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Abstract

A knot group has weight one, so is normally generated by a single element called a weight element of the
knot group. A meridian is a typical weight element, but some knot groups admit other weight elements.
We show that for some infinite classes of three-strand pretzel knots and all prime knots with up to eight
crossings, the knot groups admit weight elements that are not automorphic images of meridians.
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1. Introduction

Let G be a group. If it is normally generated by a single element, then G is said to
have weight one. An element g whose normal closure 〈〈g〉〉 coincides with G is called
a weight element of G.

For a knot K in the 3-sphere S 3, the knot group of K is the fundamental group
of its exterior. It is well known that any knot group has weight one, and a meridian
is a weight element. Here, we choose a base point ∗ on the boundary of a regular
neighbourhood K × D2, and the curve ∗ × ∂D2 represents a meridian. Any conjugate
of a meridian is also called a meridian. Thus, any meridian gives a weight element of
the knot group.

For the knot group of a satellite knot with a certain pattern, Tsau [12] found a weight
element that is not the automorphic image of any meridian. Then Silver et al. [11] gave
infinitely many such weight elements for the knot groups of torus knots, hyperbolic 2-
bridge knots and hyperbolic knots with unknotting number one. In fact, they showed
more (see Section 2) and conjectured that any nontrivial knot group admits infinitely
many nonequivalent weight elements. Recently, Dutra [4] proved this for cable knots
and graph knots. He also showed that if any factor of a composite knot admits infinitely
many mutually nonconjugate weight elements in its knot group, then so does the knot
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Figure 1. Crossing relations.

group of the composite knot. In the literature, the terms ‘killer’ and ‘pseudo-meridian’
are used, but we prefer the classical term ‘weight element’ found in [6].

The purpose of this paper is to find weight elements of the knot groups for some
infinite families of three-strand pretzel knots and all prime knots with up to eight
crossings. This gives new evidence for the conjecture of Silver et al. [11].

Theorem 1.1. Let K be a pretzel knot of the form P(±2, p, q) for odd p, q with
|p|, |q| > 1, or P(±3, 3,m) with |m| > 1. Then the knot group of K contains infinitely
many weight elements that are not automorphic images of a meridian.

Except for P(±2,∓3,∓3) and P(±2,∓3,∓5), which are torus knots, the knots in
Theorem 1.1 are hyperbolic [7]. Also, P(−3, 3,±2) is the only one that has unknotting
number one among P(±3, 3,m) with |m| > 1 [2]. (In fact, P(−3, 3,±2) is expected to be
the only three-strand pretzel knot with unknotting number one that is not 2-bridge [2].)
Hence, our theorem gives infinitely many new hyperbolic knots that admit infinitely
many weight elements. Theorem 1.1 is proved in Sections 3 and 4.

We expect that the knot group of any three-strand pretzel knot admits infinitely
many weight elements as above, and that two noncommuting meridians are used to
give such elements in the manner described below. In fact, all weight elements that we
found are constructed in that way. The difficulty lies in how to prove that a balanced
presentation with two generators and two relations gives the trivial group.

Theorem 1.2. For any prime knot with at most eight crossings, the knot group contains
infinitely many weight elements that are not automorphic images of a meridian.

Up to seven crossings, all primes knots are 2-bridge, and the case of such knots is
covered in [11]. Among 21 prime knots with eight crossings, 12 knots are 2-bridge,
one is a torus knot and three are hyperbolic 3-bridge knots with unknotting number
one. The case of such knots is also covered by [11]. Thus, only five knots, two of
which are not Montesinos knots, remain to be examined. These knots are considered
in Section 5.

2. Adding twists

For a calculation of a knot group from a diagram of a knot, we use the convention
illustrated in Figure 1.
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[3] Weight elements of the knot groups of pretzel knots 307

In general, in a group G, a conjugate of an element b by a is defined to be a−1ba.
Thus, for example, in the right-hand picture of Figure 1, the meridian generator b
corresponding to the left top over-arc changes to its conjugate by a−1 after passing the
under-crossing.

