Canad. Math. Bull. Vol. 23 (4), 1980

TOWARDS A CLASSIFICATION OF CONVOLUTION-TYPE OPERATORS FROM l_1 TO l_{∞}

G. CROMBEZ AND W. GOVAERTS*

1. Introduction. Let Z be the additive group of integer numbers with discrete topology, $l_1 \equiv L_1(Z)$ the space of complex-valued integrable functions on Z with respect to normalized Haar measure, $l_{\infty} \equiv L_{\infty}(Z)$ the space of bounded functions on Z. By $\mathcal{M}(l_1, l_{\infty})$ we denote the set of convolution-type operators (or multipliers) from l_1 to l_{∞} ; they are of the form $H_{\mathfrak{g}}(g \in l_{\infty})$ with $H_{\mathfrak{g}}(f) = f * g(f \in l_1)$ where * denotes convolution, so that $(f * g)(x) = \sum_{y \in Z} f(y)g(x - y)$.

We recall the following definitions about a bounded linear operator S from a Banach space X to a Banach space Y (to be found, e.g., in [3]): S is said to be *strictly singular* if whenever S has a bounded inverse on M, M a closed subspace of X, then M is finite dimensional. S is called *almost weakly compact* if whenever S has a bounded inverse on a closed subspace M of X, then M is reflexive.

We consider the following subsets of $\mathcal{M}(l_1, l_{\infty})$: A_1 , the set of compact operators; A_2 , the set of weakly compact operators; A_3 , the set of strictly singular operators; A_4 , the set of almost weakly compact operators; A_5 , the set of operators which do not have a bounded inverse on l_1 ; $A_6 (=\mathcal{M}(l_1, l_{\infty}) \setminus A_5)$, the set of operators which do have a bounded inverse on l_1 .

From the definitions we conclude that the inclusions $A_1 \subset A_2$ and $A_3 \subset A_4 \subset A_5$ are certainly true. That $A_2 \subset A_3$ follows easily from the fact that every infinite-dimensional subspace of l_1 is non-reflexive, and the obvious fact that a weakly compact operator can not be invertible on a non-reflexive subspace; the first observation also leads to $A_3 = A_4$.

A function g in l_{∞} is called [weakly] almost periodic if the set $\{ag: a \in Z\}$ of left translates is [weakly] relatively compact. The set of almost periodic functions on Z is a proper subset of the set of weakly almost periodic functions, since e.g., the function δ_0 which is one at 0 and zero at the other points of Z, is weakly almost periodic but not almost periodic. Since the [weakly] compact convolution operators H_g from l_1 to l_{∞} are just those induced by the [weakly] almost periodic functions g, as shown in [2] and [7], we deduce $A_1 \subseteq A_2$.

Received by the editors April 20, 1978 and, in revised form, April 25, 1979 and August 22, 1979.

^{* &}quot;Aspirant" of the Belgian "Nationaal Fonds voor Wetenschappelijk Onderzoek".

Hence, the foregoing observations lead to the following relations between the sets A_1, \ldots, A_5 :

$$A_1 \subsetneq A_2 \subset A_3 = A_4 \subset A_5.$$

In what follows we prove the additional results:

$$A_2 \subsetneqq A_3; \qquad A_4 \subsetneqq A_5; \qquad A_6 \neq \phi.$$

2. Main results

PROPOSITION 1. There exists an operator H_g in $\mathcal{M}(l_1, l_{\infty})$ which is an isometric embedding. In particular, $A_6 \neq \emptyset$.

Proof. Denote by T the set of complex numbers z for which |z|=1. For each positive integer k, the set T^k of all k-tuples of elements of T is separable; let $\{(z_{k,1}^{(i)}, z_{k,2}^{(i)}, \ldots, z_{k,k}^{(i)})_{i=1}^{\infty}\}$ be a countable dense subset of T^k . We choose a family $(B_i^{(i)})_{i,i=1}^{\infty}$ of subsets of Z^+ with the following properties:

(i) for fixed *j*, each B_i^j consists of exactly 2j+1 successive positive integers, say $B_i^j = [x_i^j, x_i^j+1, \dots, x_i^j+2j]$.

