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Combined plasma–coil optimization approaches for designing stellarators are discussed
and a new method for calculating free-boundary equilibria for multiregion relaxed
magnetohydrodynmics (MRxMHD) is proposed. Four distinct categories of stellarator
optimization, two of which are novel approaches, are the fixed-boundary optimization,
the generalized fixed-boundary optimization, the quasi-free-boundary optimization, and
the free-boundary (coil) optimization. These are described using the MRxMHD energy
functional, the Biot–Savart integral, the coil-penalty functional and the virtual casing
integral and their derivatives. The proposed free-boundary equilibrium calculation differs
from existing methods in how the boundary-value problem is posed, and for the new
approach it seems that there is not an associated energy minimization principle because
a non-symmetric functional arises. We propose to solve the weak formulation of this
problem using a spectral-Galerkin method, and this will reduce the free-boundary
equilibrium calculation to something comparable to a fixed-boundary calculation. In
our discussion of combined plasma–coil optimization algorithms, we emphasize the
importance of the stability matrix.
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1. Introduction

The design space for stellarators is larger than that of tokamaks because stellarators
exploit three-dimensional (3-D) magnetic fields, by which it is meant that there is no
continuous (e.g. rotational) symmetry, whereas tokamaks are notionally axisymmetric
(two-dimensional) (Helander 2014). The larger design space allows more freedom in the
geometry of the plasma boundary. Geometry affects several important plasma properties
such as stability and transport (Helander et al. 2012), including turbulent transport (Hegna,
Terry & Faber 2018). If the search includes 3-D configurations, generally, one may expect
that it is more likely to find a feasible fusion device.

A particularly advantageous feature of stellarators is that the rotational transform, which
is essential for confinement in toroidal configurations, can be provided externally (Mercier
1964), either by current-carrying coils or by permanent magnets. This reduces or even
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eliminates the need for generating toroidal plasma currents, which can lead to problematic
disruptions.

Along with advantages, 3-D configurations can have drawbacks. A feasible fusion
device must possess good particle confinement and the plasma equilibrium must be
supported by an external set of coils or magnets that do not pose unrealistic engineering
challenges (Grieger et al. 1992). Stellarators are guaranteed neither. Plasmas in early
stellarator designs were not well confined because of neoclassical particle losses caused
by unconfined orbits (Galeev et al. 1969; Beidler et al. 2011). Geometrically distorted
coils complicated the engineering of the cancelled national compact stellarator experiment
(NCSX) (Neilson et al. 2010) and caused delays in the construction of Wendelstein 7-X
(Riße 2009).

Nonetheless, with careful exploitation of the large design space of 3-D configurations,
confinement in stellarators can be significantly improved, e.g. by using quasi-symmetric
(Nührenberg & Zille 1988; Boozer 1995; Henneberg, Drevlak & Helander 2020) or
quasi-isodynamic fields (Gori, Lotz & Nührenberg 1996; Landreman & Catto 2012).
Perfectly quasi-isodynamic fields have vanishing bootstrap current, which allows for
simultaneous optimization of both neoclassical transport and small toroidal net current
(Helander & Nührenberg 2009), which can be beneficial for stability and is necessary
if an island divertor is to be employed. The 3-D optimization effort is encouraged by
recent Wendelstein 7-X results (Klinger et al. 2019), which was optimized for neoclassical
transport (Nührenberg & Zille 1986). There are new methods in coil-design, such as using
permanent magnets (Helander et al. 2020; Landreman & Zhu 2020; Zhu et al. 2020) and
designing coils with generous tolerances (Lobsien, Drevlak & Pedersen 2018; Lobsien
et al. 2020).

With these developments in understanding and designing 3-D configurations, the
question is not whether we should search the large 3-D configuration space, but how.
With an order of magnitude more degrees of freedom, give or take, it is significantly
more difficult to search the 3-D configuration space. To simultaneously achieve the desired
properties of a feasible stellarator, we need efficient optimization approaches, and we need
to understand the solution space.

An essential component of stellarator optimization is the evaluation of equilibrium
properties.1 Equilibrium calculations are conveniently divided into two types, namely
fixed boundary and free boundary.2 The fixed-boundary approach requires the geometry
of the plasma boundary to be provided as input information (Hirshman & Whitson
1983; Bauer, Betancourt & Garabedian 1984; Hudson et al. 2012). Experience suggests
that fixed-boundary calculations are faster and more robust than their free-boundary
counterpart. In reality, however, the geometry of the plasma boundary is not known a
priori. Free-boundary equilibrium calculations require as input the external magnetic
field, and the self-consistent plasma boundary is determined as part of the equilibrium
calculation (Hirshman, van Rij & Merkel 1986; Hudson et al. 2020). Existing
free-boundary equilibrium codes invariably perform additional iterations compared with
their fixed-boundary analogues. The present algorithm in free-boundary SPEC (Hudson
et al. 2020), for example, performs a Picard-style iteration over the fixed-boundary code in
order to determine the plasma boundary that is consistent with the external field. The speed

1We consider vacuum approximation or large aspect ratio expansions to be types of equilibrium calculations.
2Here the word ‘boundary’ refers to the plasma boundary; later we shall generalize this terminology to include

equilibrium calculations with a fixed computational boundary but with a plasma boundary that moves during the
calculation.
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of existing fixed-boundary codes is advantageous for stellarator optimization because the
equilibrium is typically computed at each iteration.

One might ask: What is the ‘best’ approach for stellarator optimization? We do not
expect that there will be a be-all and end-all of stellarator optimization algorithms. We
should embrace a variety of methods. In this paper, we seek to elucidate the mathematical
structure of the various interrelated calculations that underpin the integrated stellarator
optimization problem, which we hereafter call the combined plasma–coil optimization.
The overall numerical efficiency of the combined plasma–coil optimization problem
cannot be understood without considering how the equilibrium calculation, the coil
calculation and the optimization calculation communicate with each other. This needs
to be understood from both a mathematical and an algorithmic perspective.

Existing algorithms can loosely be sorted into two categories, which may be called
the ‘two-step’ method and the ‘direct-coil’ method, which we now describe.3 The
two-step approach separates the equilibrium optimization calculation from the problem
of finding coils (Nührenberg & Zille 1986). In the first step, the plasma boundary is
varied to optimize the desired equilibrium properties, such as rotational-transform profile,
magnetohydrodynmics (MHD) stability, etc. (Beidler et al. 1990; Zarnstorff et al. 2001;
Strickler, Berry & Hirshman 2002a; Henneberg et al. 2019; Bader et al. 2020). In the
second step, the geometry of an external set of coils that provides the required external
field is determined. The coil geometry must meet certain engineering criteria; the coils
cannot have too small curvature and they must not intersect each other, for example.
This stellarator optimization can be performed with STELLOPT (Lazerson et al. 2020),
ROSE (Drevlak et al. 2019), or SIMSOPT (Simons Hidden Symmetries Collaboration,
https://github.com/hiddenSymmetries/simsopt), which are all under active development.
The two-step approach was used to design Wendelstein 7-X (Beidler et al. 1990), CHS-qa
(Okamura et al. 2001), NCSX (Nelson et al. 2003), HSX (Canik et al. 2007), ESTELL
(Drevlak et al. 2013) and CFQS (Shimizu et al. 2018).

An advantage of the two-step approach is that it is primarily the fusion-relevant
performance of the plasma that is most important; so, it is reasonable to optimize the
plasma performance first without compromise; that is, without regard to the complexity
of the coils. After all, a stellarator that produces fusion power with complicated coils
is incomparably more commercially valuable than a stellarator with simple coils that
does not. An advantage of using fixed-boundary calculations to optimize the equilibrium
properties is the availability of fast and robust fixed-boundary equilibrium codes.