We next explain the modification technique described in [11, Remark 2.1]. Assume
that a knot diagram of a knot K contains a crossing as shown in Figure 1. Consider the
element µn = b(ab−1)n of the knot group G(K) for any positive integer n. Set A = ba−1.
Then, in the quotient group G(K)/〈〈µn〉〉, we have the relations b = An and a = An−1.
Here, 〈〈µn〉〉 denotes the normal closure of the element µn in G(K).

Now add any number of vertical full twists below the crossing. If K′ is the resulting
knot, then the quotient group G(K′)/〈〈µn〉〉 is isomorphic to G(K)/〈〈µn〉〉, because any
conjugate of a (respectively b) with b± (respectively a±) remains An−1 (respectively
An). This observation gives the following result.

Lemma 2.1 [11]. With the above notation, if µn is a weight element of G(K), then µn is
a weight element of G(K′).

To distinguish weight elements, a parabolic representation of a knot group into
SL(2,C) is used [9], provided that the knot is hyperbolic.

Lemma 2.2 [11]. Let K be a hyperbolic knot with knot group G(K). If two meridians
a and b do not commute in G(K), then the elements µn = b(ab−1)n are pairwise
nonconjugate for sufficiently large n.

More precisely, a parabolic (discrete) representation ρ : G(K)→ SL(2,C) has the
form

ρ(a) =

(
1 1
0 1

)
, ρ(b) =

(
1 0
ω 1

)
with ω , 0. Then the trace of ρ(µn) takes infinitely many distinct values.

As shown in [11], the knot group of any hyperbolic knot with unknotting number
one admits infinitely many pairwise nonconjugate weight elements. Let K be the
pretzel knot P(−3,3,2) as shown in Figure 3. Any crossing of the leftmost twists unties
the knot. Hence, the above modification shows that the pretzel knots P(2k + 1, 3, 2)
admit infinitely many pairwise nonconjugate weight elements, unless k = −1, which
yields the unknot. Thus, we should remark that the case of some hyperbolic pretzel
knots is covered in [11].

3. Pretzel knots P(±2, p, q)

In this section, we prove the following result as a part of Theorem 1.1.

Theorem 3.1. Let K be a pretzel knot P(±2, p, q) for odd p, q with |p|, |q| > 1. Then
the knot group G(K) admits infinitely many weight elements that are not automorphic
images of a meridian.
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Figure 2. The pretzel knot P(2, p, q).

The hardest part of the argument is to confirm that a quotient group is trivial.
Fortunately, we can use the next criterion.

Theorem 3.2 (Miller–Schupp [8]). Let G be a perfect group generated by two elements
a and b that satisfy the equation a−1bna = bm, where m > 0 and n > 0 are relatively
prime. Then G is the trivial group.

Let K be a pretzel knot P(2, p, q) for odd p, q with |p|, |q| > 1. Since its mirror
image is P(−2,−p,−q), this restriction suffices to prove Theorem 3.1. Figure 2 shows
a diagram of K with meridian generators a, b and c for its knot group G(K), where
each rectangle contains an odd number of vertically arranged half-twists.

For K in this position, a, b and c correspond to the three arcs containing the maximal
points with respect to the vertical direction. From the three arcs containing the minimal
points, we have three relations of G(K), but any one of them can be discarded.

For the right-hand rectangle, the lower right (respectively left) output is represented
by a conjugate bg of b (respectively ah of a). Here, bg = g−1bg and ah = h−1ah, and the
words g and h contain only a±1 and b±1. Similarly, the lower right output of the middle
rectangle is represented by a conjugate ck of c, and ck = k−1ck, where k contains only
b±1 and c±1. Thus, we obtain a presentation

G(K) = 〈a, b, c | bg = cac−1, ah = ck〉. (3.1)

Lemma 3.3. In G(K), the two meridians a and b do not commute.

