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EINSTEIN-KAEHLER MANIFOLDS IMMERSED IN A 
COMPLEX PROJECTIVE SPACE 

HISAO NAKAGAWA 

A Kaehler manifold of constant holomorphic curvature is called a complex 
space form. By a Kaehler submanifold we mean a complex submanifold with 
the induced Kaehler metric. B. Smyth [5] has studied a complete Einstein-
Kaehler hypersurface in a complete and simply connected complex space form 
and classified completely the hypersurface. The local version of this result has 
been shown to be true by S. S. Chern [1], and partially by T. Takahashi [6] 
independently. On the other hand, K. Ogiue has also proved an w-dimensional 
compact Einstein-Kaehler submanifold immersed in an iV-dimensional com
plex projective space PNC is totally geodesic or the Ricci tensor S satisfies 
5 ^ (n/2)g, where g is the induced Kaehler metric (cf. see [4]). 

T h e purpose of this paper is to prove the following theorem. Throughout 
this paper, let Pn(c) be an ^-dimensional complex projective space of constant 
holomorphic curvature c. 

T H E O R E M . Let M be an n{^ 2)-dimensional Einstein-Kaehler submanifold 
immersed in Pn+P(c). If the immersion is full and the second fundamental form is 
parallel, then the following are true: 

(1) If p < n/2, then p = 1 and M is locally a complex quadric Qn. 
(2) If p è n{n + l ) / 2 , then p = n(n + l ) / 2 and Mis locally Pn(c/2). 

1. Pre l iminar ie s . In this section, we shall begin the self-contained discus
sion about Kaehler submanifolds in Pn+V(c) for convenience, and prepare for 
necessary formulas for later use. Let M be an n-dimensional Kaehler submani
fold immersed in Pn+V(c). We choose a local field of uni tary frames eif . . . , 
en, en+i, . . . , en+p in such a way that , restricted to M, ei} . . . , en are tangent to 
M. Let co1, . . . , ww, cow+1, . . . , un+p be the field of its dual frames. Then the 
Kaehler metric g of Pn+P(c) is given by g = 2 J2A^A^A~\ and the s t ructure 
equations of Pn+P(c) are given by 

(1.1) dœA + ZBUBA A œB = 0, œB
A + œA

B = 0, 

(1.2) dœB
A + E c ^ / A uB

c = VB
A

} ilB
A = ZC.DRABCT»>C A œD. 
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"(Throughout this paper, we use the following convention on the range of indices, unless 

otherwise stated: 

A, B, C, . . . = 1, . . . , «, n -f 1, . . . , n + p 

i, j , k, . . . = 1, . . . f » 

a, jS, y, . . . = n -f 1, • • • , n + p 
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Since the ambient space is a complex space form of constant holomorphic 
curvature c, we have 

(1.3) RBCD = 2 ( ^ B ^ C Z ) + 5 C 5 B D ) -

Restricting these forms to M, we have 

(1.4) co« = 0, 

and the induced Kaehler metric g of M is given by g = 2 2̂ co*cô*. It follows 
from (1.4) and Cartan's lemma that (1.1) implies 

(1.5) co " = X) A«V» A,/* = &,". 

Moreover, we obtain 

(1.6) du1 + X) « i V = 0, « / + «,' = 0, 
i 

(1.7) do)/ + X <*k\wjk = Œ/, û / = X Rjkïlc»>kAÛl, 
ft ft, I 

(1.8) dco/3* + X w7
a
Aco/37 = fl/, tyg" = S Ratif^AÛ1-

y ft, « 

From the above equations, we have 

(1.9) 0/ = Z {̂  («/««i + «*'«*) - E /* A " } " ^ ' . 
ft.Z V^ a / 

Similarly, it follows from (1.2), (1.3), (1.4), (1.5) and (1.8) that we have 

(1.10) fy" = D (|«A«+ Z V V V A * 1 . 