Using fixed-plasma-boundary calculations for the plasma equilibrium leads to an inverse
problem for the coil geometry: the required magnetic field is known, and the Biot–Savart
law must be inverted to obtain the coil geometry. Many different codes have been
developed to solve the inverse problem for the coils, e.g. NESCOIL (Merkel 1987),
ONSET (Drevlak 1998), COILOPT (Brown et al. 2015), FOCUS (Zhu et al. 2017),
REGCOIL (Landreman 2017), OMIC (Singh et al. 2020) and FOCUSADD (McGreivy,
Hudson & Zhu 2021). There are codes that solve the inverse problem for a set of permanent
magnets (Helander et al. 2020; Landreman & Zhu 2020; Zhu et al. 2020).

A disadvantage of the two-step approach is that not all plasma boundaries can be
produced by a discrete set of coils or magnets that are easy to build. If there is no
consideration of the coil and magnet complexity until after the plasma equilibrium has
been chosen, complicated coils can result. It may be the case that small changes in the
plasma geometry that result in small improvements in the plasma performance may also

3Note that this is loose terminology and there are numerous variations of these methods. We shall give a more precise
description of various algorithms in § 5.
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result in large disadvantageous changes in the coil geometry. Integrated algorithms that
incorporate both plasma performance and coil complexity are, therefore, desirable (Boozer
2015; Landreman & Boozer 2016; Drevlak et al. 2019).

Measures of coil complexity can be included in the optimization cost function using the
two-step method (Drevlak et al. 2019; Carlton-Jones, Paul & Dorland 2020). This comes
at the cost of computing the coil geometry or some approximation of it at every stage of
the fixed-boundary plasma optimization.

Another approach for the combined plasma–coil design is the direct coil optimization
using a free-boundary equilibrium code (Hudson et al. 2002; Strickler, Berry & Hirshman
2002b). The direct coil optimization approach avoids the need for the inverse coil code
because the coil geometry is taken to be the independent degree-of-freedom in the
optimization, i.e. the coil geometry is assumed to be known. The external magnetic
field that is required as input by the free-boundary equilibrium calculation is computed
using the Biot–Savart formula. Metrics of coil complexity can easily be included in the
optimization cost function.

There are direct coil optimization approaches that dispense with the equilibrium
calculation and instead optimize the properties of the vacuum field, which may be thought
of the trivial (zero plasma-current, zero pressure) plasma equilibrium state. This should
be sufficient for designs that do not target high plasma pressure. However, finite-β
effects are important: the pressure-induced Shafranov shift (Shafranov 1963) can affect
stability and confinement. A related direct coil optimization uses a near-axis analytic
approximation to the equilibrium state (Giuliani et al. 2020), which might be sufficient
for large aspect-ratio configurations but perhaps not so for ‘compact’ stellarators. Also,
recent work has exploited analytical gradient information and adjoint methods for a variety
of optimization problems (Landreman & Paul 2018; Paul et al. 2018; Zhu et al. 2018;
Antonsen, Paul & Landreman 2019; Paul et al. 2019; Carlton-Jones et al. 2020).

In this paper, we review and categorize different combined plasma–coil optimization.
We discuss free-boundary calculations and propose an alternative method to calculate
the virtual-casing self-consistent vacuum magnetic field, which reduces the cost of a
free-boundary calculation to that of a fixed-boundary calculation. In § 2, the multiregion
relaxed magnetohydrodynamic (MRxMHD) energy functional, the coil-penalty functional
and the virtual casing integral are described. In § 3, we present the relevant variational
calculus for the free-boundary equilibrium calculation, the coil geometry optimization and
the virtual casing integral that are employed in the combined plasma–coil optimization
algorithms discussed in § 5. In § 4, we discuss the construction of the magnetic field using
a (weak) Galerkin method. In § 5, we examine various fixed- and free-boundary algorithms
for the combined plasma–coil optimization that differ in which quantity, which we denote
with z, is chosen to be the independent degree-of-freedom, and derive the derivatives of
the plasma equilibrium and the coil geometry with respect to z in terms of derivatives of
the plasma-energy functional, the coil-penalty functional, and the virtual-casing integral.4
Finally, in § 6, we discuss the results of this paper.

2. Plasma equilibria and supporting coils

This paper builds upon the construction of the plasma equilibrium as a stationary point
of the MRxMHD energy functional, which we now describe.5

4If the geometry of the coils is chosen to be the independent degree-of-freedom, then the Biot–Savart integral, (2.5),
is required instead of the coil-penalty functional.

5We have chosen to use the MRxMHD functional and not the ideal MHD functional because the ideal MHD
functional encounters problems near rational surfaces. However, it is straightforward to extend the work of this paper
to use ideal MHD. In fact, we believe that most of the results of this paper can be extrapolated to ideal MHD.
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The computational domain, Ω ⊂ R
3, is considered to be a solid torus with

computational boundary D ≡ ∂Ω . The latter is a prescribed toroidal surface, which unless
explicitly stated otherwise is held fixed throughout the calculation. The computational
domain contains the plasma volume, V ⊂ Ω , a smaller solid torus enclosed by the plasma
boundary S ≡ ∂V . The plasma volume is further partitioned into v = 1, . . . ,NV nested
toroidal subvolumes, Vv, which are separated by a set of ideal interfaces, Iv so that
∂Vv = Iv ∪ Iv−1, with the outermost interface coinciding with the plasma boundary,
INV = S . The innermost subregion is a simple (solid) torus, and each other subregion is
a toroidal annulus which may be thought of as a ‘hollow’ torus. In each Vv, the magnetic
field is written as the curl of the magnetic vector potential, Bv = ∇ × Av. In the innermost
toroidal region, the toroidal flux, computed as a poloidal loop integral of A1 on I1, is
constrained to match a prescribed value. In each annular region, both the enclosed toroidal
and poloidal fluxes, computed, respectively, as the difference between the poloidal and
toroidal loop integrals of Av on Iv and Iv−1, are constrained. In each region, the magnetic
helicity, defined as the volume integral of Av · Bv, is also constrained. The magnetic field in
each region is taken to be tangential to that region’s boundary, n · Bv = 0 on Iv where n is
a unit outward normal vector, but otherwise the topology of the field lines is unconstrained
and magnetic islands and irregular field lines are allowed in each Vv.

For free-boundary calculations, by which we mean that the plasma boundary is allowed
to move, we include the vacuum region V+ = Ω\V , with the inner boundary of V+
coinciding with S and its outer boundary with D. It is on D that the normal plasma field
plus the normal external field is required to equal the normal total field.

By construction, there are no currents inside V+. We may employ a scalar potential
and write the vacuum field as B+ = ∇Φ.6 To obtain a unique solution, constraints are
imposed on the linking and net toroidal plasma currents, which are computed as loop
integrals of B+. We take B+ to be tangential to the plasma surface, n · ∇Φ|S = 0 where n
is a unit outward normal vector on S . The normal field on the computational boundary D,
BT,n ≡ n̄ · ∇Φ|D where n̄ is normal to D, is the sum, BP,n + BE,n, of the plasma field and
the external field, neither of which are necessarily known a priori; generally, BT,n �= 0.

The equilibria that we consider are stationary points of the following energy functional:

F ≡
NV∑
v=1

Fv + F+, (2.1)

where

Fv ≡
∫
Vv

(
pv

γ − 1
+ B2

v

2

)
dv − μv

2

[∫
Vv

Av · Bv dv − Hv

]
, (2.2)

F+≡
∫
V+

1
2∇Φ · ∇Φ dv −

∫
D
Φ̄BT · ds̄, (2.3)

with pv the pressure in the v-th region,7 γ is the specific heat ratio (adiabatic index) and
Hv is the prescribed value of the magnetic helicity in Vv. The constraints on the toroidal
and poloidal fluxes in the plasma volumes, Vv, are implied; that is, the fields Bv that
we consider in (2.2) are restricted to the class of divergence-free vector fields that are

6We may also use the magnetic vector potential to describe the magnetic field in V+, and this can have advantages
(Hudson et al. 2020), but we will not discuss this possibility here.