(ii) if $i \neq i'$ or $j \neq j'$, then $B_i^j \cap B_{i'}^{j'} = \emptyset$.

This can be done by writing the sets B_1^i in a double array like an infinite matrix, and then choosing successively $B_1^1, B_1^2, B_2^1, B_3^1, B_2^2, B_1^3, B_1^4, \ldots$

For each fixed *j*, we define g on $\bigcup_{i=1}^{\infty} B_i^j$ by means of

$$g(x_i^j) = z_{2j+1,2j+1}^{(i)}, \qquad g(x_i^j+1) = z_{2j+1,2j}^{(i)}, \ldots, g(x_i^j+2j) = z_{2j+1,1}^{(i)}.$$

We put g(x) = 0 for $x \in Z \setminus \bigcup_{i,j=1}^{\infty} B_i^j$.

For the function g so constructed we have $||g||_{\infty} = 1$; hence $||f * g||_{\infty} \le ||f||_1 (f \in l_1)$. To prove the converse inequality we may suppose that f has a compact support, since the set of those functions is dense in l_1 . So let $f \ne 0$ be an element of l_1 , with f(x) = 0 for $n \in \mathbb{Z} \setminus [-n, +n]$, $n \in \mathbb{Z}^+$. If y is an integer belonging to [-n, +n] we put $a_y = \overline{\operatorname{sgn} f(y)}$ if $f(y) \ne 0^{\perp}$ and $a_y = 1$ if f(y) = 0. Then the (2n+1)-tuple $(a_{-n}, \ldots, a_0, \ldots, a_n)$ belongs to T^{2n+1} . Hence, given $\varepsilon > 0$ there exists an index *i* such that $|z_{2n+1,1}^{(i)} - a_{-n}| < \varepsilon, \ldots, |z_{2n+1,2n+1}^{(i)} - a_n| < \varepsilon$, and there exist points $x_i^n, \ldots, x_i^n + 2n$ such that

$$g(x_i^n) = z_{2n+1,2n+1}^{(i)}, \ldots, g(x_i^n + 2n) = z_{2n+1,1}^{(i)}$$

We so obtain

$$(f * g)(x_i^n + n) = \sum_{y=-n}^n f(y)g(x_i^n + n - y) = \sum_{y=-n}^n f(y)z_{2n+1,n+y+1}^{(i)}$$

from which we derive

(1)
$$\left| (f * g)(x_i^n + n) - \sum_{y = -n}^n f(y)a_y \right| = \left| \sum_{y = -n}^n f(y)[z_{2n+1,n+y+1}^{(i)} - a_y] \right| \le \varepsilon ||f||_1.$$

414

Since $\sum_{y=-n}^{n} f(y)a_y = ||f||_1$, (1) leads to $|(f * g)(x_i^n + n)| \ge (1 - \varepsilon) ||f||_1$. This means that $||f * g||_{\infty} \ge (1 - \varepsilon) ||f||_1$, from which the result follows using the fact that ε was arbitrary.

PROPOSITION 2. There exists an operator H_g in $\mathcal{M}(l_1, l_{\infty})$ which is not strictly singular (= almost weakly compact) and which does not have a bounded inverse on l_1 ; i.e., $A_4 \subseteq A_5$.

Proof. In Z^+ we choose a family $S = \{x_{ijk}\}$ of points were $1 \le i, 1 \le j \le i+1, 1 \le k \le j$, where $x_{iik} \ne x_{i'j'k'}$ if $(i, j, k) \ne (i', j', k')$, and where

$$x_{ijk} \le x_{i'j'k'} \Leftrightarrow$$
 either $i < i'$
or $i = i'$ and $j < j'$
or $i = i'$ and $j = j'$ and $k \le k'$.

