TOWARDS A CLASSIFICATION OF CONVOLUTION-TYPE OPERATORS FROM l_{1} TO l_{∞}

BY
G. CROMBEZ AND W. GOVAERTS*

1. Introduction. Let Z be the additive group of integer numbers with discrete topology, $l_{1} \equiv L_{1}(Z)$ the space of complex-valued integrable functions on Z with respect to normalized Haar measure, $l_{\infty} \equiv L_{\infty}(Z)$ the space of bounded functions on Z. By $\mu\left(l_{1}, l_{\infty}\right)$ we denote the set of convolution-type operators (or multipliers) from l_{1} to l_{∞}; they are of the form $H_{8}\left(g \in l_{\infty}\right)$ with $H_{\mathbf{z}}(f)=f * g\left(f \in l_{1}\right)$ where $*$ denotes convolution, so that $(f * g)(x)=$ $\sum_{y \in Z} f(y) g(x-y)$.

We recall the following definitions about a bounded linear operator S from a Banach space X to a Banach space Y (to be found, e.g., in [3]): S is said to be strictly singular if whenever S has a bounded inverse on M, M a closed subspace of X, then M is finite dimensional. S is called almost weakly compact if whenever S has a bounded inverse on a closed subspace M of X, then M is reflexive.

We consider the following subsets of $\mathcal{M}\left(l_{1}, l_{\infty}\right): A_{1}$, the set of compact operators; A_{2}, the set of weakly compact operators; A_{3}, the set of strictly singular operators; A_{4}, the set of almost weakly compact operators; A_{5}, the set of operators which do not have a bounded inverse on $l_{1} ; A_{6}\left(=\mathcal{M}\left(l_{1}, l_{\infty}\right) \backslash A_{5}\right)$, the set of operators which do have a bounded inverse on l_{1}.

From the definitions we conclude that the inclusions $A_{1} \subset A_{2}$ and $A_{3} \subset A_{4} \subset$ A_{5} are certainly true. That $A_{2} \subset A_{3}$ follows easily from the fact that every infinite-dimensional subspace of l_{1} is non-reflexive, and the obvious fact that a weakly compact operator can not be invertible on a non-reflexive subspace; the first observation also leads to $A_{3}=A_{4}$.

A function g in l_{∞} is called [weakly] almost periodic if the set $\left\{{ }_{a} g: a \in Z\right\}$ of left translates is [weakly] relatively compact. The set of almost periodic functions on Z is a proper subset of the set of weakly almost periodic functions, since e.g., the function δ_{0} which is one at 0 and zero at the other points of Z, is weakly almost periodic but not almost periodic. Since the [weakly] compact convolution operators H_{g} from l_{1} to l_{∞} are just those induced by the [weakly] almost periodic functions g, as shown in [2] and [7], we deduce $A_{1} \varsubsetneqq A_{2}$.

[^0]Hence, the foregoing observations lead to the following relations between the sets A_{1}, \ldots, A_{5} :

$$
A_{1} \varsubsetneqq A_{2} \subset A_{3}=A_{4} \subset A_{5} .
$$

In what follows we prove the additional results:

$$
A_{2} \varsubsetneqq A_{3} ; \quad A_{4} \varsubsetneqq A_{5} ; \quad A_{6} \neq \phi
$$

2. Main results

Proposition 1. There exists an operator H_{g} in $\mathcal{M}\left(l_{1}, l_{\infty}\right)$ which is an isometric embedding. In particular, $A_{6} \neq \varnothing$.

Proof. Denote by T the set of complex numbers z for which $|z|=1$. For each positive integer k, the set T^{k} of all k-tuples of elements of T is separable; let $\left\{\left(z_{k, 1}^{(i)}, z_{k, 2}^{(i)}, \ldots, z_{k, k}^{(i)}\right\}_{i=1}^{\infty}\right.$ be a countable dense subset of T^{k}. We choose a family $\left(B_{i}^{i}\right)_{i, j=1}^{\infty}$ of subsets of Z^{+}with the following properties:
(i) for fixed j, each B_{i}^{i} consists of exactly $2 j+1$ successive positive integers, say $B_{i}^{j}=\left[x_{i}^{j}, x_{i}^{j}+1, \ldots, x_{i}^{j}+2 j\right]$.
(ii) if $i \neq i^{\prime}$ or $j \neq j^{\prime}$, then $B_{i}^{i} \cap B_{i^{\prime}}^{i^{\prime}}=\varnothing$.

