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Abstract

By using the spectral Galerkin method, we prove a result on the global existence in time of
strong solutions for a system of equations of magnetohydrodynamic type. Several estimates
for the solution and their approximations are given. These estimates can be used in the
derivation of error bounds for the approximate solutions.

1. Introduction

In several situations the motion of incompressible electrical conducting fluids can be
modelled by the so-called equations of magnetohydrodynamics, which correspond to
the Navier-Stokes equations coupled with Maxwell's equations. In the case where
there is free motion of heavy ions, not directly due to the electric field (see [10,11,9]),
these equations can be reduced to the form

dh 1
Ah + u.Vh - h.Vu = -Vui,

dt /JUT (i.i)
= 0, div/i = 0,

In these equations we have assumed homogeneous boundary conditions just for
simplicity. In standard ways, the nonhomogeneous case could be treated by imposing
customary conditions on the boundary data.
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Here, u and h are respectively the unknown velocity and magnetic fields; p* is
the unknown hydrostatic pressure; w is an unknown function related to the motion
of heavy ions (in such way that the density of electric current, j 0 , generated by this
motion satisfies the relation roty0 = — aVw); pm is the density of mass of the fluid
(assumed to be a positive constant); \L > 0 is the constant magnetic permeability
of the medium; a > 0 is the constant electric conductivity; r) > 0 is the constant
viscosity of the fluid; / is a given external force field.

The stationary problem corresponding to (1.1) was considered by Chizhonkov [3],
while the question of the (local) existence of a solution of the evolution problem (1.1)
was analysed by Lassner [7], making use of semigroup techniques similar to ones
in Fujita and Kato [5] (who also studied the asymptotic behavior of the solution as
t -» 0+). The more constructive spectral Galerkin method was used by Boldrini and
Rojas-Medar [2] to obtain local-time strong solutions.

In this paper we consider the problem of the global existence of strong solutions of
(1.1), with homogeneous boundary conditions for u and h for simplicity of exposition.
The spectral Galerkin method of approximation will be used. Thus, the results in this
paper form the theoretical basis for future numerical analysis of the problem: here
we shall obtain estimates for the approximate solutions that will be fundamental
in a forthcoming paper in which optimal uniform error estimates for such Galerkin
approximations will be obtained.

The paper is organized as follows. In Section 2 the basic assumptions and results
that will be used later in the paper are stated. We also rewrite (1.1) in a more suitable
weak form, describe the approximation method and state the results of the paper
(Theorems 4, 5, 6 and 7). The following sections will be devoted to their proofs.

2. Preliminaries and results

Let fi c R", n = 2 or 3, be a bounded domain with boundary 9ft of class C11.
Denote by //s(ft) the Sobolev spaces on ft with norm || • | | j , (•, •) denoting the L2-
norm on ft. //o'(ft) is the completion of C£°(ft) under the norm || • ||i. Also, denote
by Lp(ft) for 1 < p < oo the usual Lebesgue spaces and by || • \\LP the Z/-norm
on ft. With the same symbols denote the spaces of n-dimensional vector functions.
If B is a Banach-space, denote by Lq([0, T); B) the Banach space of the fi-valued
functions defined in the interval [0, T) that are L*-integrable in the sense of Bochner
and by Lq

loc(\0, T)\ B) the fl-valued functions defined in the interval [0, T) that are
L*-integrable in [0, a], for any a < T < +00.
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We put

C~a(fi) = {v G C0°°(n)/divi; = 0},

H= closure of C™a(£2) in (L2(Q))n,

V= closure of C0°°CT(ft) in (// '(«))".

It is possible to show that

V = {v e //o'(fi)|divv = O}.

Recall the Helmholtz decomposition of a vector field: (L2(S2))" = H 0 G, where
G = {(f>\^) = Vp,pe #'(£2)}.

Throughout the paper P will denote the orthogonal projection from L2(Q) onto H.
The operator A : / / -> H given by A = - P A with domain D(A) = (H2(£2))n D V
is called the Stokes operator. It is well known that A is a positive definite self-adjoint
operator and it is characterized by the relation

(Aw, v) = (Vio, Vu) for all w € D(A), v e V.