7Here, the pressure is understood in units of μ0 × (J m−3) where μ0 = 4π × 10−7 (H m−1) is the vacuum
permeability

https://doi.org/10.1017/S0022377821000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000271


6 S. A. Henneberg, S. R. Hudson, D. Pfefferlé and P. Helander

tangential to the interfaces and have the prescribed values of the toroidal and poloidal
fluxes. The helicity constraints are enforced explicitly using the Lagrange multipliers μv.
The loop integral constraints on ∇Φ are also implied: the allowed Φ in (2.3) is restricted
to the class of multivalued scalar functions with prescribed loop integrals of ∇Φ. We write
Φ̄ ≡ Φ|D to denote the scalar potential evaluated on D to distinguish it from Φ ≡ Φ|S on
S . Similarly, we write ds̄ to denote an infinitesimal surface element on D.

We may call F the free-plasma-boundary, fixed-computational-boundary, generalized-
boundary-condition MRxMHD energy functional. This is to accommodate the common
understanding in the magnetic confinement community that a free-boundary equilibrium
calculation allows the plasma boundary to move, which it does in this case, and the
common terminology in the broader mathematical community that refers to the ‘boundary’
as boundary of the computational domain, which is fixed in this case. We refer to
the boundary conditions as ‘generalized’ because the total normal field, BT,n, is not
constrained to be zero. For brevity, we hereafter refer to F simply as the energy functional.

Using the virtual-casing principle (Shafranov & Zakharov 1972), the normal plasma
field, BP,n, produced by currents within the plasma volume is computed on the
computational boundary as

BP,n(x̄) ≡
(

− 1
4π

∫
S

(
BT |S+ × ds

)× r
r3

)
· n̄(x̄), (2.4)

where r ≡ x − x̄ for x ∈ S and x̄ ∈ D, and we use ds to denote a surface element
of S . Here, BT |S+ = ∇Φ|S+ is the total magnetic field immediately outside of S . To
accommodate for the possible existence of sheet currents lying on the plasma boundary, we
must use in (2.4) the total magnetic field lying immediately outside the plasma boundary;
that is, we must use the magnetic field on the inner boundary of the vacuum region. When
that information is not available, we can use the magnetic field immediately inside the
plasma boundary. In § 4, we shall exploit the circumstance that the evaluation of the
plasma field on the computational boundary is a non-local, linear operator of the scalar
potential, Φ.

The difference between the total normal magnetic field and the plasma normal field
on D, which we call the required external normal field, must be provided by an external
source. A plasma cannot create its own magnetic bottle (Shafranov 1966). This quantity,
Dn ≡ BT,n − BP,n, is very closely related to BE,n, the provided external field, but they may
differ. The difference is what we later call the ‘coil error’.

For clarity of exposition regarding the externally applied field and to facilitate discussion
of the various combined plasma–coil optimization algorithms considered in § 5, we
imagine a typical and easily differentiable example; namely, that the external magnetic
field is provided by a set of i = 1, . . . ,NC current-carrying one-dimensional curves
(filaments) with geometry ci that produce a magnetic field given by the Biot–Savart law,

BE(x̄) = −
∑

i

μ0Ii

4π

∫
ci

r × dl
r3

, (2.5)

where Ii is the current in the i-th coil and dl is the differential line segment. For brevity,
we shall hereafter ignore the dependency on the magnitude of the currents and we set
Ii = 4π/μ0. It is a simple matter to extend the following to allow for the variation of
the coil currents. It is also a simple matter to extend the following to the case where a
surface potential on a prescribed winding surface provides the external field (Merkel 1987;
Landreman 2017), or to the case where a ‘finite-build’ approximation is used for the coils
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(Li et al. 2020; McGreivy et al. 2021; Singh et al. 2020), or when permanent magnets are
included (Helander et al. 2020; Landreman & Zhu 2020; Zhu et al. 2020).

If the required external field, Dn, is given, the geometry of the coils may be chosen to
minimize a suitable ‘coil-penalty’ functional; for example (Merkel 1987; Landreman 2017;
Hudson et al. 2018; Zhu et al. 2018),

E ≡ ϕ2 + ωL, (2.6)

where ϕ2 ≡ ∫
D(Q

2 ds̄)/2 is the commonly used quadratic-flux error functional, Q = Dn −
BE,n where BE,n[c,D] is the normal component of BE on D produced by the filamentary
coils, where we use c to denote the geometry of all the coils; i.e. c ≡ {ci, i = 1, . . .NC}.
We include a regularization term, L = L[c], which we take to be the total length of the
coils, and ω is a scalar penalty.

The geometry of the optimal coils is given by δE/δc = 0. This equation may be solved
using descent algorithms (Zhu et al. 2017; Hudson et al. 2018) or Newton-style methods
(Zhu et al. 2018). Practically, it is not possible to obtain a coil set that exactly produces
the required normal field and generally ϕ2 �= 0. This is why the required external normal
field, Dn, must be distinguished from the actual external normal field, BE,n. Upon solving
δE/δc = 0, ϕ2 measures what we call the coil error.8

In the above, we have described the three basic components of the combined
plasma–coil optimization algorithms that we consider in § 5; namely, the energy
functional, F , the Biot–Savart law, the coil-penalty functional, E , and the evaluation of
the normal plasma field, BP,n, on D using the virtual-casing functional. In the following
section, § 3, we present the first and second variations of F , E and BP,n that will be required
in § 5. In § 4, we elaborate upon the numerical construction of the magnetic fields and
show that, instead of prescribing the total normal magnetic field, BT,n, on D, computing
the equilibrium and then determining the coil geometry that provides (approximately)
the required external normal field, we may directly consider the case where the external
normal field, BE,n, on D is given. We can solve for the virtual-casing self-consistent
vacuum magnetic field using a Galerkin method. In § 5, we show that the derivatives
described in § 3 and the Galerkin construction of the magnetic fields may be combined
to construct a variety of combined plasma–coil stellarator optimization algorithms.

3. Variation of the energy, coil-penalty and virtual-casing functionals

In this section, we present the variations of the energy, coil-penalty and virtual casing
functionals that are used in § 5. The variational calculus provides useful insight into the
physics and mathematics of the different optimization problems, as we shall comment
upon in § 6.

Requesting that the first variations of the energy functionals vanish results in weak
formulations of the various coupled boundary value problems. When the boundary data
is ‘smooth’ enough, it is expected that weak solutions coincide with (strong) solutions. In
what follows, we assume the fields are sufficiently regular to apply integration by parts
and derive local Euler–Lagrange equations. Conversely, we convert any linear elliptic
partial differential equations subject to boundary conditions into variational problems
(weak formulation) simply by integrating against arbitrary variations. In the case where
the bilinear functional thus obtained is symmetric (self-adjoint), the variational problem

8Note: this is not a ‘numerical’ error, in the sense that this error will not decrease as the numerical resolution of the
discrete set of coils increases. The coil error results from the inevitable requirement that the external field is provided by
a discrete set of coils (or permanent magnets (Helander et al. 2020; Landreman & Zhu 2020; Zhu et al. 2020)) which
also are constraint by other (engineering) properties.
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can be associated with an energy minimization principle. However, as we will see in § 3.4,
the weak formulation of certain boundary value problems do not necessarily result in
self-adjoint bilinear functionals, in which case there is no immediate energy minimization
principle.

The weak formulation is the basis of our numerical representation of solutions, in
particular leading to a spectral-Galerkin method where our fields are approximated by a
finite linear combination of Fourier modes and orthogonal polynomials. The coefficients
of the linear combination become our degrees of freedom and the weak formulation boils
down to a matrix inversion.

