if and only if I* is nilpotent in .#(R).

Note I is the ideal of #,(R) generated by the set {f:-‘jlael, 1 <i, j<n}. We begin our
investigation of nilpotence with the following result.

Proposition 3.1. Let X be a nil (resp. nilpotent, locally nilpotent) 2-sided invariant
subset of M ,(B,R). Then X is a nil (resp. nilpotent, locally nilpotent) 2-sided invariant
subset of R for 1 <i<n.

Proof. We prove the nil case. The other two cases can be proved in a similar way.
Assume ¢ is a nil 2-sided invariant subset of .#,(B,R). We then have xe X, if and
only if f5ext [7, Proposition 2.6]. Note f%"=(f7)"=0 for some m=1 since A" is nil.
This forces x™=0. We have the result.
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Observe that in the preceding if ) is nilpotent of index m, then ¢, is nilpotent of
index at most m.

Lemma 3.2. Let H and L be right invariant subsets and let ke ®B. Then H® + ¥ =
(H+L)®.

Proof. Suppose Ae(H+L)®. Then n,A§ e H+ L. Write n,A§=x+y where xe H
and yeL. We have f7,eL®. (Recall: yeL if and only if f},eL® [7, Lemma 2.12(1)])
Note that m,(4— )& =xe H. This implies 4— f}, is in H®. (See Proposition 1.51).)
Hence Ae H®+ L™, Conversely, we suppose Ae HP+L®. Write A=X+Y where
XeH® and YeL®. Then n,X&. € H and =, Y&, € L. Moreover we have m(X + Y)§ eH +
L. Using Proposition 1.5 again, we obtain that A4 is in (H + L)®.

Definition 3.3. Recall B=[b;;] is an nxn Boolean matrix with 1<i, j<n. We will

denote by A, subsets of {1,...,n} defined inductively for any natural numbers m as
follows:

A1={_]| ifb1k=1, then k=j};

Cs

A

i=1

]

Observe that A,[A;=0 if a#p. The sets A, may be empty for some m. For
instance, if B is the Boolean matrix as described in Example 2.11(4), then A, ={3} but
A, A,,... are empty. However if the Boolean matrix B satisfies the condition that
B={1,...,n}, then the set {1,...,n} is equal to a finite, disjoint union of nonempty sets
A,,..., A, (See Proposition 3.4 below.)

Proposition 3.4. Let B be an nx n Boolean matrix such that 8={1,...,n}. Then there
is a natural number 1 less than or equal to n such that {1,...,n} is the disjoint union of
nonempty sets Ay,...,A;.

Proof. We first show A, is nonempty. Assume for purpose of contradiction that A,
is empty. For convenience sake we let j,, j,,... be elements of the set {1,...,n}. Since
B={1,...,n} and A, =0, for any j, there exists j, such that j, #j, and b;;,=1.
Similarly there exists j; such that j,# j; and b;,;, =1. Moreover we have j, # j;. (Note:
if j,=j; then bj,; =b;; =1. This implies both b;; and bj,; are equal to I; a
contradiction to the assumption of B.) Continue this process to obtain a collection of
natural numbers j,,j,,... of {1,...,n} such that: (1) j,# j, whenever h#k and; (2)
b;; =1 whenever h<k. Since the set {1,..,n} is finite, there are j,, j, such that h#k but
Jjn=Ji- This is not possible. Thus A, #0. Now if A, ={1,...,n}, then =1 and hence we
are done. Assume A, #{l,...,n}. We can show A,#@ similarly. Inductively, if we have
nonempty sets A, i=1,...,m, such that A, | JA,J...lUA.#{L,...,n}, then A, #0.
This process must terminate in finitely many steps. Hence the result follows.
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Hereafter we stipulate that the Boolean matrix B satisfies the condition that
B={l,...,n}, except where noted. Denote by A the number of nonempty, disjoint sets
Ay,...,A; such that {1,...,n}={)% | A;. From the preceding, 1 is uniquely determined
by B.

Lemma 35. Let A,,...,A; be a collection of A nonzero structural matrices of
M, (B, R). Assume that n, A;£, =0 whenever 1 Si<A and ke A;. Then A;...A,=0.