Observe that for the regularity properties of the Stokes operator, it is usually
assumed that £2 is of class C3, this being in order to use Cattabriga's results [4, 12]. We
use instead the stronger results of Amrouche and Girault [1] which imply, in particular,
that when Au e L2(Q) then u e H2(Q.) and \\u\\Hi and ||.Au|| are equivalent norms
when SI is of class C' •'.

The operator A'1 is linear continuous from H into D(A), and, since the injection
of D(A) in H is compact, A~l can be considered as a compact operator in H. As an
operator in H, A~l it is also self-adjoint. By a well-known theorem of Hilbert, there
exists a sequence of positive numbers fij > 0, (j,j+1 < \Xj and an orthonormal basis
of H, (Wj), such that A~lWj = iXjWj. We put kj = ixj]. Since A~l has its range in
D(A) we obtain that AWJ = kjWj, Wj e D(A), 0 < k\ < ... <kj < ki+\ < ... and
Iim7_»+oo kj = +oo. Also, {Wj}^ is an orthonormal basis for H and [wj/y/k]}. and
{Wj/kj}Jix form an orthonormal basis in V (with the inner product (Vw, Vv),u, v e V)
and H2(Q.) D V (with the inner product (AM, AU), M, u € D(A), respectively).

By using the properties of P, we can reformulate the problem (1.1), with homo-
geneous boundary conditions, as follows: find u, h, in suitable spaces to be exactly
defined later on, satisfying

a(ut, <t>) + a(u.Vu, (/>) - (h.Vh, (j>) + v(Au, 0) = (a/, </>),

(h,, V0 + (II.VA, $) - (A.VII, tfr) + y(Ah, f) = 0

for 0 < t < T, V0, V G V and

M(0) = K 0 ,
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Here we have a = pm/ix, v = t]/n, y =
Now we define strong solutions of the problem (2.1).

DEFINITION. Let u0, h0 e V and / e L°°([0, oo); L2(Q)). By a strong solution of
the problem (2.1), we mean a pair of vector-valued functions (u, h) that satisfies (2.1)
and such that u,he L°°([0, oo); V) n Ljgc([O, oo); D(A)).

REMARK. In what follows, we prove that if (w, h) is a strong solution of (2.1) then
u,, h, G Ljoc([0, oo]; H). This condition, together with u, h € Ljoc([0, oo); D(A)),
implies by interpolation (see [12, p. 260]) that u, h are almost everywhere equal to
a continuous function from [0, T] into V(0 < T < +oo). Consequently, the initial
conditions M(0) = u0 and h(0) = h0 are meaningful.

To prove existence of strong solutions we apply the spectral Galerkin method to
(2.1). That is, we consider the finite-dimensional subspaces Vk = span[u>\ . . . , wk],
k G N, the corresponding orthogonal projections Pk : H - • Vk and the approximate
solutions

uk(x, t) = £ct t(0u/(*) , hk(x, t) =

developed in terms of eigenfunctions of the Stokes operator. Then, the coefficients
cik(t) and dik{t) are found by requiring that uk and hk satisfy the following equations:

auk + vAuk +aPk(u
k.Vuk) - Pk(h

k.Vhk) - aPkf = 0,

hk + yAhk + Pk(u
k.Vhk) - Pk(h

k.Vuk) = 0, (2.2)

M*(0) = Pku0, hk(0)= Pkh0.

This is equivalent to the weak form

a(uk, <}>) + V(VII*. V0) +a(uk.Vuk, <j>) - {hk.Vhk, 0) = <*(/, </>),

(hk, xj/) + y(V/i*, VV0 + (uk.Vhk, x//) - (hk.Vuk, f) = 0, (2.3)

«*(0) = Pku0, hk(0) = Pkh0, V0, ty e Vk.

By using these approximations, Boldrini and Rojas-Medar [2] proved a local-time
existence theorem for (2.1). Their results are the following.