3.1. Energy functional
In the plasma volumes we write Bv = ∇ × Av, and thus δBv = ∇ × δAv. We use the fact
that the fields in the vicinity of the interfaces obey ideal MHD, so that the variation of
the magnetic field on the interfaces can be expressed with an displacement vector ξ v,
δBv = ∇ × (ξ v × Bv), i.e. δAv = ξ v × Bv + ∇gv, where gv is a gauge potential. In
MRxMHD, the mass is constrained in each volume Vv by the isentopic ideal-gas
constraint, pv = av/Vγ

v , where Vv is the volume of the v-th region, Vv = ∫
Vv dv and av

is a constant. The first variation with respect to deformations of the volume boundary is
given by δpv = −γ pv(

∫
Iv ξ v · ds − ∫

Iv−1
ξ v−1 · ds)/Vv.

Using Bv · nv = 0 on the interfaces, where nv is the normal vector of the v-th interface,
one can derive

δF =
Nv∑
v=1

(∫
Vv

δFv

δAv

· δAv dv +
∫
Iv

δFv

δξ v
· ξ v ds

)
+ δF+, (3.1)

where

δFv

δAv

= ∇ × Bv − μvBv, (3.2)

δFv

δξ v
= −

[[
pv + B2

v

2

]]
nv. (3.3)

In vacuum, the first variation in F+ with respect to variations in Φ is

δF+=
∫
V

δF+
δΦ

δΦ dv +
∫
D
δΦ̄

(∇Φ̄ − BT
) · ds̄ −

∫
S
δΦ ∇Φ · ds. (3.4)

Setting the functional derivative,

δF+
δΦ

= −∇ · ∇Φ, (3.5)

to zero leads to the Laplace equation. The other terms provide corresponding Neumann
boundary conditions.
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The second variation with respect to deformations of the interface geometry of Fv is
given by

δ2Fv =
∫
Vv
δAv · (∇ × ∇ × δÃv − μ∇ × δÃv) dv + γ pv

∫
Iv

ξ v · ds
∫
Iv

ξ̃ v · ds

Vv

−
∫
Iv
(Bv · ∇ × δÃ)ξ v · ds −

∫
Iv
δAv · (μvBv − ∇ × Bv)ξ̃ v · ds

−
∫
Iv

ξ̃ v · nv∇ ·
((

pv + B2
v

2

)
ξ v

)
ds, (3.6)

where the tilde (∼) indicates that the second variation can differ from the first. Here, for
simplicity, we allowed only one of the two interfaces to vary. For a complete expression
(see (3.8)), one has to be careful since cross-terms, including integrals over two different
interfaces, appear in the γ pv term.

In vacuum, the second variation with respect to the scalar potential is given by

δ2F+= −
∫
V
δΦ ∇ · ∇δΦ̃ dv −

∫
D
δΦ̄ n̄ · ∇δ ˜̄Φ ds̄. (3.7)

Collecting all the different terms for the second variation, we obtain

δ2F =
∑
v

(∫
Vv
δAv · (∇ × ∇ × δÃv − μv∇ × δÃv) dv

+ γ

(
pv
Vv

+ pv+1

Vv+1

)(∫
Iv

ξ v · ds
)(∫

Iv
ξ̃ v · ds

)

− γ
pv
Vv

[(∫
Iv−1

ξ̃ v−1 · ds
)(∫

Iv
ξ v · ds

)
+
(∫

Iv−1

ξ v−1 · ds
)(∫

Iv
ξ̃ v · ds

)]

+
∫
Iv

[[B · ((B × ∇)× n)]] ξ̃ v · n ξ v · ds
)

+ δ2F+, (3.8)

where we used the equilibrium expressions; we included variations of both interfaces; we
used B · ((B × ∇)× n) = B2∇ · n − B · ∇n · B; and we set ξ v and ξ̃ v proportional to the
normal vector n since only normal variations of the interfaces affect the plasma energy.
The second variation of the energy functional determines the MRxMHD stability of the
equilibrium state (Kumar et al. 2021).9

3.2. Coil-penalty functional
The coil-penalty functional, E defined in (2.6) is considered to be a functional of the coil
geometry, c, the required normal magnetic field, Dn, on the computational boundary, D,
and on D itself, which is, however, kept fixed here; i.e. E = E[c,Dn]. We may formally

9For ideal MHD the first and second variations of the energy functional are well known (Freidberg 2014). Codes like
TERPSICHORE and CAS3D (Anderson et al. 1990; Schwab 1993) can compute the second variation of the ideal MHD
functional.
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write the first variation, δE , with respect to variations δc, and δDn as

δE =
∑

i

∫ 2π

0

δE
δci

· δci dα +
∫
D

δE
δDn

· δDn ds̄, (3.9)

where α is an angle-like curve parameter, ci(α + 2π) = ci(α). The functional derivatives
are

δE
δci

= c′
i ×

(∫
D

Ri,nQ ds + ω κ i

)
, (3.10)

δE
δDn

= Q, (3.11)

where c′
i is the derivative of the i-th coil with respect to α. We have written Ri ≡ 3 riri/r5

i −
I/r3

i and defined Ri,n = Ri·n, where ri is the displacement between a point on the i-th coil
and the evaluation point on D, and I is the identity tensor or idemfactor. The curvature of
the i-th coil is κ i ≡ c′

i × c′′
i /c

′3
i and the functional derivatives are generalized expressions

of the ones presented in Dewar, Hudson & Price (1994) and Hudson et al. (2018). We used
the expression for the variation of the normal component of the magnetic field with respect
to the coil geometry

δBn =
∮

i

δBn

δci
· δci dαi, (3.12)

with the functional derivatives
δBn

δci
= c′

i × Ri,n. (3.13)

The required second variations of E are (Hudson et al. 2018)

δ2E =
∑

i,j

∮
i

∮
j
δci · δ2E

δciδcj
· δcj dαi dαj, (3.14)

δ2E =
∑

i

∮
i

dα
∮
D

ds̄ δci · δ2E
δciδDn

δDn, (3.15)

where

δ2E
δciδcj

=
∮
D
(c′

i × Ri,n)(c′
j × Rj,n) ds̄, (for i �= j), (3.16)

δ2E
δciδDn

= c′
i × Ri,n. (3.17)

For the case where i = j the variation cannot be written in such a compact form but also
does not provide much insight. The other second variations of E are not required in § 5
and are omitted for brevity.

We only need the variation with respect to the geometry of the computational boundary,
D, when Dn = −BP,n = −BP · n̄. Since there is an explicit dependence with respect to n̄,
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we calculate the combined variation of E and BP,n with respect to variations in D, which
allows us to express the results in compact form. The first variation is

δE =
∫
D

δE
δD · δD ds̄, (3.18)

where
δE
δD =

(
−1

2
Q2∇ · n̄ − (

BP,s + BE,s
) · ∇Q

)
n̄, (3.19)

where we used (12) from Dewar et al. (1994). The notation f s = (I − n̄n̄) · f denotes the
surface projection of an arbitrary vector or tensor, f , onto a surface, which in this case is
the computational boundary. The second variation of E with respect to D and ci is

δ2E =
∑

i

∮
ci

δci ·
∮
D

δ2E
δciδD

· δD ds̄ dα, (3.20)

where
δ2E
δciδD

= c′
i ×

(
QRi · H − Ri,s · ∇H + (BP,s + BE,s) · ∇Ri,n

)
n̄, (3.21)

where the mean curvature of D is H ≡ −n̄ (∇ · n̄). Equation (3.21) is a more general form
of (12) of Hudson et al. (2018) where Dn = 0.