This can be done by writing the sets B_{i}^{j} in a double array like an infinite matrix, and then choosing successively $B_{1}^{1}, B_{1}^{2}, B_{2}^{1}, B_{3}^{1}, B_{2}^{2}, B_{1}^{3}, B_{1}^{4}, \ldots$

For each fixed j, we define g on $\cup_{i=1}^{\infty} B_{i}^{i}$ by means of

$$
g\left(x_{i}^{j}\right)=z_{2 j+1,2 j+1}^{(i)}, \quad g\left(x_{i}^{j}+1\right)=z_{2 j+1,2 j}^{(i)}, \ldots, g\left(x_{i}^{j}+2 j\right)=z_{2 j+1,1}^{(i)} .
$$

We put $g(x)=0$ for $x \in Z \backslash \cup_{i, j=1}^{\infty} B_{i}^{i}$.
For the function g so constructed we have $\|g\|_{\infty}=1$; hence $\|f * g\|_{\infty} \leq$ $\|f\|_{1}\left(f \in l_{1}\right)$. To prove the converse inequality we may suppose that f has a compact support, since the set of those functions is dense in l_{1}. So let $f \neq 0$ be an element of l_{1}, with $f(x)=0$ for $n \in Z \backslash[-n,+n], n \in Z^{+}$. If y is an integer belonging to $[-n,+n]$ we put $a_{y}=\overline{\operatorname{sgn} f(y)}$ if $f(y) \neq 0^{\perp}$ and $a_{y}=1$ if $f(y)=0$. Then the $(2 n+1)$-tuple $\left(a_{-n}, \ldots, a_{0}, \ldots, a_{n}\right)$ belongs to $T^{2 n+1}$. Hence, given $\varepsilon>0$ there exists an index i such that $\left|z_{2 n+1,1}^{(i)}-a_{-n}\right|<\varepsilon, \ldots,\left|z_{2 n+1,2 n+1}^{(i)}-a_{n}\right|<\varepsilon$, and there exist points $x_{i}^{n}, \ldots, x_{i}^{n}+2 n$ such that

$$
g\left(x_{i}^{n}\right)=z_{2 n+1,2 n+1}^{(i)}, \ldots, g\left(x_{i}^{n}+2 n\right)=z_{2 n+1,1}^{(i)}
$$

We so obtain

$$
(f * g)\left(x_{i}^{n}+n\right)=\sum_{y=-n}^{n} f(y) g\left(x_{i}^{n}+n-y\right)=\sum_{y=-n}^{n} f(y) z_{2 n+1, n+y+1}^{(i)}
$$

from which we derive

$$
\begin{equation*}
\left|(f * g)\left(x_{i}^{n}+n\right)-\sum_{y=-n}^{n} f(y) a_{y}\right|=\left|\sum_{y=-n}^{n} f(y)\left[z_{2 n+1, n+y+1}^{(i)}-a_{y}\right]\right| \leq \varepsilon\|f\|_{1} . \tag{1}
\end{equation*}
$$

Since $\sum_{y=-n}^{n} f(y) a_{y}=\|f\|_{1}$, (1) leads to $\left|(f * g)\left(x_{i}^{n}+n\right)\right| \geq(1-\varepsilon)\|f\|_{1}$. This means that $\|f * g\|_{\infty} \geq(1-\varepsilon)\|f\|_{1}$, from which the result follows using the fact that ε was arbitrary.

Proposition 2. There exists an operator H_{g} in $\mathcal{M}\left(l_{1}, l_{\infty}\right)$ which is not strictly singular (=almost weakly compact) and which does not have a bounded inverse on l_{1}; i.e., $A_{4} \varsubsetneqq A_{5}$.