Proof. If a and b commute in G(K), then the presentation (3.1) reduces to

G(K) = 〈a, b, c | b = cac−1, a = ck〉.

Thus, G(K) is generated by two meridians, which implies that K is 2-bridge [1], which
is a contradiction. �
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Proof of Theorem 3.1. Let µn = b(ab−1)n and set A = ba−1. In the quotient group
Gn = G(K)/〈〈µn〉〉, we have the relations b = An and a = An−1. Thus, bg reduces to
An and ah reduces to An−1 there. Hence, (3.1) yields

Gn = 〈c, A | An = cAn−1c−1, An−1 = w(c, An)〉, (3.2)

where the word w(c, An) comes from ck, so it contains only c±1 and A±n and it has
exponent sum 1 in c and 0 on A. By abelianisation of (3.2), we see that Gn is a perfect
group. If n = 1, then it is straightforward to see that Gn is trivial (in this case, µ1 is a
meridian) and, if n ≥ 2, then the first relation of (3.2) implies the same conclusion by
Theorem 3.2.

By Lemmas 3.3 and 2.2, G(K) contains infinitely many pairwise nonconjugate
weight elements, provided that K is hyperbolic. Moreover, any automorphism of a
prime knot group is induced by a homeomorphism of the knot exterior [13]. Hence,
we can conclude that such µn are not automorphic images of a meridian. �

More generally, for a pretzel knot P(2l + 2, p, q) with l ≥ 0 and odd p, q, the same
procedure gives the quotient group

Gn = 〈c, A | An = (c−1(An−1c−1)l)−1An−1(c−1(An−1c−1)l), An−1 = w(c, An)〉,

where w(c, An) is a conjugate of c as above. It is straightforward to see that Gn is a
perfect group.

Question 3.4. Is this Gn the trivial group?

For example, we can show that this is true for P(4, 3, q) with odd q as follows.
In this case, w(c, An) = (AncAn)−1c(AncAn). Hence, the relation An−1 = w(c, An) gives
cAn−1c−1 = A−ncAn, and also AncA−(n−1) = c−1Anc. Then these two change the first
relation An = (c−1An−1c−1)−1An−1(c−1An−1c−1) of Gn into AncA−(n−1) = A−(2n−1)cA2n−1,
so A3n−1 = cA3n−2c−1. Thus, Lemma 3.2 implies the desired conclusion.

4. Pretzel knots P(±3, 3, m)
In this section, we examine the other family of pretzel knots included in

Theorem 1.1. The argument is divided into two parts, according to the parity of m.

4.1. Even case. Let K be the pretzel knot P(3, 3, 2) as illustrated in Figure 3. This
knot is the knot 85 in the knot table [10], and it is hyperbolic and has unknotting
number two [3]. By the same procedure as in Section 3, we see that the knot group
G(K) has a presentation

G(K) = 〈a, b, c | aba−1 = (bcb)c(bcb)−1, (ba−1)−1a(ba−1) = (ac)−1c(ac)〉, (4.1)

where a, b, c are meridians corresponding to arcs as shown in Figure 3.
For any integer n ≥ 1, let µn = b(ab−1)n. If we set A = ba−1, then µn = bA−n. Let Gn

be the quotient group of G(K) by the normal closure 〈〈µn〉〉 in G(K). Then b = An and
a = An−1 in Gn. Hence, Gn has a presentation

Gn = 〈c, A | An = (AncAn)c(AncAn)−1, An−1 = c−1A−(n−1)cAn−1c〉
= 〈c, A | AncAn = cAnc, An−1cAn−1 = cAn−1c〉. (4.2)
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Figure 3. The pretzel knots P(3, 3, 2) and P(−3, 3, 2).

Lemma 4.1. Gn is the trivial group.