3.3. Plasma normal field
The normal plasma field, BP,n, on D, as defined in (2.4), is considered to be a functional
of the plasma boundary, S , the total (tangential) magnetic field, BT |S on S , and on D,
which is kept fixed; i.e. BP,n = BP,n[S,BT |S]. The normal component of the magnetic
field produced by plasma currents, BP,n, given in (2.4) may be written as

BP,n = − 1
4π

∫
S

BT |S · M · ds, (3.22)

where the antisymmetric tensor, M ≡ (r n̄ − n̄ r)/r3, is defined, where r = x − x̄ for x ∈ S
and x̄ ∈ D. The first variation setting δD = 0 is

δBP,n =
∫
S

δBP,n

δS · δS ds +
∫
S

δBP,n

δBT |S · δBT |S ds, (3.23)

where

δBP,n

δS = − 1
4π

∇ · (BT |S · M), (3.24)

δBP,n

δBT |S = − 1
4π

M · n, (3.25)

where we used again (12) from Dewar et al. (1994) for the first expression. Note that only M
and R depend on x̄. The relevant variation with respect to the computational boundary D is
presented in the previous section. The second variations are not required in the following.
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3.4. Supplied external field
To enable efficient free-boundary optimization algorithms, which we describe in § 5, we
revisit the energy functional; in particular, we pay attention to the boundary condition for
the normal field on D.

It is perfectly legitimate to prescribe the total normal field, BT,n, on D. Indeed, every
fixed-boundary equilibrium calculation does as much. As described in § 2, the total normal
field is the sum of the plasma normal field and the external normal field, BT,n = BP,n +
BE,n, neither of which are known a priori in fixed-boundary calculation.

It seems unlikely that there are any circumstances for which we will a priori know BP,n,
except for the trivial equilibrium, the vacuum, for which BP,n = 0. After all, this is why
the equilibrium calculation is required, to determine the plasma currents and the magnetic
field that they produce.

In contrast, a particularly important calculation arises when BE,n is known. In this case,
if we were to proceed with the approach of specifying BT,n on D, then some type of
‘self-consistent’ iteration, for example, must be implemented to determine the BT,n that
satisfies the matching condition, namely that BT,n − BP,n[BT |S] = BE,n, where BP,n[BT |S]
may be considered to be a linear, non-local operator acting on the tangential total field on
the plasma boundary BT |S , which is only known after the equilibrium has been computed.
In the current implementation of free-boundary SPEC (Hudson et al. 2020), for example,
a Picard iteration over BT,n is required.

Here, we present a more direct strategy. The boundary value problem in the vacuum
region is to find B+ = ∇Φ such that ∇ · B+ = ∇ · ∇Φ = 0 on V+ satisfying boundary
conditions n · ∇Φ = 0 on S and n̄ · ∇Φ̄ − BP,n[∇Φ|S] = BE,n on D. This translates into
the weak problem of finding Φ such that∫

V+
∇ψ · ∇Φ dv +

∫
D

∫
S

(ds̄ × ∇ψ̄) · (ds × ∇Φ)
|x̄ − x| =

∫
D
ψ̄ BE,n ds̄, ∀ψ, (3.26)

where ψ is an arbitrary (test) function. An important solvability condition is that the
normal field of the coils is consistent with a divergence-free field,

∫
D BE,n ds̄ = 0.

As it stands, it is not possible to cast this weak problem into an energy minimization
problem because the second term on the left-hand side of (3.26) spoils the required
symmetry of the functional. The first variation of a quadratic energy functional necessarily
results in symmetric bilinear forms.

Energy principles do exist for exterior Neumann problems in the form of boundary
integral methods (Giroire & Nédélec 1978). Their formulation, however, requires the
plasma boundary and the computational boundary to coincide. The NESTOR code is
a good example (Merkel 1986), as well as BIEST (Malhotra et al. 2019). There are
several disadvantages and challenges in implementing these energy principles. First, as
seen in (3.26) in the limit D → S , the integral operators tend to have singular kernels,
which requires delicate numerical treatment. Second, in free-boundary calculations, the
plasma boundary is varied to achieve force balance. This requires updating the numerical
representation of the integral operators as well as the source term on the right-hand side
of (3.26) every time the boundary changes. For this, the external field (from coils) is
effectively needed in an entire volume not just on a single surface, which comes with a
sizeable computational cost.10

10Readers familiar with VMEC will recognize this as the task of computing the magnetic field on a Cartesian grid
from coils via Biot–Savart law, known as mgrid file.
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In the following section, § 4, we present a free-boundary equilibrium approach for
a given external field that is based on a weak (Galerkin) method for constructing the
required magnetic fields while keeping the computational boundary fixed and separate
from the plasma boundary so that only the normal component of the external field
on the computational boundary need be evaluated and only once. The virtual-casing
self-consistent vacuum field is obtained as the solution to a set of linear equations,
given below in (4.4). The matching condition is enforced directly in the computation of
the vacuum field, and this removes the self-consistent iteration mentioned above that is
otherwise required to match the equilibrium to the provided external field.

4. Galerkin method for constructing the vacuum field

Galerkin methods for constructing weak solutions to partial differential equations are
well known. In the context of MRxMHD, a Galerkin method for constructing the magnetic
fields for fixed- and free-boundary MRxMHD equilibria is described in Hudson et al.
(2012, 2020) and Qu et al. (2020). In this paper, we restrict our attention to the problem of
constructing B+.

A standard numerical approach for finding stationary points of F+ is to represent the
scalar potential using a mixed Chebyshev–Fourier representation; e.g. Φ(s, θ, ζ ) = Iθ +
Gζ +∑

l,m,nΦl,m,nTl(s) exp(imθ − inζ ), where (s, θ, ζ ) is a suitable toroidal coordinate
system and Tl(s) is the l-th Chebyshev polynomial, and I and G are given by the prescribed
value of the loop integrals/2π. When this representation is inserted into (2.2), and
assuming that S and D do not change, the problem of calculating the vacuum field amounts
to solving

A · φ = BT, (4.1)

where φ represents the vector of independent degrees-of-freedom, namely the Φl,m,n
and the Lagrange multipliers that may be used to enforce the constraints, and A is a
symmetric matrix whose elements are the second derivatives of F+ with respect to these
degrees-of-freedom and involve volume integrals of coordinate metric elements and the
Chebyshev–Fourier functions. The matrix A depends on the geometry of S and D; i.e.
A = A[S,D]. The right-hand side vector, BT , contains the Fourier harmonics of BT,n. The
system of linear equations given in (4.1) is essentially a discrete realization of Laplace’s
equation, ∇ · ∇Φ = 0, with the supplied boundary conditions and loop integrals, written
in matrix form. We can determine how the vacuum magnetic field varies with S , D and
BT,n using matrix perturbation methods,

A · δφ = −δA · φ + δBT, (4.2)

where δA = ∂A/∂S · δS + ∂A/∂D · δD.
From (2.4), we recognize that the magnetic field produced by the plasma currents is a

linear functional of the total (tangential) magnetic field on the immediate outside of the
plasma boundary, namely B+|S+ . The immediate outside of S is the inner boundary of
the vacuum region, V+, and the magnetic field in V+, namely B+, is the gradient of the
scalar potential. The Fourier harmonics, BP,n, of the plasma field on D are linear in the
degrees-of-freedom of the scalar potential; that is, we may write

BP = B · φ, (4.3)

where BP represents the vector of Fourier harmonics of BP,n, and B is a matrix derived
from inserting the mixed Chebyshev–Fourier representation for Φ into (2.4). We note that
B depends only on the geometry of S and D; i.e. B = B[S,D].
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Provided that the external field BE is ‘tame’ (in particular
∫
D BE,n ds̄ = 0), we put

forward the following propositions: (i) for toroidal annular domains of practical interest,
with the constraint that BT · n = 0 on the inner boundary, S , there exists a normal
magnetic field on the outer boundary, D, that is the sum of an a priori known externally
applied field plus the a priori unknown magnetic field that is produced by plasma currents
inside S , as given by the virtual-casing integral given; and (ii) that this ‘virtual-casing
self-consistent’ vacuum field may be obtained as the solution to the system of linear
equations resulting from combining (4.3) with (4.1); i.e.