PROPOSITION 1. Let the initial values u0, h0 e V and the external force f € L2(0, T;
(L2(£2))"). Then, on a (possibly small) time interval [0, T{], 0 < Tx < T, problem
(2.1) has a unique strong solution («, h). This solution belongs to. C([0, 7i], V).
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Moreover, there exist continuous functions F and G such that for any t e [0, T\],

2 + \\Ah(r )\\2)(||Aii(r,-)ll2 + l|A/i(T.-)lf)</r<F(O,
o

and

I {\\u,i.T,-)\\2 + \\h,{x,-)\\2)dx<G{t).
Jo

Also, the same kind of estimates hold uniformly in k € Mfor the Galerkin approx-
imations («*, hk).

PROPOSITION 2. In addition to the assumptions of Proposition I, assume that w0, ^o €
V D (H2(£2))n and that f, e L2(0, 7; (L2(ft))"). Then, the functions u, h satisfy

\\u,(t, Oil2 + \\h,(t, OH2 + f ( | | V M , ( T , Oil2 + | | V A , ( T , 0| |2)rfr < H(t);
Jo

\\Au(t, -)\\2 + \\Ah(t, -)\\2 < L(t);

I (||«,,(r, Ollv- + IIMT, -)fv.)dx < M(t),
Jo

foreveryt e [0, T\\, where H(), L() and M() are continuous functions in t e [0, T\\.
Also, u,h e C'([0, 7,]; //) n C([0, 7,], D(A)).

Moreover, the same kind of estimates hold uniformly in kfor the Galerkin approx-
imations (uk, hk).

As a consequence of the above, using the results of Amrouche and Girault [1], we
conclude the following.

PROPOSITION 3. Under the hypothesis of Proposition 1, there exist unique functions

p,w e L2(0, 7 ; / / ' ( f i ) /K) such that when p* = p - —h2, (u, h, p*, w) satis-

fies (1.1). Under the hypothesis of Proposition 2, p,w e L°°(0, 7,; / / ' (£2)/R) D

C([0, 7,],L2(ft)/R).

Now we state the results that will be proved in this paper.

THEOREM 4. Suppose that n = 3, thatu0, v0 e V and that f € L°°([0, oo); (L2(Q))n).
If ll«ollv, \\ho\\v and ||/||z.oo([0oo).i2(n)) are sufficiently small, then the solution (u, h)
of problem (2.1) exists globally in time and satisfies u 6 C([0, oo), V). Moreover,
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for any 6 > 0 there exists some finite positive constants M and C such that

sup{||Vw(OII,||V/i(OII} = M, (2.4)
(>0

supe-*' f ees{\\u,(s)\\2 + \\h,(s)\\2}ds < C, (2.5)
(>0 Jo

supe"6" / ees{\\Au(s)\\2 + \\Ah(s)\\2}ds < C. (2.6)
r>0 Jo

Also, the same kind of estimates hold uniformly in kfor the Galerkin approxima-
tions.

REMARK. We have distinguished the constant in the first of the above estimates because
it will play a special role in many points in the arguments that follow.

THEOREM 5. Under the hypothesis of Theorem 4 and in addition u0, h0 e V D //2(£2)
and f, € L°°([0, oo); (L2(Q))"), the solution obtained in Theorem 4 satisfies

ueC([0,oo); {H2<Sl))n n V) n C([0, oo); H).

Moreover, for any 9 > 0 there exists one finite positive constant C such that

, (2.7)

C, (2.8)
r>0

f eflJ(||Vii(i)||2 + \\Vh(s)\\2)supe"9' f eflJ(||Vii,(i)||2 + \\Vh,(s)\\2)ds < C, (2.9)
J

supe"9' f
»>o Jo

supe"9' f
/>0 Jo

tf'(\\u,,(s)\\2
v. + WhuisnlJds < C. (2.10)

Also, the same kind of estimates hold uniformly in kfor the Galerkin approximations.

For the system (2.1) it is possible to recover the classical result, that usually holds
for the Navier-Stokes equations, that in the two-dimensional case it is not necessary
to assume the smallness of the initial data and external force. In fact, we have as
follows.