Proof. For (4.2), the second relation changes to c = (cAn−1)−1An−1(cAn−1), so c =

((cAn−1)−1A(cAn−1))n−1. Set B = (cAn−1)−1A(cAn−1). Then the second relation of (4.2)
is c = Bn−1. Also, the first relation of (4.2) changes to (cAn−1)−1An(cAn−1) = AcA−1,
which is Bn = AcA−1. Thus,

Gn = 〈c, A, B | Bn = AcA−1, c = Bn−1, B = (cAn−1)−1A(cAn−1)〉

= 〈A, B | Bn = ABn−1A−1, B = A−(n−1)B−(n−1)ABn−1An−1〉.

By abelianisation, Gn is seen to be a perfect group. If n = 1, then it is obvious that
Gn is trivial. If n ≥ 2, then the first relation implies that Gn is the trivial group by
Theorem 3.2. �

Lemma 4.2. In G(K), the two meridians a and b do not commute.

Proof. Assume that a and b commute in G(K). Then the presentation (4.1) of G(K)
is equivalent to 〈a, b, c | bcb = cbc, aca = cac〉. This group is isomorphic to the knot
group of the granny (or square) knot. This is a contradiction, since the knot group of a
prime knot can never be isomorphic to that of a composite knot [5]. �

Lemma 4.3. In G(K), the elements µn are pairwise nonconjugate for sufficiently large n.

Proof. This follows from Lemmas 4.2 and 2.2. �

Similarly, let K be the pretzel knot P(−3, 3, 2), which is the knot 820 in the knot
table. This is also hyperbolic and has unknotting number one. From Figure 3,

G(K) = 〈a, b, c | aba−1 = (bcb)c(bcb)−1, (ba−1)−1a(ba−1) = (aca)c(aca)−1〉.

It is straightforward to confirm that the quotient group Gn has the same presentation
(4.2). Also, Lemmas 4.2 and 4.3 hold verbatim.

Theorem 4.4. Let K be a pretzel knot P(±3,3,m) for m even with |m| > 1. Then the knot
group G(K) admits infinitely many weight elements that are not automorphic images
of a meridian.

https://doi.org/10.1017/S0004972718000539 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000539


[7] Weight elements of the knot groups of pretzel knots 311

Figure 4. The pretzel knots P(3, 3, 1) and P(−3, 3, 1).

Proof. As we have shown above, the pretzel knots P(±3, 3, 2) satisfy the conclusion.
Add any number of full twists in the rightmost twists in the diagram of Figure 3. Let K
be the resulting pretzel knot with knot group G(K). Set µn = b(ab−1)n as before. Then
µn is a weight element for G(K) by Lemma 2.1. As noted in the introduction, all but
P(3, 3,−2) are hyperbolic. Hence, we will be done by Lemma 2.2 if we show that two
generators a and b do not commute in G(K).

Let K be P(3, 3, 2l) with l > 0. Then G(K) has a presentation with generators a, b, c
and two relations

(a−1(ba−1)l−1)−1b(a−1(ba−1)l−1) = (bcb)c(bcb)−1,

(ba−1)−la(ba−1)l = (ac)−1c(ac).

If a and b commute, then these relations collapse into

b = (bcb)c(bcb)−1, a = (ac)−1c(ac).

Since K is prime, this is a contradiction as in the proof of Lemma 4.2. The case l < 0
is similar.

Next, let K be P(−3, 3, 2l) with l > 0. Then G(K) has a presentation with generators
a, b, c and two relations

(a−1(ba−1)l−1)−1b(a−1(ba−1)l−1) = (bcb)c(bcb)−1,

(ba−1)−la(ba−1)l = (aca)c(aca)−1.