Lvc · φ = BE, (4.4)

where we defined the Laplace-virtual-casing matrix, Lvc ≡ A − B, and BE is that part of
the right-hand side vector given in (4.1) that does not depend on the plasma currents.11 We
shall elaborate upon these propositions in a future article.

The virtual-casing self-consistent vacuum field will change with variations in the plasma
boundary according to

Lvc · δφ = − (δA − δB) · φ + δBE, (4.5)

where δB = ∂B/∂S · δS + ∂B/∂D · δD.

4.1. Restricted energy functionals
To incorporate the Galerkin method for computing the magnetic fields with the energy
functional and with the various combined plasma–coil optimization algorithms discussed
in § 5 below, we simplify as follows. We redefine the energy functionals, Fv, in the plasma
volumes to

Fv ≡
∫
Vv

(
pv

γ − 1
+ B2

v

2

)
dv, (4.6)

where here and hereafter the magnetic field, Bv, in each region is restricted to be the unique
magnetic field with the prescribed helicity and fluxes that is tangential to the boundary and
obeys ∇ × Bv = μvBv. This equation is known as the Beltrami equation and is obtained,
see (3.2), as the Euler–Lagrange equation δFV/δAv = 0. We note that Bv depends only on
the geometry of the adjacent interfaces; i.e. Bv = Bv[xv−1, xv].12 The energy functional in
the vacuum region is redefined simply as

F+=
∫
V+

B2
+

2
dv, (4.7)

where B+ = ∇Φ is restricted to be the unique magnetic field with the prescribed loop
integrals (for the enclosed currents) and is tangential to S , and that obeys ∇ · ∇Φ = 0 in
V+. This field is obtained as the solution to either (4.1) if the total normal field is given or
(4.4) if the external normal field is given. With the enclosed currents and D held constant,
we note that B+ depends only on S and the boundary condition; i.e. B+ = B+[S,BT,n] or
B+ = B+[S,BE,n].

With these conventions hereafter implied, we omit the explicit dependence of F on the
vector and scalar potentials and the Lagrange multipliers, and write F = Ft[x,BT,n,D]

11In a private communication with S.R.H., Zhisong Qu independently suggested this approach.
12The energy functional also depends on the mass and entropy profiles, the flux profiles and the helicity profiles; but,

in this article we assume that these are given. In practice, these must be chosen to be consistent with an assumed model
of transport; or, so that the parallel current or rotational-transform profiles match experimentally measured profiles, for
example, or so that pressure gradients do not coincide with rational surfaces.
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or F = Fe[x,BE,n,D]. To distinguish the case when BT,n is provided and (4.1) is used to
compute the vacuum field, we use Ft to denote the energy functional in this case, whereas
we instead denote this quantity by Fe when BE,n is provided and (4.4) is used. We use x to
denote the geometry of the v = 1, . . .NV interfaces, which includes the plasma boundary,
i.e. xNV = S .

The interface geometry, and by implication the equilibrium magnetic field, is defined by
δF/δx = 0, which from (3.3) is the equilibrium equation, F ≡ [[p + B2/2]] = 0 across
the ideal interfaces. Minima of F with respect to x can be found using descent-style
algorithms, ∂x/∂τ = −δF/δx, where τ is an integration parameter, or by Newton-style
methods. The geometry of the equilibrium interfaces is considered to be a function of
the boundary conditions; i.e. x = x[BT,n,D] or x = x[BE,n,D]. We shall write the total
(tangential) magnetic field, BT |S , on S , which is required for the virtual casing calculation
of BP,n, as a function of x, i.e. BT |S = BT |S[x].

The second derivatives of the restricted energy functions, (4.6) and (4.7), with respect
to variations in the interface geometry, x, and the boundary conditions, either BT,n of BE,n,
which are required in the following section, may be constructed from incorporating the
derivatives of the magnetic fields as calculated using (4.2) and (4.5) with the expressions
presented in § 3.1.13

5. Combined plasma–coil optimization algorithms

In this section, we consider the construction of the plasma equilibrium and the coil
geometry simultaneously with the optimization of the plasma and coil properties.

When we are required to construct the geometry of the coils as extrema of the
coil-penalty functional, E , we assume that the coil geometry satisfies δE/δc = 0. When
the coil geometry is taken as the independent degree-of-freedom in the optimization, the
coil-penalty functional is not required and the Biot–Savart integral is used to compute
BE,n = BE,n[c,D].

When the normal plasma field, BP,n, on D is required and the equilibrium magnetic
field is known, BP,n is computed using either the total (tangential) magnetic field either
immediately inside, S−, or immediately outside, S+, the plasma boundary, depending on
whether BT is determined using a fixed-boundary calculation, for which the total magnetic
field outside S may not be known, or a free-boundary calculation, for which it is. If there
is a sheet current on the plasma boundary, these will differ. The total (tangential) magnetic
field, BT |S on S , is obtained as an output of the equilibrium calculation, δF/δx = 0.

In the following, we consider choosing the independent degrees-of-freedom, z, in the
combined plasma–coil optimization to be (i) the plasma boundary, z ≡ S; (ii) the total
normal field on D, z ≡ BT,n; (iii) the required normal field on D, z ≡ Dn; and (iv) the
coil geometry, z ≡ c. For each of these choices, the descent direction depends on the
derivatives of the plasma-energy functional, F = Ft[xv,BT,n,D] or F = Fe[xv,BE,n,D]
depending on whether the total or external normal field is given; the coil-penalty
functional, E = E[c,Dn,D]; and the virtual-casing calculation of the plasma normal field,
BP,n = BP,n[S,BT |S,D].

It is helpful to have a tangible example of what plasma and coil properties we wish
to optimize. For the plasma optimization, we imagine a plasma property, P[x], that is
explicitly a scalar function of the geometry of the flux surfaces and is to be minimized.
Generally, most plasma properties depend on the magnetic field, but here we are assuming
that the equilibrium magnetic field depends on the geometry of the interfaces and so
there is no loss of generality in treating P as an explicit function of only the geometry

13All the required derivatives have been implemented in SPEC (Hudson et al. 2012, 2020).
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of the interfaces. Plasma properties of interest include the integrability of the magnetic
field, quasi-symmetry properties, the rotational-transform profile, stability properties,etc.

For the coil geometry optimization, we imagine a measure of the coil complexity, C[c],
that is a scalar function of the coil geometry and is to be minimized. We might consider
the total length of the coils, as shorter coils tend to be cheaper, or the non-planarness of
the coils, as measured by C = ∑

i

∮
τ 2/2 dl where τ is the torsion. Other properties of

interest might include a measure of the coil–plasma separation, which explicitly depends
on both the coil geometry and the plasma boundary, e.g. Q = Q[x, c]. It is straightforward
to extend the following treatment to include such properties.

For the combined optimization, we imagine a differentiable cost function, T =
T [P, C]. If P[x] and C[c] are differentiable functions of, respectively, x and c,14 then
descent algorithms can be implemented if we know the derivatives of x and c with respect
to z. The derivative of T is

∂T
∂z

= ∂T
∂P

∂P
∂x

∂x
∂z

+ ∂T
∂C

∂C
∂c
∂c
∂z
. (5.1)

Here and hereafter, for notational clarity, we assume that all quantities are discretized,
so that functionals of lines, surfaces and volumes become functions of a finite set of
parameters that describe those objects, and the infinite-dimensional Frechét derivatives
become finite-dimensional derivatives. One cannot be more explicit regarding constructing
the derivatives of T , P and C until one has stated what these quantities are, this is left to
a future article. In the following, we present expressions for ∂x/∂z and ∂c/∂z for the
different choices of z mentioned above.