Proof. In Z^{+}we choose a family $S=\left\{x_{i j k}\right\}$ of points were $1 \leq i, 1 \leq j \leq i+1$, $1 \leq k \leq j$, where $x_{i j k} \neq x_{i^{\prime} j^{\prime} k^{\prime}}$ if $(i, j, k) \neq\left(i^{\prime}, j^{\prime}, k^{\prime}\right)$, and where

$$
\begin{aligned}
x_{i j k} \leq x_{i^{\prime} j^{\prime} k^{\prime}} \Leftrightarrow & \text { either } i<i^{\prime} \\
& \text { or } i=i^{\prime} \quad \text { and } j<j^{\prime} \\
& \text { or } i=i^{\prime} \quad \text { and } j=j^{\prime} \quad \text { and } k \leq k^{\prime} .
\end{aligned}
$$

We take care to construct S such that a finite sequence of $10^{n}(n=1,2, \ldots)$ successive integers in Z does not contain more than $n+1$ elements from S and that, for $1 \leq k \leq j-1, x_{i j(j-k)}=x_{i j j}-10^{k}+1$.

We define the function $g \in l_{\infty}$ as follows:
(i) $g(x)=0$ for $x \in Z \backslash S$
(ii) for $n=1,2, \ldots$, the set $\left\{\left(g\left(x_{\text {in } 1}\right), g\left(x_{\text {in2 }}\right), \ldots, g\left(x_{\text {inn }}\right)\right): i=n-1, n, \ldots\right\}$ is dense in T^{n}.

Put $A=\left\{10^{n}: n=0,1,2, \ldots\right\}$, and $M=\left\{f \in l_{1}: f(x)=0\right.$ for $\left.x \notin A\right\}$. Then M is an infinite dimensional closed subspace in l_{1}. Analogously as in proposition 1 it may be proved (using the special properties of S) that the convolution-operator H_{g} is an isomorphism on M. Hence H_{g} is not strictly singular. For each $n \in Z^{+}$ we define the function f_{n} on Z by

$$
f_{n}(x)=\left\{\begin{array}{cl}
10^{-n} & \text { for } 1 \leq x \leq 10^{n} \\
0 & \text { elsewhere }
\end{array}\right.
$$

Each f_{n} belongs to l_{1}, and $\left\|f_{n}\right\|_{1}=1$. If x is a point of Z we have

$$
\left|\left(H_{g}\left(f_{n}\right)\right)(x)\right|=\left|\sum_{1 \leq y \leq 10^{n}} 10^{-n} g(x-y)\right| \leq(n+1) 10^{-n} .
$$

Hence $\left\|H_{g}\left(f_{n}\right)\right\|_{\infty} \rightarrow 0$ for $n \rightarrow \infty$. This means that H_{g} does not have a bounded inverse on l_{1}.

Proposition 3. There exists an operator H_{g} in $\mathcal{M}\left(l_{1}, l_{\infty}\right)$ which is strictly singular but is not weakly compact; i.e., $A_{2} \varsubsetneqq A_{3}$.

In the proof use will be made of the following lemmas.
Lemma 1. Let there be given two finite sets $\left\{c_{j}\right\}_{j=1}^{n}$ and $\left\{d_{j}\right\}_{j=1}^{n}$ of complex numbers such that $\left|c_{j}\right| \leq 1$ and $\left|d_{j}\right| \leq 1$ for each j. Then there exist complex
numbers $\left\{\alpha_{j}\right\}_{j=1}^{n}$ with $\left|\alpha_{j}\right|=1$ for each j such that $\left|\sum_{j=1}^{n} \alpha_{j} c_{j}\right| \leq 2$ and $\left|\sum_{j=1}^{n} \alpha_{j} d_{j}\right| \leq$ 2.