If a and b commute, then the above argument works again. The case l < 0 is also
similar. �

4.2. Odd case. Let K be P(3, 3, 1), which is the 2-bridge knot S (15, 4) in Schubert’s
notation, as illustrated in Figure 4. This is hyperbolic and has unknotting number two.
The knot group G(K) has a presentation

G(K) = 〈a, b, c | a = (b−1cb−1)−1c(b−1cb−1), aba−1 = (ac−1)−1c(ac−1)〉, (4.3)

where a, b, c are meridians depicted in Figure 4.
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Again, let µn = b(ab−1)n for an integer n ≥ 1. If we set A = ba−1, then µn = bA−n.
Let Gn be the quotient group of G(K) by the normal closure 〈〈µn〉〉 in G(K). Then
b = An and a = An−1 in Gn. Hence, Gn has a presentation

Gn = 〈c, A | An−1 = (A−ncA−n)−1c(A−ncA−n), An = (An−1c−1)−1c(An−1c−1)〉
= 〈c, A | cAn−1c−1 = AncA−n, c−1Anc = A−(n−1)cAn−1〉. (4.4)

Lemma 4.5. Gn is the trivial group.

Proof. If n = 1, then the conclusion is clear. Assume that n ≥ 2. The second relation
of (4.4) is equivalent to (cA−(n−1))−1An(cA−(n−1)) = c. Also, the first relation can be
changed to (cA−(n−1))−1Anc−2(cA−(n−1)) = c−1A. Set B = (cA−(n−1))−1A(cA−(n−1)). Then
the second relation is Bn = c and the first relation changes to

(cA−(n−1))−1An(cA−(n−1)) · (cA−(n−1))−1c−2(cA−(n−1)) = c−1A

and so Bn(An−1c−2A−(n−1)) = c−1A. This further goes to

B2nAn−1B−2n = An. (4.5)

Hence,

Gn = 〈c, A, B | B2nAn−1B−2n = An, Bn = c, B = (cA−(n−1))−1A(cA−(n−1))〉
= 〈A, B | B2nAn−1B−2n = An, A−(n−1)BAn−1 = B−nABn〉.

Taking nth and −(n − 1)st powers of the last relation gives

A−(n−1)BnAn−1 = B−nAnBn, (4.6)
A−(n−1)B−(n−1)An−1 = B−nA−(n−1)Bn. (4.7)

By applying (4.5) to the right-hand side of (4.6), A−(n−1)BnAn−1 = BnAn−1B−n,
which is equivalent to B−nA−(n−1)Bn = An−1B−nA−(n−1). By (4.7), A−(n−1)B−(n−1)An−1 =

An−1B−nA−(n−1) and so Bn−1 = A2(n−1)BnA−2(n−1). Conjugating with B−2n yields

Bn−1 = (B2nA2(n−1)B−2n)Bn(B2nA−2(n−1)B−2n).

Finally, the square of (4.5) changes this to

Bn−1 = A2nBnA−2n. (4.8)

Now taking the squares of (4.5) and (4.8) gives

B2nA2(n−1)B−2n = A2n, A2nB2nA−2n = B2(n−1). (4.9)

Let x = A2 and y = B2. Then (4.9) yields

ynxn−1y−n = xn, xnynx−n = yn−1. (4.10)

Claim 4.6. Let M = (n − 1)n and N = nn. Then yn2
xMy−n2

= xN .
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Proof of Claim 4.6. The (n − 1)st power of the first relation of (4.10) gives

ynx(n−1)2
y−n = xn(n−1).

Conjugating with y−n yields

y2nx(n−1)2
y−2n = ynxn(n−1)y−n.

The right-hand side is equal to (ynxn−1y−n)n, which is xn2
by (4.10). Hence,

y2nx(n−1)2
y−2n = xn2

. (4.11)

Again, take the (n − 1)st power of (4.11) and conjugate with y−n to give

y3nx(n−1)3
y−3n = xn3

.