5.1. Fixed-boundary optimization
We can consider the independent degree-of-freedom in the optimization to be the plasma
boundary, z ≡ S . The free-plasma-boundary equilibrium calculation described in § 2
reduces to a fixed-plasma-boundary calculation by eliminating the vacuum region; that
is, we choose D = S and BT,n = 0. In this subsection only, because we are choosing D to
be coincident with S to facilitate a fixed-boundary equilibrium calculation, D will move
during the optimization.

The equilibrium, x, satisfies ∂Ft(x, 0,S)/∂x = 0. We compute BP,n(S,BT |S−,S)
from the virtual-casing integral.15 With BT,n = 0, the required normal field is Dn =
−BP,n(S,BT |S−,S). The coil geometry satisfies ∂E(c,Dn,S)/∂c = 0. Expanding and
collecting terms, we obtain

∂x
∂z

= −
(
∂2Ft

∂x∂x

)−1

·
(
∂2Ft

∂x∂D

)
, (5.2)

∂c
∂z

= −
(
∂2E
∂c∂c

)−1

·
(
∂2E
∂c ∂Dn

· ∂Dn

∂z
+ ∂2E
∂c ∂D

)
, (5.3)

where
∂Dn

∂z
= −∂BP,n

∂x
· ∂x
∂z
, (5.4)

14Here, P[x] is not restricted to targets which only depend on the interface geometries but can also include quantities
like rotational transform or particle transport. These quantities are functions of the interface geometries themselves which
explains our simplified dependence of P[x]. See § 4.1 for a more detailed discussion.

15If D = S, there is a singularity in the integrand of the virtual casing equation. This can be overcome by subtracting
an integral which possess the same type of singularity and adding the analytic expression of that subtracted integral
(Merkel 1986).
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and where
∂BP,n

∂x
= ∂BP,n

∂S · ∂S
∂x

+ ∂BP,n

∂BT |S · ∂BT |S−

∂x
. (5.5)

The analogous functional derivatives for ∂2E/∂c∂c and ∂2E/∂c∂D are given in (3.16)
and (3.21), those for ∂2Ft/∂x∂x, ∂2Ft/∂x∂D are given in (3.6) and (3.7), and those for
∂BP,n/∂S and ∂BP,n/∂BT |S can be found in (3.24) and (3.25).

The coil geometry is constructed by minimizing the coil-penalty functional. With a
finite number of discrete coils, the optimal coils will not exactly produce the required
magnetic field. It may be beneficial for a combined plasma–coil optimization to minimize
the quadratic-flux error ϕ2 = ϕ2(Dn, c,D) The required derivative is

∂ϕ2

∂z
= ∂ϕ2

∂Dn
· ∂Dn

∂z
+ ∂ϕ2

∂c
· ∂c
∂z

+ ∂ϕ2

∂D . (5.6)

The analogous functional derivative, ∂ϕ2/∂D, is given in (3.19).

5.2. Generalized fixed-boundary optimization
We can consider the independent degree-of-freedom in the optimization to be the
total normal field on the computational boundary, z ≡ BT,n on D. Here D is assumed
to lie outside the plasma boundary and to remain fixed during the calculation. The
equilibrium satisfies ∂Ft(x,BT,n,D)/∂x = 0. The required normal field is Dn = BT,n −
BP,n(S,BT |S+,D). The coil geometry satisfies ∂E(c,Dn,D)/∂c = 0. Expanding and
collecting terms, we obtain

∂x
∂z

= −
(
∂2Ft

∂x∂x

)−1

· ∂2Ft

∂x∂BT,n
, (5.7)

∂c
∂z

= −
(
∂2E
∂c∂c

)−1

· ∂E
∂c∂Dn

· ∂Dn

∂z
, (5.8)

where
∂Dn

∂z
= 1 − ∂BP,n

∂x
· ∂x
∂z

(5.9)

and where
∂BP,n

∂x
= ∂BP,n

∂S · ∂S
∂x

+ ∂BP,n

∂BT |S · ∂BT |S+

∂x
. (5.10)

The analogous functional derivatives for ∂E/∂c∂Dn, ∂BP,n/∂S and ∂BP,n/∂BT |S are given
in (3.17), (3.24) and (3.25). Note the use of BT |S− in (5.5) and BT |S+ in (5.10). The
derivative of the quadratic-flux error is

∂ϕ2

∂z
= ∂ϕ2

∂Dn
·
(

1 − ∂Bp,n

∂x
· ∂x
∂z

)
+ ∂ϕ2

∂c
· ∂c
∂z
. (5.11)

The analogous functional derivative for ∂φ2/∂Dn is given in (3.11).

5.3. Quasi-free-boundary optimization
In this case, we consider the independent degree-of-freedom in the optimization to be
the required external normal field on the computational boundary, z ≡ Dn on D. For
the equilibrium calculation, we assume that the ‘actual’ external normal field is equal

https://doi.org/10.1017/S0022377821000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000271


18 S. A. Henneberg, S. R. Hudson, D. Pfefferlé and P. Helander

Optimization name Independent
degree-of-freedom,
z

Dn
∂x
∂z

∂c
∂z

∂ϕ2

∂z

Fixed-boundary Plasma
boundary,
S

−BP,n (5.2) (5.3) (5.6)

Generalized
fixed-boundary

Normal
component of
total magnetic
field, BT,n, on
computational
boundary, D

BT,n − BP,n (5.7) (5.8) (5.11)

Quasi-free-boundary Normal
component
of the required
magnetic field,
Dn, on D

z (5.12) (5.13) (5.14)

Free-boundary (coil) Coil geometry, c Not required (5.15) 1 (z = c) 0 (ϕ2 = 0)

TABLE 1. Overview table of the different optimization approaches.

to the required external normal field, BE,n = Dn; i.e. we assume that the equilibrium
satisfies ∂Fe(x,Dn,D)/∂x = 0. The virtual casing integral is not explicitly required as
it is implicitly included in the construction of the virtual-casing self-consistent vacuum
field, (4.4). The coil geometry satisfies ∂E(c,Dn,D)/∂c = 0.

Expanding and collecting terms, we obtain

∂x
∂z

= −
(
∂2Fe

∂x∂x

)−1

·
(
∂2Fe

∂x∂BE,n

)
, (5.12)

∂c
∂z

= −
(
∂2E
∂c∂c

)−1

·
(
∂2E
∂c∂Dn

)
(5.13)

and for the quadratic-flux error

∂ϕ2

∂z
= ∂ϕ2

∂Dn
+ ∂ϕ2

∂c
· ∂c
∂z
. (5.14)

5.4. Free-boundary (coil) optimization
In this final case, the independent degree-of-freedom in the optimization is the
coil geometry, z ≡ c. The equilibrium satisfies ∂Fe(x,BE,n,D)/∂x = 0, where BE,n =
BE,n[c,D] is computed using the Biot–Savart integral.

We obtain
∂x
∂z

= −
(
∂2Fe

∂x∂x

)−1

· ∂2Fe

∂x∂BE,n
· ∂BE,n

∂c
. (5.15)

The analogous functional derivative for ∂BE,n/∂c is given in (3.13). The coil geometry is
given directly, c = z.
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Since the input to the equilibrium calculation, BE,n, is computed directly from the actual
coils there is no coil error, ϕ2 = 0.

A summary of the 4 different combined plasma-coil optimization algorithms can be
found in Table 1.