Proof. Choose an element $c_{j_{1}}$ of $\left\{c_{j}\right\}_{j=1}^{n}$ such that $\left|c_{j_{1}}\right| \geq\left|c_{j}\right|$ for each $j \in$ $\{1, \ldots, n\}$, and choose $\alpha_{j_{1}}=1$. Let $d_{j_{2}}\left(j_{2} \neq j_{1}\right)$ be an element of $\left\{d_{j}\right\}_{j=1}^{n}$ such that $\left|d_{j_{2}}\right| \geq\left|d_{j}\right|$ for each $j \in\{1, \ldots, n\} \backslash\left\{j_{1}\right\}$, and choose $\alpha_{j_{2}}$ such that $\left|\alpha_{j_{2}}\right|=1$ and $\operatorname{sgn} \alpha_{j_{2}} d_{j_{2}}=-\operatorname{sgn} d_{j_{1}}\left(\right.$ if $d_{j_{1}}$ is zero, choose $\left.\alpha_{j_{2}}=1\right)$. Choose then $c_{j_{3}} \in\left\{c_{j}\right\}_{j=1}^{n}\left(j_{3} \neq j_{1}\right.$ and $j_{3} \neq j_{2}$) such that $\left|c_{j_{3}}\right| \geq\left|c_{j}\right|$ for each $j \in\{1, \ldots, n\} \backslash\left\{j_{1}, j_{2}\right\}$, and choose $\alpha_{j_{3}}$ with $\left|\alpha_{j_{3}}\right|=1$ and $\operatorname{sgn} \alpha_{j_{3}} c_{j_{3}}=-\operatorname{sgn}\left(\alpha_{j_{1}} c_{j_{1}}+\alpha_{j_{2}} c_{j_{2}}\right)$ (if $\alpha_{j_{1}} c_{j_{1}}+\alpha_{j_{2}} c_{j_{2}}=0$, choose $\alpha_{j_{3}}=1$). And so on.

We now prove $\left|\sum_{k=1}^{l} \alpha_{j_{k}} c_{j_{k}}\right| \leq 2$ for all $l \leq n$.
This is obvious when $l=1,2$. Now let l be any even number smaller than n such that the above inequality holds.

Since $\operatorname{sgn}\left(\alpha_{j_{1+1}} c_{i+1}\right)=-\operatorname{sgn}\left(\sum_{k=1}^{l} \alpha_{j_{k}} c_{j_{k}}\right)$ we clearly have $\left|\sum_{k=1}^{l+1} \alpha_{j_{k}} c_{j_{k}}\right| \leq 2$. If $l+1=n$, then the proof is complete. Otherwise, we consider two cases. First, if

$$
\left|\alpha_{j+1} c_{j+1}\right| \leq\left|\sum_{k=1}^{l} \alpha_{j k} c_{j k}\right|
$$

then

$$
\begin{aligned}
\left|\sum_{k=1}^{l+2} \alpha_{j_{k}} c_{j_{k}}\right| & \leq\left|\sum_{k=1}^{l} \alpha_{j_{k}} c_{j_{k}}+\alpha_{j+1} c_{j+1}\right|+\left|\alpha_{j+2} c_{j+2}\right| \\
& =\left|\sum_{k=1}^{l} \alpha_{j_{k}} c_{j_{k}}\right|-\left|\alpha_{j+1} c_{j+1}\right|+\left|\alpha_{j+2} c_{j+2}\right|
\end{aligned}
$$

Since

$$
\left|\alpha_{j_{i+1}} c_{i+1}\right|=\left|c_{j_{i+1}}\right| \geq\left|c_{j_{i+2}}\right|=\left|\alpha_{j_{i+2}} c_{j_{i+2}}\right|
$$

we infer

$$
\left|\sum_{k=1}^{l+2} \alpha_{j_{k}} c_{j k}\right| \leq\left|\sum_{k=1}^{l} \alpha_{j_{k}} c_{j k}\right| \leq 2
$$