By repeating this process,

y(n−1)nx(n−1)n−1
y−(n−1)n = xnn−1

, yn2
x(n−1)n

y−n2
= xnn

. (4.12)

The second relation is the desired one. (We use the first relation later.) �

Conjugation of the relation of Claim 4.6 by yn gives

yn2−nxMy−(n2−n) = y−nxNyn.

The right-hand side is (y−nxnyn)nn−1
, which is (xn−1)nn−1

= x(n−1)nn−1
by (4.10). Hence,

yn2−nxMy−(n2−n) = x(n−1)nn−1
. (4.13)

On the other hand, conjugation of the relation of Claim 4.6 by x−n gives

(xnyn2
x−n)xM(xny−n2

x−n) = xN .

From the ±nth power of the second relation of (4.10),

y(n−1)nxMy−(n−1)n = xN . (4.14)

By (4.13) and (4.14), x(n−1)nn−1
= xnn

and so xnn−1
= 1. Then the first relation of (4.12)

changes to y(n−1)nx(n−1)n−1
y−(n−1)n = 1, so x(n−1)n−1

= 1. Since nn−1 and (n − 1)n−1 are
relatively prime, we have x = 1. Then y = 1 from (4.10). Thus, A2 = 1 and B2 = 1. By
(4.5) and (4.8), we obtain A = 1 and B = 1. �

Lemma 4.7. In G(K), the two meridians a and b do not commute.

Proof. If a and b commute, then the presentation (4.3) gives

G(K) = 〈a, b, c | b−1ca = cb−1c, b = ca−1cac−1〉

= 〈a, c | aca = cac〉.

This is isomorphic to the knot group of the trefoil. Since K is not equivalent to the
trefoil, this is a contradiction. �
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Hence, G(K) admits infinitely many pairwise nonconjugate weight elements by
Lemmas 2.2 and 4.7.

Next, let K be P(−3, 3, 1), which is the hyperbolic 2-bridge knot S (9, 2). Although
this knot has unknotting number one, the rightmost crossing in the diagram of Figure 4
does not untie the knot.

As before, the knot group G(K) has a presentation

G(K) = 〈a, b, c | a = (b−1cb−1)−1c(b−1cb−1), aba−1 = (a−1ca−1)−1c(a−1ca−1)〉. (4.15)

Let µn = b(ab−1)n and A = ba−1. Then the quotient group Gn = G(K)/〈〈µn〉〉 has a
presentation

Gn = 〈c, A | An−1 = (A−ncA−n)−1c(A−ncA−n),

An = (A−(n−1)cA−(n−1))−1c(A−(n−1)cA−(n−1))〉

= 〈c, A | cAn−1c−1 = AncA−n, cAnc−1 = An−1cA−(n−1)〉. (4.16)

Lemma 4.8. Gn is the trivial group.

Proof. If n = 1, the conclusion is straightforward. Now assume that n ≥ 2 and set
B = (c−1An−1)−1A(c−1An−1). Then the second relation of (4.16) gives Bn = c, and this
changes the first relation to BnAn−1B−n = AnBnA−n. Hence,

Gn = 〈A, B | BnAn−1B−n = AnBnA−n, An−1BA−(n−1) = BnAB−n〉

= 〈A, B | Bn−1 = ABnA−1, An−1BA−(n−1) = BnAB−n〉.

Since this is a perfect group, Theorem 3.2 implies the conclusion. �

For the next lemma, the argument of the proof of Lemma 4.7 does not apply,
because the crossing change at the rightmost crossing of the diagram in Figure 4 makes
the knot into its mirror image, so the knot group does not change.

Lemma 4.9. In G(K), two meridians a and b do not commute.