Proof. Let 7=(r,...,r,)€R". We shall prove a more general result that if t=i,...,4
and if ke A;, then m,A,... A,r=0. We use induction on i=1,...,4. Assume i=1. Suppose
keA, and 1=t</. From the definition of A; and that of ~,, we have F ~, & r,.
Invoke Proposition 2.2 of [11] to obtain A4,... A7 ~, A,... A (& ry). Since m, A& =0,
we have mA,... A, F=(mA4,... A, &)r,=(mAE,) ... (A &)r,=0. (See Lemma 2.1 of [4]
and Lemma 1.4(3).) So the result is true when i=1. Now assume it is true for some i< 4.
Suppose keA;,; and i+1=Zt<A If j#k and b,;=1, then jeA,; (see Definition 3.3). By
the induction hypothesis, we have m;A4;...4,7=0. Therefore A;...A;7~
w&(meA;... A F). Multiply A,...A,,, to both sides of the relation from the left to
obtain A,...A;F~,A,... A; (& (mA;...A 7). Since mA;,,&=0 by assumption,
therefore:

nkAl"' Alf=(nkA‘--- Ai+l§k) '(nkA,-. AIF)
=(mA8y) ... (meAiv18) (meA;... A7) =0.

Thus, by induction, we have that if ke A, and i<t</, then m A,... A,7=0 for any Fre R".
Consequently if we take t=4, then our claim that A4,... 4, =0 follows immediately.
(Note that {1,...,n}=|J4, A; by Proposition 3.4,

Lemma 3.6. Let # be a nonempty subset of #,B,R) and let X, be the set
{nH&,|Hes#} for k=1,...,n. If there is a natural number m such that (X,)"=0 for
each k=1,...,n, then #™ =0.

Proof. Assume there is a natural number m such that (X,)"=0 for all k=1,...,n.
Let H,,...,H,, be elements of s#. Note that we use Lemma 1.4(3) to obtain
nH,...H &=(mnH,&).. (n,H,§) and hence m H,...H§=0 for each k=1,...,n
Similarly, we have:

nkHZm"‘Hm-i-lgk:.”=nkal"'Hm(l—l)+18-k=O'

Take A,=H,...H,,A,=H,,... H,,,,..., and A;=H,;...H,;_)+, in the preceding
lemma to obtain H,,;...H,=A;...A,=0.

Corollary 3.7. .#,(B,R) is nil (resp. nilpotent, locally nilpotent) if and only if R is nil
(resp. nilpotent, locally nilpotent).
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Proof. Suppose .#,(B,R) is nilpotent. Since R is isomorphic to a subnear-ring of
(B, R), therefore R is nilpotent. Conversely if R is nilpotent, then Lemma 3.6 shows
that #,(B, R) is nilpotent. The other two cases can be proved in a similar way.

Similar to the preceding, one can obtain the following:

Proposition 3.8. Let I,,...,1, be nonempty nil (resp. nilpotent, locally nilpotent) subsets
of R. Then ()i~ I? is a nil (resp. nilpotent, locally nilpotent) subset of .#,(B, R).

Let N(R) be the sum of all proper nil ideals of R and let L(R) be the sum of all
locally nilpotent ideals of R. Note that N and L are radical maps and are called nil
radical and Levitzki radical, respectively. (See [1] and [6].)

Theorem 39. (1) N(#,(B,R))={ 7=, (N(R)".
(2) L(#(B,R) =i~ (L(R)®.

Proof. Suppose N(R)=R. Then (N(R))?=.#,(B,R) for 1<i<n. Corollary 3.7 gives
that N(#,(B, R))=.#,(B,R). Thus we are done. Suppose N(R) #R. Then N(A4,(B, R)) #
M,(B,R). The preceding yields (7= ;(N(R))”=N(#,(B,R)). Furthermore Proposition
3.1 shows that (N(.#,(B, R))); SN(R) for each i=1,...,n. A moment’s thought, we have
((N(A,(B, R)) )P <(N(R)? for i=1,...,n. However N(A,(B,R))<((N(4#,(B,R))))"
for i=1,...,n. (Recall: £ <(Z;)? for any left invariant subset ¥ of .#,(B,R) [7,
Proposition 2.13(2)].) Thus:

N8, R)< () (NAL(B.RN)S () (NR)

We have the result. The proof for the Levitzki radical case is similar.
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