THEOREM 6. Supposethatn = 2, thatu0, hoe Vandthat f 6 L°°([0, oo); (
Then the solution (u,h) of problem (2.1) exists globally in time and satisfies u e
C([0, oo); V). Moreover, the estimates (2.4)-(2.6) are true for any 9 > 0.
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THEOREM 7. Under the hypothesis of Theorem 6 and if in addition u0, h0 e V n
(//2(f2))n and f, 6 L°°([0, oo); (L2(Q))n), then the solution (u, h) satisfies

u,he C([0, oo); V n (//2(f2))") n C([0, oo); H) .

Moreover, the estimates (2.7)-(2.10) are true for any 6 > 0.

As a consequence of the above, using the results of Amrouche and Girault [1], we
conclude the following.

THEOREM 8. Under the hypothesis of Theorem 4 or 6, there exist unique functions

p,w 6 L2
OC(0, oo; Hl(Q)/R) such that when p* = p - —h2, (u, h, p*, w) is a

solution of (1.1) and satisfies for any 6 > 0 the condition

sup*?-"' / ees{\\p\\2
HS(n)m + \\w\\2

HHn)/R)ds < +oo. (2.11)
<>o Jo

Under the hypothesis of Theorem 5 or 7, p,w e L°°(0, oo; / / ' ( f i ) /K)nC( [0 , oo);
L2(Q)/R) and satisfy

sup{||/?||2w,(fi)/K + IM|2w,(n)/R} < +oo. (2.12)
>o

3. The proofs of Theorems 4 and 5

We start by proving the boundedness in time of || V«(r)||, ||V/i(O||. From Boldrini
and Rojas-Medar [2, p. 8], we have the differential inequality

j \ * ™ i i ' " i i ' i i * •" i i / • - i i • " " i i • / i i * "• •• i i — 1 \ I I I I I | | ' I I / I ^ 3 1 \ * /

dt

where C, C\ and C3 = C sup,>0 ||/(?)|| are positive constants. Now, observe that
there exist C4 > 0, C5 > 0 such that

C4a||V«||2 < v\\Au\\2,

So, inequality (3.1) becomes

d

di'
<C1(a5||VM||10+||V/i||10)-C2(a||VM||2 + ||V/i||2) + C3, (3.2)
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where C2 > 0.
Letting \(r(t) = a\\ Vw(0||2 + || V7t(f)||2 produces the differential inequality

d\I/
- 7 - < C , T A 5 - C 2 ^ + C3,

at

We consider the corresponding differential equation

dd>-£ = Crf - C20 + C3 = F(C3,at
0(0) =

Results from the differential inequalities imply \jr{t) < <j>{t) for all t in the interval
of existence. Observe that, when C3 = 0, F(0,<p) = C\4>5 — C24>- Consequently,
F(0, </>) has a simple root given by r(0) = (C2/Ci)1/4. This root is unstable, and so,
for C3 small, F(C3, </>) also has one unstable simple root r(C3) close to r(0). Thus, if
0 < V(0) = </>(0) = r(C3), we have 0 < f (t) < <p(t) < r(C3) < +oo for all / in the
interval of existence. Thus, there exists a constant M > 0 such that

sup{||V«||, ||V/i||} = M < + o o .

Now, we proceed to prove the other stated estimates. They should be proved first
for the approximations (uk, hk) and then carried to (M, h) in the limit. Since that is
a standard procedure and the computations are exactly the same, to ease the notation
we will work directly with (u, h) in the rest of the paper. The technique of using
exponentials as weighting functions in time was inspired by Heywood and Rannacher
[6].

Multiplying the inequality (3.2) by e6', 9 > 0, and integrating in time from 0 to t
yields

+ v / ees\\Au{s)\\2ds + Y f ees\\Ah(s)fds
Jo Jo

+ C.a5 [ ^ | | V M ( 5 ) | | 1 0 ^ + C, / ^ | |VA(*) | | 1 0^
Jo Jo

+ a6 I ees\\Vu(s)\\2ds + e f e?'\\Vh(s)fds + C3 f e6sds.
Jo Jo Jo

On multiplying by e~e' and recalling that ||V«(f)ll and ||V/i(r)|| are uniformly
bounded, we get that e~e' /0' e