Proof. If we erase the generator a in the presentation (4.15) by using the first relation,

G(K) = 〈b, c | b = w−1cw〉,

where w = (bc−1)2(b−1c)2. Let ρ : G(K) → SL(2, C) be a nonabelian parabolic
representation given by

ρ(b) =

(
1 1
0 1

)
, ρ(c) =

(
1 0
z 1

)
,

where z is a root of the polynomial 1 − 2x + 7x2 − 5x3 + x4, which has no real root.
(For such a choice of z, the matrix equation ρ(wb) = ρ(cw) holds, so that ρ defines a
homomorphism [9].) Then

ρ(a) =

(
1 + 2z − 3z2 + z3 −4z + 4z2 − z3

z − 2z2 + z3 1 − 2z + 3z2 − z3

)
.

This commutes with ρ(b) if and only if z − 2z2 + z3 = 0, so z = 1. Since z is not real,
ρ(a) and ρ(b) do not commute. �
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Then Lemma 4.3 works, so G(K) admits infinitely many nonconjugate weight
elements.

Theorem 4.10. Let K be a pretzel knot P(±3,3,m) for odd m with |m| > 1. Then the knot
group G(K) admits infinitely many weight elements that are not automorphic images
of a meridian.

Proof. We have already shown that P(±3, 3, 1) satisfies the conclusion. The proof is
the same as that of Theorem 4.4. We only show that two generators of G(K) do not
commute after adding full twists at the rightmost twist.

First, let K be P(3, 3, 2l + 1) with l ≥ 0. The knot group G(K) has a presentation
with generators a, b, c and two relations (ba−1)−la(ba−1)l = (b−1cb−1)−1c(b−1cb−1) and
(a−1(ba−1)l)−1b(a−1(ba−1)l) = (ac−1)−1c(ac−1). If a and b commute, then the proof of
Lemma 4.7 works verbatim. The case l < 0 is similar. (We remark that if l = −1, then
K is the trefoil. Then the proof of Lemma 4.7 obviously does not apply.)

Next, let K be P(−3, 3, 2l + 1) with l ≥ 0. The knot group G(K) has a presentation
with generators a, b, c and two relations

(ba−1)−la(ba−1)l = (b−1cb−1)−1c(b−1cb−1),

(a−1(ba−1)l)−1b(a−1(ba−1)l) = (a−1ca−1)−1c(a−1ca−1).

If a and b commute in G(K), then these relations collapse into those of (4.15) and so
G(K) is isomorphic to the knot group of P(−3, 3, 1). Although P(−3, 3, 1) is 2-bridge,
P(−3, 3, 2l + 1) is 3-bridge for l > 0. Hence, these knot groups are not isomorphic.
Finally, the case l < 0 is similar. �

Proof of Theorem 1.1. Theorem 1.1 immediately follows from Theorems 3.1, 4.4
and 4.10. �

5. Prime knots with eight crossings

In this section, we examine prime knots with eight crossings to prove Theorem 1.2.

Proof of Theorem 1.2. All prime knots with up to eight crossings are 2-bridge knots
or torus knots, except 85, 810, 815, 816, 817, 818, 820 and 821. Among these exceptions,
817, 820 and 821 are hyperbolic knots with unknotting number one [3]. The knot 85 is
the pretzel knot P(3, 3, 2), which is examined in Section 4. The knot 810 is also the
pretzel knot P(3,−3, 1, 2), which is obtained from P(1,−3, 1, 2) by adding a full twist
on the leftmost strand. This P(1,−3, 1, 2) is the knot 63, a hyperbolic 2-bridge knot,
and furthermore P(−1,−3, 1, 2) is trivial. Thus, 810 is obtained from 63 by adding a
full twist at the unknotting crossing. By Lemmas 2.1 and 2.2, the knot group of 810

admits infinitely many nonconjugate weight elements.
The remaining three knots 815, 816 and 818 are examined below. �
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Figure 5. The knots 815 and 816.

5.1. The knot 815. Let K be the knot 815 in the knot table as illustrated in Figure 5.
This knot is hyperbolic and has unknotting number two [3]. Also, K is the pretzel knot
P(−3,−3, 2, 1, 1).