Now, with respect to these frames, the Ricci tensor 5 of M can be expressed 
as follows; 

(1.11) S = E ( - W ® co* + S3E1W* ® co1), 
ft, i 

where 5Ay = Srk = Skl are given by 

(1.12) Skl = —^—cbkl - Y. hkthjf. 

The scalar curvature R is also given by 

(1.13) R = n(n+l)c-2j^ hkl
ahkl

a. 
a,k, I 

This implies that we have 

(1.13)' n(n + \)c - R è 0, 

where the equality is valid if and only if M is totally geodesic. 
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If we define hijk
a and htjk

a by 

then we can easily obtain 

(1.14) htJk
a = A ,.,*«, A„*» = 0. 

Next we define hijkf and /^f* as follows: 

I I I I 

Then, by the similar and easy calculation, we have 

Î
Kijkl — hijlk i 

fowl" = 9 (fri?axi + A,/5*z + hkibji) 

~~ 2s (fthj "ik + #*ft %& + hij hub )hhi . 
P,h 

Awaking use of the second equations of (1.14) and (1.15), we easily have 

(1.16) X htm" = —z—chtj
a - X (hnth*i hi? + hik

ahkfhif) 
k * fi.k.l 

- Z) hkfhfhif 
P,k, l 

and 
Z-/ " * # ï " ^ = I JLi ^ij hij J _ — 2-*i hijiç hfj i 

a,i,j \a,i,j ' kl a,i,j 

(1-17) = - ( X htfhifôm + 2 X hjahjia) - 2 X hkfhijahjh
ahhf 

^ \a,i,j a,j ' a,P,i,j,k 

- X ( X htfhij* X hkh
ahhf) . 

We define three kinds of matrices A, H, Ha by 

A = (Af), A? = Z hM, 
i,3 

H = (A(Z/) for 2 ^ j , 

Ha = (^f/) for a fixed a. 

Then A is a /? X ^-hermitian matrix, the second matrix H is p X n(n -\- l ) /2 , 
i7a is an n X «-matrix, and we have the following mutual relation 

(1.18) HH* = A. 
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Using these matrices, we can express the last term of (1.17) with the following 
form 

C- ITTA • I + 2 2 Hjta) - 2 £ HfBjHjit - £ AjHjI,,, 

where / is an n X w-unit matrix. 

2. Einstein-Kaehler submanifolds. Let M be an ^-dimensional Einstein-
Kaehler submanifold immersed in Pn+P(c). Since the Ricci tensor S of M 
satisfies 

(2.1) S = f g , Skl = fn5kh 

where R is the scalar curvature, it follows from (1.12) and (2.1) that we have 

(2.2) Ç HaHa = « f e + i ^ lt g hkfhjt = n(n±lK-R ^ 

It implies that we get 

(2.3) Tr A = Tr £ HaHa = ^ + i)c ~ ^ . 
a ^ 

Making use of (2.2), we can simplify equation (1.16) as follows: 

(2.4) AH = 2-~n— H - AH, hm{ = ^ ~f° hi}" - Ç AfhJ. 

Moreover, since the scalar curvature R is constant and consequently the trace 
of the matrix A is also constant, we have from (1.17) 

/ o n v* j aT a 2R - n2c n(n + l)c - R ^ «7 Pl a 

(2.5) - 2^ Aii* km = ~ ôkl - 2^ Ap hkj hjl , 
a,i,j ^rî ^rl a,B,j 

so that we get 

(2.6) 0 è 2 I \ "*C TrA - Tr.42. 
In 

Because of the definition of the hermitian matrix A, the hermitian transforma
tion defined by A is positive semi-definite and it implies that eigenvalues of A 
are all non-negative. This means Tr A2 ^ (Tr A)2. Combining this inequality 
together with the inequality (2.3), we have 

(2.7) 0 è (R - n2c)TvA. 