If

$$
\left|\alpha_{i_{1+1}} c_{j_{++1}}\right|>\left|\sum_{k=1}^{l} \alpha_{i_{k}} c_{j_{k}}\right|
$$

then

$$
\begin{aligned}
\left|\sum_{k=1}^{l+2} \alpha_{j_{k}} c_{j k}\right| & \leq\left|\sum_{k=1}^{l} \alpha_{j_{k}} c_{j_{k}}+\alpha_{j+1} c_{j+1}\right|+\left|\alpha_{j+2} c_{j+2}\right| \\
& \leq\left|\alpha_{j_{i+1}} c_{j+1}\right|+\left|\alpha_{j_{l+2}} c_{j+2}\right| \leq 1+1=2
\end{aligned}
$$

Hence $\left|\sum_{j=1}^{n} \alpha_{j} c_{j}\right|=\left|\sum_{k=1}^{n} \alpha_{j_{k}} c_{j_{k}}\right| \leq 2$ and, similarly, $\left|\sum_{j=1}^{n} \alpha_{j} d_{j}\right| \leq 2$.

Lemma 2. Let g be the function defined on Z by means of $g(n)=1$ for $n \geq 0$, $g(n)=0$ for $n<0$. Then g is not weakly almost periodic.

Proof. If g were almost periodic, each sequence from the set of translates of g would possess a subsequence which converges weakly to an element of l_{∞} (by the Eberlein-S̆mulian theorem). So in particular the sequence $\left\{g_{i}: i=1,2, \ldots\right\}$ where $g_{i}(n)=g(n-i)$ would have a subsequence $\left\{g_{i}: j=1,2, \ldots\right\}$ converging weakly to $h \in l_{\infty}$.

Each $n \in Z$ defines a continuous linear functional F_{n} on l_{∞} by means of $F_{n}(k)=k(n)\left(k \in l_{\infty}\right)$. Hence, for each $n \in Z$ we would have $F_{n}\left(g_{i}\right) \rightarrow F_{n}(h)$ for $j \rightarrow \infty$, or $g_{i j}(n) \rightarrow h(n)$ for $j \rightarrow \infty$. Since for each n we have $n-i_{j}<0$ for all large enough values of $j, g_{i_{i}}(n)$ is zero for such j. Hence $h(n)=0$ for all n of Z, and so $h=0$.

Denote by βZ the Stone-Čech compactification of Z and let x_{∞} in βZ be a cluster point of Z^{+}. For each fixed $j, g_{i_{i}}\left(x_{\infty}\right)=1$; so $F_{x_{\infty}}\left(g_{i j}\right) \rightarrow 1$ for $j \rightarrow \infty$. On the other hand $F_{x_{\infty}}(h)=h\left(x_{\infty}\right)=0$. This leads to a contradiction.

Proof of Proposition 3. From Lemma 2 and the connection between weakly almost periodic g and weakly compact H_{8}, it follows that the convolution operator H_{g} with g as defined in Lemma 2 is not weakly compact. We show that, however, H_{g} is strictly singular.

Let M be a closed infinite dimensional subspace of l_{1}, and $\varepsilon>0$ arbitrary. If f_{1} is a function in l_{1} with $\left\|f_{1}\right\|_{1}=1$, we may choose a compact subset K_{1} of Z such that $\sum_{x \in Z \backslash K},\left|f_{1}(x)\right| \leq \varepsilon$. Since M has infinite dimension, there exist functions g_{1} and g_{2} in M which are different and such that $g_{1}=g_{2}$ on K_{1}. Putting $g_{1}-g_{2}=h$ we obtain a function $h \in M$ for which $\|h\|_{1} \neq 0$. Multiplying h with a constant leads to the following result: there exists a function $f_{2} \in M$ with $\left\|f_{2}\right\|_{1}=1$ and $f_{2}=0$ on K_{1}; for this function f_{2} we may find a compact subset $K_{2} \supset K_{1}$ in Z such that $\sum_{x \in Z \backslash K_{2}}\left|f_{2}(x)\right| \leq \varepsilon$.