6. Discussion

In this paper, we have categorized and investigated four different combined plasma–coil
optimization approaches and proposed a novel method for improving free-boundary
MRxMHD equilibrium calculation. We began by summarizing all the functional
derivatives of the MRxMHD energy,16 the coil-penalty and the virtual-casing integral
needed for a combined plasma–coil optimization. We emphasized that absence of
an energy-principle formulation with an explicit boundary condition on the normal
component of the external magnetic field on the computational boundary if it
does not coincide with the plasma boundary. This construction of the field in the
vacuum region is advantageous for the free-boundary optimization approach. For this
special case, we proposed solving for the required field using a weak formulation.
Finally, we explicitly stated which derivatives are necessary for the four distinct
combined plasma–coil optimization algorithms: fixed-boundary optimization, generalized
fixed-boundary optimization, quasi-free-boundary optimization and free-boundary (coil)
optimization. To the best of our knowledge, all existing stellarator optimization
algorithms can be grouped in either the fixed-boundary optimization or the free-boundary
optimization approach. The collection of these four distinct optimization algorithms helps
to clarify certain intrinsic problems of combined plasma–coil optimization, as we will
discuss later in this section.

The novel proposed approach for calculating the virtual-casing self-consistent vacuum
field will reduce the cost of the free-boundary calculation to something comparable to
that of a fixed-boundary calculation. A full-Newton method, with analytic derivatives, can
be used for both. In the proposed approach, in (4.4) appears the Laplace-virtual-casing
matrix Lvc = A − B, which is an important matrix that deserves some discussion. This
matrix, in a vague sense, ‘connects’ the plasma to the external magnetic field. Since it
is not symmetric, it cannot directly follow from an energy principle, although there are
roundabout ways to force this to happen (e.g. by introducing adjoint degrees of freedom).
Investigation of the well-posedness of the Laplace-virtual-casing problem is the subject of
future publication.

On the basis of the summary of the four distinct optimization algorithms presented in
§ 5, we now discuss the differences and potential advantages and disadvantages of the
various optimization algorithms described above. The independent degree-of-freedom is
(i) a two-dimensional surface, S(θ, ζ ), where θ and ζ are poloidal and toroidal angles,
embedded in 3-D space for the fixed-boundary approach; (ii) a scalar function, BT,n(θ, ζ ),
with the constraint that the net-flux is zero for the generalized fixed-boundary approach;
(iii) a similar function, Dn(θ, ζ ), for the quasi-free-boundary approach; and (iv) a discrete
set of one-dimensional curves embedded in 3-D space, ci(θ) for i = 1, . . . ,NC, for the
free-boundary (coil) approach. Note that a surface is really just one scalar function of
two angles: even though some codes represent a surface using two functions, namely R
and Z, this introduces a tangential null space, which is removed by exploiting spectral
condensation (Hirshman & Meier 1985; Hirshman & Breslau 1998; Lee et al. 1988).

16We could have used the ideal MHD functional instead of the MRxMHD functional. In fact, we believe that this
would have simplified some of the algebra; however, we chose MRxMHD because it can treat rational surfaces better
than ideal MHD.

https://doi.org/10.1017/S0022377821000271 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000271


20 S. A. Henneberg, S. R. Hudson, D. Pfefferlé and P. Helander

Also, in (iv) we have restricted attention to when the external field is provided by a finite
number of closed current filaments; other representations can be included.

For the quasi-free-boundary approach, the theory of ‘efficient fields’ can be used
when Dn is the independent degree-of-freedom (Landreman & Boozer 2016) to determine
which Fourier spectrum of the normal component of the magnetic field corresponds to
distant coils. Using only efficient fields, the optimization space can be effectively reduced
compared with the fixed-boundary and generalized fixed-boundary approaches. For the
free-boundary (coil) algorithm, we expect that a concise parameterization of the coils can
be introduced possibly including some engineering constraints which could also reduce the
optimization space efficiently. For the other approaches, we suggest using some measure
of the coil error in total cost function: the quadratic-flux error would be a good target, and
targets weighting resonant normal field errors are probably better.

In each presented case, the ∂2F/∂x∂x matrix needs to be inverted to calculate ∂x/∂z.
This is the equilibrium stability matrix, and near marginal stability its eigenvalues vanish.
This suggests that the optimization can encounter singular points. Physically, this has
to do with the fact that if a plasma is only marginally stable the equilibrium can be
changed substantially by even a small perturbation. This presumably would induce a large
change in the coil geometry, whose optimal shape is therefore very uncertain. Marginal
stability is a particularly relevant and important case. Toroidal confinement of fusion
plasmas typically improves as the plasma pressure and/or currents increase, but pressure
and currents ultimately are responsible for instabilities. An economically viable fusion
reactor would, presumably, operate at the highest fusion-performance parameters but also
sufficiently far from bifurcation boundaries in parameter space so that small variations
could be controlled. In practice, it would be probably possible to avoid singular points of
the stability matrix by including a target of stability in the stellarator optimization and by
starting the optimization with a stable state.

Similarly, in all but the last case, the ∂2E/∂c∂c matrix needs to be inverted to calculate
∂c/∂z. Small changes in the equilibrium may result in large changes to the coils if this
matrix has a small eigenvalue.

Algorithms for combined plasma–coil optimization might become problematic near
marginal stability boundaries, particularly if the response in either the plasma or the coils
to small variations is not well understood. Depending on the plasma and coil properties
chosen, there might be bifurcation boundaries in the optimization parameter space, which
determine which initial conditions will converge to which local minima.

Marginal plasma stability is a lower-dimensional subspace of the full space of
configurations, and it can be defined when there is a direction in which there is no
variation, i.e. there are eigenvalues that are zeros. A similarly defined marginal stability
subspace exists in the coil space. The stability boundary of the combined plasma–coil
optimization, in the parameter space denoted by z, will be a combination of both.
Depending on the plasma, P(x), and coil, C(c), properties chosen, there may exist
subspaces for which ∂P/∂x = 0 and ∂C/∂c = 0, and there may be additional bifurcation
boundaries in T (z), depending on what T (z) is chosen to be. For robust multiobjective
functional optimization, it would be advantageous to understand separately the stability
boundaries in the plasma, coil and optimization spaces for a variety of relevant plasma
and coil properties.

In this paper, we focused on the ∂x/∂z and ∂c/∂z part of (5.1), because these derivatives
appear independently of which properties one wants to tailor in the optimization. We
neglected the actual cost function with the equilibrium, P , and coil, C, properties and their
derivatives because these quantities are problem specific; for example, a reactor-grade
plasma has different design criteria than a research experiment. Recently, much work
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has been devoted to the development of adjoint methods and automatic differentiation
to calculate derivatives of the plasma and coil properties, e.g. for the rotational transform,
neoclassical transport and for the volume averaged β (Landreman & Paul 2018; Paul et al.
2018; Antonsen et al. 2019; Paul et al. 2019; Carlton-Jones et al. 2020). These methods
promise significant advantages for stellarator optimization.

For both the equilibrium calculation and the coil calculation, both descent and
Newton-style methods can be used. Descent methods can be employed for combined
plasma–coil optimization. An interesting question is whether or not all these descent
calculations can be performed simultaneously; for example,

∂x
∂τ

= −α∂F
∂x
,

∂c
∂τ

= −β ∂E
∂c
,

∂z
∂τ

= −∂T
∂z
, (6.1a–c)

where τ is an arbitrary integration parameter, and α and β can be chosen for numerical
stability so that, for example, the ‘inner’ equilibrium and coil geometry calculations
are sufficiently converged so that the ‘outer’ optimization calculation is provided with
sufficiently accurate information. The equations in (6.1a–c) can be thought of as a
dynamical system; and, like most dynamical systems, the location and stability of the
fixed points of (6.1a–c) gives important information about the ‘dynamics’ (Strogatz 2018),
which in this case is the convergence and stability properties of the combined plasma–coil
optimization.
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