9s\\Au(s)\\2ds and e~e' j'Q eBs\\Ah(s)\\2ds are also uni-
formly bounded. Setting v = u, in (2.1) (actually, setting v = uk in (2.3)), yields

a||«,||2 = a(f,u,) + (h.Vh,ut) -a(u.Vu,u,) -v(Au,u,).
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From this, we have

f ees\\u,{s)\\2ds<C f ees(\\f{s)\\2 + \\h.Vh\\2 + \\u.Vu\\2 + \\Au\?)ds. (3.3)
Jo Jo

Now, bearing in mind (2.4) and the Sobolev embedding H2 <=->• L°°, the following
estimate is obtained.

||M.VM||2 < ||H||£..||VH||2 < C| |AM| |2 | |VM||2 < CM\\Au\\2.

Similarly, we have
Wh.Vhf < CM\\Ah\\2.

Using these estimates in (3.3) produces

e~es fees\\ut{s)\\2ds<C{M)e-es f ee'(\\f\\2 + \\Au\\2 + \\Ah\\2)ds.
Jo Jo

Consequently, by (2.6) together with the fact / e L°°([0, oo), L2(Q)), we conclude
the desired estimate for u,. The estimate for h, is proved in a similar way. Observe that
the previous estimates hold true for 0 > 0 if we are considering finite time intervals
[0, T],0 < T < +oo (with the suprema obviously depending on T). This comes from
the method of proof. Thus, in a finite interval [0, T], one can take the last estimates
with 6 = 0.

REMARK. AS in the end of the previous proof, observe that all these estimates hold
true for 9 = 0 on the time interval [0, oo) if we also include in the hypothesis
/ € L2([0, oo); L2(Q)).

PROOF OF THEOREM 5. To prove Theorem 5 further estimates for u, h (actually uk and
hk) are needed. To this end, differentiate (2.1) (i) and (ii) (actually (2.3) (i) and (ii))
with respect to / and set </> = u, and i/ = h, (actually <p = u) and -ty — hk). We are
left with

?xll"'H2 + HIVwJ2 = «(/„ «,) - O(M,.VII, u.) + (A,.VA, u.) + (A.VA,, «,),
2 at

~\\h,\\2 + Y\\Vhtf = -(u,.Vh, h,) + (h,.Vu, h.) + (h.Vu,, h,),
2 at

since (u.Vu,, u,) = (M.V/I,, h,) = 0.
Adding the above inequalities produces

^ ( a l k l l 2 + ll^ll2) + v||V«(||
2 + yllVM2

2 at
Vu,hl), (3.4)
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since (h.Vh,, u,) + {h.Vu,, h,) = 0. From the Sobolev-type inequality

\\<p\\u < 1 / 4 3 / 4

we have

< C\\Vu\\"\\u,\\2 + \v\\Vu,\\2

o

and

\(h,.Vh,u,)\ < \\h,\

Analogously, one can prove

\(u,.Vh, h,)\ < C||VA||8||A,||2 + ^| |VA,| |2 + \v\\Vu,\\2,
o o

|(A,.V«, h,)\ < C||V«||||Af|| +
o

Thus, by using the above inequalities in (3.4), one obtains

^ 2 2 2 ,||2 < C(MK\\u,\\2 + \\h,\\2) + C\\f,\\2.

Multiplying the above inequality by e6' and integrating the resulting inequality
from 0 to t produces

/
Jo

<C(M) [ ees(\\ut(s)\\2 + \\h,(s)\\2)ds + C f ees\\Ms)\\2ds
Jo Jo

Jo e {<Xl]U
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Multiplying the above inequality by e~e' gives

/

' Y

<C(M)e-ei I ees(\\Ul(s)\\2 + \\h,(s)\\2)ds + Ce~ei [ ees\\f,(s)\\2ds
Jo Jo

'+9e-e' f ee\a\\Ul(s)\\2 + \\h,(s)\\2)ds
Jo

thanks to the previous estimates. So, it is enough to find estimates for ||w,(0)||2 and
||fc,(0)||2 (actually ||«f(0)|| and ||Af(O)||).