3. Proof of theorem. Since the second fundamental form is parallel, we have 
the following mutual relation between the matrices A and H: 

(3.1) AH = 2 - ~ ~ H , 

https://doi.org/10.4153/CJM-1976-001-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-001-9


EINSTEIN-KAEHLER MANIFOLDS 5 

because of (2.4). From (1.18) and (3.1), we have 

This means tha t if we take an eigenvalue X of A, then X = 0 or (2R — n2c)/2n. 
First of all, we consider the case where there exists a point x in M a t which 

the matr ix A has no non-zero eigenvalues. Then it is easily seen t ha t A is a 
zero matrix, so t ha t x is a geodesic point. I t implies t ha t R = n{n + l ) c a t x . 
Since the scalar curvature R is constant , the equation is true on M. Accordingly 
M is total ly geodesic. 

On the other hand, suppose t ha t there does not exist a geodesic point. In 
other words, the matrix A has a t least one non-zero eigenvalue X = (2R — 
n2c)/2n} so tha t we get 

2R - n2c > 0, 

because the transformation defined by A is positive semi-definite. We investi
gate a property concerning the rank of matrices A and H. We denote by r(x) 
the rank of the matrix A a t any point x in M. Then the following result is 
verified. 

LEMMA 3.1. For any point x in M, we have 

(3.3) r(x) = r a n k # = — -2 
n{n(n + l )c — R\ 

2R - n2c 

Proof. From (1.18) and (3.1), we see easily tha t the rank of the matrix A 
is equal to tha t of the matrix H a t any point in M. Since a non-zero eigenvalue 
\(x) of A a t x satisfies X(x) = (2R — n2c)/2n, X(x) is constant on M, so tha t 
the multiplicity r(x) of X(x) is constant , too. On the other hand, we get the 
trace of A from (2.3). Thus we have the relation 

( w ( \ n(n + \)c - R 
r(x)\(x) = — 2 , 

and therefore it completes the proof. 

Next we shall investigate the range of the scalar curvature. 

LEMMA 3.2. 

v 2 7J , n(Sn + 2) 
R = n c or R < —— c. 

~ 4 
Proof. Since the second fundamental form is parallel, we get 

2 (hifôjci + hj "bu + hk?ô3i) 

X) (hh3
ahijf + hth

ahjk
fi + hifhhk

a)hhf = 0, 
0,h 
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because of (1.5). Transvecting hmi
ahjk

y to this equation, from (2.2) and (3.1) 
we have 

(3.4) £ BaHpByHjRf, = A {2R2 - n(3n + 2)cR + n\n + 2n + 2)c2}Hy. 
a,fi Ofl 

Now we define a matrix Gapy by 

Ga0y = HaHpHy + HyHpHa — r~ ; 0 \ » {A^Hy + ApHa). 
n c — \n — Z)K 

By direct calculation, it follows from (2.2), (3.2) and (3.4) that we obtain 

V r *r - n + 2 

a ,0,7 OK 

{n(3n + 2)c - ±R} {no - R){n(n + l)c - R){n(n + 2)c - R} 
X nzc- (n- 2)R 

Since the trace of the matrix on the left hand side is non-negative, the con
clusion of this lemma follows immediately from (1.13)' and (2.7). 

Taking account of Lemmas 3.1 and 3.2, we have the following equations: 

(3.6) r — 1 or r ^ - . 

LEMMA 3.3. There exists an {n + r)-dimensional totally geodesic submanifold 
M' in Rn+P(c), in which the given submanifold M is immersed, where r = rank 
A > 0. 

Proof. For the unitary frame {et, ea\ at any point x, we define the normal 
space to M at x, which is denoted by Nx, by 

N3 = { Ç ?ea:\? 6 c} , 
where C is the complex field. We define a mapping / of Nx X Nx into C by 

f(X, Y) = £ ^ A V , where X = £ £"*„ and F = Z A . 

Let i^p be a set of all hermitian matrices of order p, which is considered as a 
complex vector space. Then the unitary group U(p) operates on Hp as follows: 
For any hermitian matrix H in Hp and any unitary matrix U in U(p), 

U{H) = U*HU. 