We use this procedure in the following manner. Let n and m be natural numbers, both not smaller than 2 , and let $\varepsilon>0$ be arbitrary. For $1 \leq i \leq m$ and $1 \leq j \leq n$ we may then choose functions $f_{i j}$ in M and strictly positive integers $x_{i j}$ such that
(i) $x_{11}<x_{12}<\cdots<x_{1 n}<x_{21}<\cdots<x_{2 n}<x_{31}<\cdots<x_{m n}$.
(ii) $f_{i j}(x)=0$ for $x \in\left[-x_{i^{\prime} j^{\prime}}, x_{i^{\prime} j^{\prime}}\right]$, where $x_{i^{\prime} j^{\prime}}$ is the point in (i) just preceding $x_{i j}$, with the convention that $i^{\prime}=j^{\prime}=0$ if $i=j=1$, and $x_{00}=0$.
(iii) $\left\|f_{i j}\right\|_{1}=1$
(iv) $\sum_{x \in Z \backslash\left[-x_{i j}, x_{i j}\right]}\left|f_{i j}(x)\right| \leq \varepsilon \cdot 2^{-n(i-1)-j}$.

For $1 \leq i \leq m, 1 \leq j \leq n$ we put $C_{i j}=\left[-x_{i j},-x_{i^{\prime} j^{\prime}}\left[, D_{i j}=\right] x_{i^{\prime} j^{\prime}}, x_{i j}\right]$ (with the same convention as in (ii)), and $c_{i j}=\sum_{x \in C_{i j}} f_{i j}(x), d_{i j}=\sum_{x \in D_{i j}} f_{i j}(x)$.

Since $\left|c_{i j}\right| \leq 1,\left|d_{i j}\right| \leq 1$, we conclude from Lemma 1 that for each fixed $i \in\{1, \ldots, m\}$ there exist complex numbers $\alpha_{i j}(1 \leq j \leq n)$ where $\left|\alpha_{i j}\right|=1$ such
that

$$
\left|\sum_{j=1}^{n} \alpha_{i j} c_{i j}\right| \leq 2 \quad \text { and } \quad\left|\sum_{j=1}^{n} \alpha_{i j} d_{i j}\right| \leq 2 .
$$

If we put

$$
f(x)=\sum_{i, j}^{m, n} \alpha_{i j} f_{i j}(x)
$$

we obtain a function f belonging to M, and

$$
\begin{aligned}
\|f\|_{1} & =\sum_{y \in Z}\left|\sum_{i, j}^{m, n} \alpha_{i j} f_{i j}(y)\right| \geq \sum_{i, j}^{m, n} \sum_{x \in C_{i j} \cup D_{i \mathrm{i}}}\left|\sum_{r, s}^{m, n} \alpha_{r s} f_{r s}(x)\right| \\
& \geq \sum_{i, j}^{m, n} \sum_{x \in C_{i \mathrm{ij}} \cup D_{i \mathrm{i}}}\left(\left|f_{i j}(x)\right|-\sum_{r, s}^{m, n}\left|f_{r s}(x)\right|\right) \\
& \geq \sum_{i, j}^{m, n}\left(1-\varepsilon \cdot 2^{-n(i-1)-i}\right)-\sum_{i, j}^{m, n} \varepsilon \cdot 2^{-n(i-1)-i} \geq n m-2 \varepsilon .
\end{aligned}
$$

For the convolution operator H_{g} we have

$$
\left(H_{\mathrm{g}}(f)\right)(x)=\sum_{y \in Z} f(y) g(x-y)=\sum_{y \leq x} f(y) .
$$

Considering different cases (e.g., $x<-x_{m n}, x>x_{m n}, x \in C_{i j}, x \in D_{i j}, x=0$) it can be shown that $\left\|H_{\mathrm{g}}(f)\right\|_{\infty} \leq 4 m+n+\varepsilon$.