For this, recall that u0, /zo(w£; Aj) 6 V n H2(Q). Consequently, setting </> = «, and
yj/ = h, in (2.1) (actually <p = u) and \jr = hk

t in (2.3)), yields

a||«i II2 = « ( / . «<) - v(Au, u,) - a(u.VM, U,) + (h.Vh, «,),

||Ar||
2 = (A.VII, A,) - (II .V/I , h,) - y(Ah, h,).

The above inequalities imply

a\\Auo\\ ||V«o|| + I|AAO|| ||VA0|| < C < +oo,

C < +oo.

Taking 0 = Au and ^ = Ah in (2.1) (actually 0 = Auk and ^ = Ahk in (2.3))
produces

v\\Au\\2 < C(\\f\\2 + \\u,\\2 + HK.VHII2 + \\h.Vh\\2), (3.5)

y\\Ah\\2 < C(\\h,\\2 + \\u.Vh\\2 + \\h.Vu\\2). (3.6)

Observe that

||M.VM||2 < | |M| | 2
4 | |VM| | 2

4 < CUVMIKUVMH1 "

< C||VM||5/2||A«||3/2 < C||VM||10

Analogously, we obtain
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Now, adding inequalities (3.5) and (3.6) and using the above estimates, produces

v\\Au\\2 + Y\\Ah\\2 < CQff + ||u,||2 + \\h,\\2 + ||VM||10 + ||VA||10

< C < +oo.

Thanks to the previous estimates, this implies sup|| Au{t)\\2 < C, sup|| Ah(t)\\2 < C.
f>0 (>0

Differentiating (2.1) (i) (actually (2.5) (i) with respect to t) yields

autt = P(af, + h,.Vh + h.Vh, - au,.Vu - au.Vu,) - vAu, = g. (3.7)

Consequently,
e~ei f e9'\\utl\\Vds<e-et f ee>\\g\\2

v.ds.
Jo Jo

This is sufficient to estimate the right-hand side. To do so, observe that

\\P(u,.Vh)\\v.= sup \(u,.Vh,v)\

<C sup ||VII,|| \\Vh\\ \\Vv\\
\\v\\v<i

Consequently, for all t > 0,

e-e, f ^| |p(M(_s7h)\\2
v.ds < CM2e~et f ^ | | V « , | | 2 ^ <

Jo Jo

thanks to estimate (2.9). Also,

||AM,||V- = sup \(Au,,v)\= sup | (VM M VW)|< | |VM, | | .

Thus

e~et [ ees\\Au\\2ds < e~e' [ ees\\Vu\\2e~et [ ees\\Au,\\2
v.ds < e~e' [ ees\\Vut\\

2ds < C.
Jo Jo

The other terms in (3.7) are estimated analogously. We obtain

sup*?-*' f e*\\ut,\\
2

v.ds < supe-9' I ee'\\g(s)fv.ds < C
(>0 ^0 '>0 Jo

and this completes the proof of the theorem.
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4. The proofs of Theorems 6 and 7

The remarks made at the beginning of the proof of Theorem 4 also hold here.
Working as in Boldrini and Rojas-Medar [2, p. 6], we have

^-HNI2 + HIV«H2 = «(/,«) + (h.Vh, u),
2 at
\^r\\h\\2

2 at

Adding the above identities gives

^ (a | | « | | 2 + ||*||2) + 2v||V«||2 + 2y ||V/z||2 = 2a(f, u) < C\\f\\2 + v\\Vu\\2.

By multiplying the above equation by e^' with 6 > 0 to be chosen later on, we
conclude that

Since \\<f>\\2 < Ca\\ V</>||2 for cj> € H^(Q), we have

forO < 6 < nun{2y/Cn, v/
The above inequality implies

a\\u{t)\\2 + P(r) | | 2 + Ce-e' I ^ ( | | V M ( 5 ) | | 2 + \\Vh(s)\\2)ds
Jo

< e-d'(a\\u0\\
2 + \\ho\\

2) + Ce''01 [ J'\\f{s)\\2ds
Jo

< «ll«oll2 + \\ho\\2 + Cll/ll2^ < C < +oo.