Since the matrix A is invariant under U(p), the mapping/ is well-defined and 
it is a positive semi-definite hermitian form of order r, so that it can be nor-
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malized. This means tha t we can choose a new uni tary frame {eu eay e\\ 
such t ha t 

(3.7) <at
a 5* 0, cot

x = 0 for n + 1 ^ a S n + r, n + r + 1 S X ̂  » + p. 

By the definition of hijk
x, we have 

]C i i / « o = 0 for X ^ w + r + 1. 

I t implies t ha t 

(3.8) coa
x = 0 for a S n + r, X è » + r + 1. 

From (3.7) and (3.8) we can consider a d i s t r i b u t i o n , ^ defined by 

côx = 0, COÎX = 0, wa
x = 0 for a ^ w + r, \ ^ » + r + 1. 

Then it follows from the structure equations t ha t we obtain 

n n+r n+p 

dco = — 22 &i A&1 ~~ X ) ^« A&a ~~ z2 ^M A ^ X ^ n + r + 1 
i=l a=ra+l /z=ra+r+l 

= 0 ( m o d à , w < , « a ) > 

rc ra+ r n+p 

dcbi = — ]T co/Aco/ — X) ^« A^ " — 2 ^ *V A " / + £2<X 

.7=1 a=rc+ l n=n+r+l 

X^n + r + 1 
= 0 (mod co , (at , coa ) , 

n n+ r n+p 

dcÔa = — Z2 COi AU«* — 2-/ W/3 AC0a — 2-) <*V A ^ + ^« 
z'=l a=n+l ^=n+r+l 

\ ^ n + r + 1 
= 0 (mod co , COÏ , coa ). 

Therefore a distribution ^ # becomes an (n + r)-dimensional completely 
integrable distribution. For any point x, we consider the maximal integral 
submanifold M' (x) o f ^ # through x. Then Mf (x) is of (n + r)-dimensional and 
by the construction it is totally geodesic in Pn+P(c). Moreover M is immersed 
in M'(x). This completes the proof. 

The immersion of M into lJ
n+p(c) is said to be full, if M cannot be immersed 

in an (n + q)-dimensional totally geodesic submanifold in Pn+P(c), where 
p > q è 0. The assertion (1) of the theorem follows immediately from (3.6), 
Lemma 3.3 and a theorem due to Nomizu and Smyth [3]. 

We shall prove the other one. In this case, we may suppose p = r = 
n(n + l ) / 2 , because of the full immersion. This means tha t by vir tue of (3.5) 
we have 

(3.9) R = ^±Slc. 
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We define a tensor Zijkl by 

Zijkï = 2s hik hjl ~~ 7 (Pifikl i àilàjk)* 
a ^ 

Then we get 

ZmZm = TrA - cTrA -\ c . 
i,j,k,l o 

Taking account of equations (2.3), (3.2) and (3.9), we see t h a t the r ight hand 
side vanishes identically, so t h a t Zijia = 0. I t implies M is of constant holo-
morphic curva ture c/2. This concludes the proof. 

Remark 1. As it can easily be imagined from the main theorem, a complex 
quadric Qn and a complex projective space are trivial examples of Einstein-
Kaehler manifolds immersed holomorphically in a complex projective space. 
We can take the following other examples: 

(1) Pn(c) XPn(c) mPn2+n(c). 
(2) Compact irreducible hermit ian symmetr ic spaces. 

Remark 2. T h e est imate of the codimension in assertion (1) of the theorem 
is best possible. In particular, we point out expressly the fact t h a t the codimen
sion is greater than or equal to half the dimension of imbedded manifolds 
in the above examples except for the complex q u a d r i c . T h e equal i ty holds only 
in the following two cases; SU(5)/S(U(3) X 17(2)) in P9C and 5 0 ( 1 0 ) / £ 7 ( 5 ) 
in P15C. In these cases, the second fundamental forms are both parallel. See 
the forthcoming paper [2] along this line. 
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