Without putting in the laborious checking of all the cases, we show the way by noting that for all i

$$
\begin{aligned}
\left|\sum\left\{f(x): x \in \bigcup_{j=1}^{n} C_{i j}\right\}\right| & \leq\left|\sum_{i=1}^{n} \sum_{x \in C_{i j}} \alpha_{i j} f_{i j}(x)\right|+\left|\sum_{j=1}^{n} \sum_{x \in C_{i j}} \sum_{(r, s) \neq(i, j)} \alpha_{r s} f_{r s}(x)\right| \\
& \leq\left|\sum_{j=1}^{n} \alpha_{i j} \sum_{x \in C_{i j}} f_{i j}(x)\right|+\sum_{r, s} \sum\left\{\left|\alpha_{r s} f_{r s}(x)\right|: x \in \bigcup_{i} C_{i j} \backslash C_{r s}\right\} \\
& \leq\left|\sum_{j=1}^{n} \alpha_{i j} c_{i j}\right|+\sum_{r, s} \sum\left\{\left|f_{r s}(x)\right|: x \in Z \backslash\left[-x_{r s},+x_{r s}\right]\right\} \\
& \leq 2+\sum_{r, s} \varepsilon \cdot 2^{-n(r-1)-s} \leq 2+\varepsilon .
\end{aligned}
$$

Anyhow, we conclude

$$
\frac{\left\|H_{\mathrm{g}}(f)\right\|_{\infty}}{\|f\|_{1}} \leq \frac{4 m+n+\varepsilon}{n m-2 \varepsilon}
$$

which tends to zero for $n, m \rightarrow \infty$. From this we conclude that H_{g} does not have a bounded inverse on M, and so H_{g} is strictly singular.

3. Remarks

3.1. It is easy to see that the following result is true: H_{g} belongs to $A_{5} \Leftrightarrow$ for each $\varepsilon>0$, there exists a finite set $\left\{c_{i}\right\}_{i=1}^{n}$ of complex numbers such that $\sum_{i=1}^{n}\left|c_{i}\right|=1$, and a corresponding set $\left\{a_{i}\right\}_{i=1}^{n}$ of different points in Z such that $\left\|\sum_{i=1}^{n} c_{i a_{i}} g\right\|_{\infty}<\varepsilon$.
3.2. As we mentioned in the introduction, the compact and weakly compact operators H_{g} in $\mathcal{M}\left(l_{1}, l_{\infty}\right)$ are completely determined by g being either almost periodic or weakly almost periodic. This is even true for more general locally compact groups (see the references). The problem of giving necessary and sufficient conditions on $g \in l_{\infty}$ for H_{g} to be in $A_{3}\left(=A_{4}\right)$ remains unsolved.

Acknowledgement. The authors express their appreciation to the referee for some valuable suggestions.

References

1. C. Comisky, Multipliers of Banach modules. Ph.D. dissertation, University of Oregon, 1970.
2. G. Crombez and W. Govaerts, Compact convolution operators between $L_{\mathrm{p}}(G)$-spaces. Colloq. Math. 39 (1978), 325-329.
3. R. Hermann, Generalizations of weakly compact operators. Trans. Amer. Math. Soc., 132 (1968), 377-386.
4. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. Beriin, Springer, 1973 (Lecture Notes, 338).
5. A. Pelczynski, On strictly singular and strictly cosingular operaiors. I. Strictly singular and strictly cosingular operators in $C(S)$-spaces. Bull. Acad. Polon. Sci., Sér. Sc. Math. Astronom. Phys. 13 (1965), 31-36.
6. -, On strictly singular and strictly cosingular operators. II. Strictly singular and strictly cosingular operators in $L(\nu)$-spaces. Bull. Acad. Polon. Sci., Sér. Sc. Math. Astronom. Phys. 13 (1965), 37-41.
7. K. Ylinen, Characterizations of $B(G)$ and $B(G) \cap A P(G)$ for locally compact groups. Proc. Amer. Math. Soc. 58 (1976), 151-157.

State University of Ghent

Seminar of Higher Analysis
Galglafn 2
B-9000 Gent, Belgium

[^0]: Received by the editors April 20, 1978 and, in revised form, April 25, 1979 and August 22, 1979.

 * "Aspirant" of the Belgian "Nationaal Fonds voor Wetenschappelijk Onderzoek".