Taking 0 = Au and x// = Ah in (2.1), gives

? - r II Vu||2+ v|| Au||2 = «( / , AM) + (h.Vh, Au) - a(u.Vu, Au), (4.1)
2 at

r-H|V/j| |2 + Y\\Ah\\2 = (h.Vu, Ah) - (u.Vh, Ah). (4.2)
2 at

Recall the following inequality that is only true in the two-dimensional case (see
[8, p. 70])

\\4>\\L* <
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Using this inequality produces

\(h.Vu, Ah)\ < \\h\\L4Vu\\L4Ah\\

< Ce,s\\h\\2\\Vh\\2\\Vu\\2 + e\\Ah\\2 + S\\Au\\2.

Analogously,

\(u.Vu, Au)\ < Cs\\Vu\\4 + 8\\Au\\2,

\(u.Vh, Ah)\ < C£||«||2||V«||2||V/z||2 + e\\Ah\\2,

\(h.Vh,Au)\ < CE,s\\h\\2\\Wh\\4 + s\\Ah\\2 + S\\Au\\2.

Adding the identities (4.1) and (4.2) and using the above estimates, with suitably
chosen s and 8, yields

^(a | |Vu| | + \\Vh\\2) + v\\Au\\2 + y\\Ah\\2

at

< C(||V/z||2||VU||2 + ||VM||4 + \\Vhf)

In particular,

-^(a||VM||2 + ||V/z||2) < C(a||V«||2 + HV^H2)

Setting x//(t) = a\\ V«(r)||2 + ||V/i(r)||2 in the last inequality produces

at

Observe that CTA2 + C, < 2C^ 2 for^ > (C,/C)1/2, where C, = Csup,e[or j | | /(/) | | .
If i* = max {(C,/C)l/2, 1, a|| Vwoll2 + II V/io||

2}, then either 0 < V(0 < I* for all
t > 0 or there exists some interval [ti,t2],h > 'i for which or || V« (/,) ||2 +1| V/i (/,) ||2 =
I* and for t e [tut2] it is true that a||Vw(0H2 + ||V/i(f)ll2 > V- Then, due to the

choice of f, in this interval [tlt t2], —if < C^r2 holds or, equivalently,
at
d
— \wir< Cf.
at

Multiplying the above inequality by / ' gives

—e* In if < Ced'r{, + 6eh In f.
at
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Observe that there exists a positive constant p such that lni/r < p + p\jr. Using
this and integrating the last inequality from t\ to t e [t\, t2] gives

I e°sf{s)ds+Gp I edsds.
Jo Jt,Jt,

Hence,

In & (t)-e^'-Hn ir (tt) < (C+ 9p)e-St f e^sf(,s)ds +0p<T*' I e9s ds
J J

t f e^s

< (C + 9p)[a\\uo\\
2 + \\ho\\2

< (C + flp)[«||M0||
2 + Poll2 + ||/|li-] + P =

Consequently, since -e5(/ |~r) In \fr(f,) > — In ̂ (fi), we have ln(Vf(O/^0i)) <
which implies that for all r e [r,, t2]

Since this is independent of t\ and t2, we conclude that for all f > 0

a||VM(/)I|2 + ||V/i(/)||2 < max{£*, i*eu] = Te77.

The rest of analysis is now done exactly as in the three-dimensional case.

5. Proof of Theorem 8

Observe that (2.1) (i) and (2.1) (ii) are equivalent to Au = P(F) and Ah = P(G),
respectively, where F = af — au, — au.Vu + h.Vh and G = h.Vu — u.Vh — h,.

Under the hypothesis of Theorem 4 or 6 (respectively of Theorem 5 or 7), we have
F,G e L2

OC(0, oo; L2(S2)) (respectively, F, G € L°°(0, oo; L2(S2))).
Therefore, Amrouche and Girault's results [1] imply that there are unique p, w €

L2
oc(0,oo; HX{Q.)/R) (respectively, p, w € L°°(0, oo; H\Q)/R) n C([0, oo);

2 such that

—vAu + Vp = F, divM = 0, «|r = 0

and

-yAh + Vw = G, div/i = 0, h\r=0.

It is enough to take p* = p — —h2 and Theorem 8 is proved. Estimates (2.11)
(respectively (2.12)) follow easily from the previous estimate and the estimates given
in the above section. This completes the proof of the theorem.
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