The knot group G(K) has a presentation with three meridian generators a, b, c and
two relations a(aca−1) = (aca−1)(baba−1b−1) and

c(a−1bab−1a−1b−1aba−1b−1)−1c(a−1bab−1a−1b−1aba−1b−1)

= (aba−1b−1)−1b(aba−1b−1)c.

These relations are read off at the crossings marked by dots in Figure 5.
Let µn = b(ab−1)n and A = ba−1. Then b = An and a = An−1 in the quotient group

Gn = G(K)/〈〈µn〉〉. Thus,

Gn = 〈c, A | c−1An−1c = An, A2n−1cA−(2n−1) = c−1Anc〉.

By abelianisation, it is easy to see that Gn is a perfect group. If n ≥ 2, then the first
relation implies that Gn is the trivial group by Theorem 3.2.

If two generators a and b commute in G(K), then the presentation of G(K) reduces
to

G(K) = 〈a, b, c | aca−1 = ca−1b, cbaca−1b−1 = bc〉.

By the first relation, the generator b can be eliminated. This means that G(K)
is generated by two meridians, which implies that K is 2-bridge [1], which is a
contradiction. Therefore, the generators a and b do not commute in G(K) and so
Lemma 2.2 shows that G(K) admits infinitely many nonconjugate weight elements.

By Lemma 2.1, the same conclusion holds for pretzel knots P(m,−3, 2, 1, 1) with m
odd, because they are hyperbolic [7].
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Figure 6. The knot 818.

5.2. The knot 816. Let K be the knot 816 as shown in Figure 5. The knot group G(K)
has a presentation with meridian generators a, b, c indicated there and two relations

c · (ba−1b−1a)−1c(ba−1b−1a) = (ba−1b−1a)−1c(ba−1b−1a) · a−1ba,

(b−1cb)−1a(b−1cb) · c−1ac = c−1ac · (ba−1b−1a)−1c(ba−1b−1a).

The relations are read off at the crossings marked by dots.
Let µn = b(ab−1)n and A = ba−1. Then b = An and a = An−1 in the quotient group

Gn = G(K)/〈〈µn〉〉. The first relation reduces to c = An, and then the second relation
gives A = 1. Hence, Gn is the trivial group.

If the generators a and b commute in G(K), then the first relation implies that c = b
and the second gives aba = bab. Thus, G(K) is isomorphic to the knot group of the
trefoil, which is a a contradiction. Therefore, the generators a and b do not commute
in G(K) and Lemma 2.2 applies.

5.3. The knot 818. Let K be the knot 818 as shown in Figure 6. It is a hyperbolic
3-bridge knot with unknotting number two. If we use the meridian generators a, b, c
shown there, then the knot group G(K) has a presentation with three generators a, b, c
and two relations cac−1 · (b−1a−1ba)−1c(b−1a−1ba) = b · cac−1 and

(bc−1b−1)−1a(bc−1b−1) · (b−1a−1ba)−1c(b−1a−1ba) = (b−1a−1ba)−1c(b−1a−1ba) · c.

The relations are read off at the crossings marked by dots.
Let µn = b(ab−1)n and A = ba−1 again. Then b = An and a = An−1 in the quotient

group Gn = G(K)/〈〈µn〉〉. Thus,

Gn = 〈c, A | An−1cA−(n−1) = c−1Anc, cAn−1c−1 = A−ncAn〉.

The second relation changes to cA−(n−1)c−1 = A−nc−1An; then AncA−(n−1) = c−1Anc. The
first relation implies that AncA−(n−1) = An−1cA−(n−1), so A = 1. Thus, c = 1 and Gn is
the trivial group.
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If a and b commute in G(K), then the first relation reduces to b = caca−1c−1. This
means that G(K) is generated by two meridians a and c, which implies that K is 2-
bridge [1], which is a a contradiction. Thus, G(K) has infinitely many nonconjugate
weight elements by Lemma 2.2.
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