We take care to construct S such that a finite sequence of 10^n (n = 1, 2, ...) successive integers in Z does not contain more than n+1 elements from S and that, for $1 \le k \le j-1$, $x_{ij(j-k)} = x_{ijj} - 10^k + 1$.

We define the function $g \in l_{\infty}$ as follows:

(i) g(x) = 0 for $x \in Z \setminus S$

(ii) for n = 1, 2, ...,the set $\{(g(x_{in1}), g(x_{in2}), ..., g(x_{inn})): i = n - 1, n, ...\}$ is dense in T^n .

Put $A = \{10^n : n = 0, 1, 2, ...\}$, and $M = \{f \in l_1 : f(x) = 0 \text{ for } x \notin A\}$. Then M is an infinite dimensional closed subspace in l_1 . Analogously as in proposition 1 it may be proved (using the special properties of S) that the convolution-operator H_g is an isomorphism on M. Hence H_g is not strictly singular. For each $n \in Z^+$ we define the function f_n on Z by

$$f_n(x) = \begin{cases} 10^{-n} & \text{for } 1 \le x \le 10^n \\ 0 & \text{elsewhere.} \end{cases}$$

Each f_n belongs to l_1 , and $||f_n||_1 = 1$. If x is a point of Z we have

$$|(H_{g}(f_{n}))(x)| = \left|\sum_{1 \le y \le 10^{n}} 10^{-n} g(x-y)\right| \le (n+1)10^{-n}.$$

Hence $||H_g(f_n)||_{\infty} \to 0$ for $n \to \infty$. This means that H_g does not have a bounded inverse on l_1 .

PROPOSITION 3. There exists an operator H_g in $\mathcal{M}(l_1, l_{\infty})$ which is strictly singular but is not weakly compact; i.e., $A_2 \subseteq A_3$.

In the proof use will be made of the following lemmas.

LEMMA 1. Let there be given two finite sets $\{c_j\}_{j=1}^n$ and $\{d_j\}_{j=1}^n$ of complex numbers such that $|c_i| \le 1$ and $|d_i| \le 1$ for each j. Then there exist complex

1980]

G. CROMBEZ AND W. GOVAERTS

numbers $\{\alpha_i\}_{j=1}^n$ with $|\alpha_j| = 1$ for each j such that $|\sum_{j=1}^n \alpha_j c_j| \le 2$ and $|\sum_{j=1}^n \alpha_j d_j| \le 2$.

Proof. Choose an element c_{j_1} of $\{c_j\}_{j=1}^n$ such that $|c_{j_1}| \ge |c_j|$ for each $j \in \{1, \ldots, n\}$, and choose $\alpha_{j_1} = 1$. Let $d_{j_2}(j_2 \ne j_1)$ be an element of $\{d_j\}_{j=1}^n$ such that $|d_{j_2}| \ge |d_j|$ for each $j \in \{1, \ldots, n\} \setminus \{j_1\}$, and choose α_{j_2} such that $|\alpha_{j_2}| = 1$ and sgn $\alpha_{j_2}d_{j_2} = -\text{sgn } d_{j_1}$ (if d_{j_1} is zero, choose $\alpha_{j_2} = 1$). Choose then $c_{j_3} \in \{c_j\}_{j=1}^n$ ($j_3 \ne j_1$) and $j_3 \ne j_2$) such that $|c_{j_3}| \ge |c_j|$ for each $j \in \{1, \ldots, n\} \setminus \{j_1, j_2\}$, and choose α_{j_3} with $|\alpha_{j_3}| = 1$ and sgn $\alpha_{j_3}c_{j_3} = -\text{sgn } (\alpha_{j_1}c_{j_1} + \alpha_{j_2}c_{j_2})$ (if $\alpha_{j_1}c_{j_1} + \alpha_{j_2}c_{j_2} = 0$, choose $\alpha_{j_3} = 1$). And so on.

We now prove $\left|\sum_{k=1}^{l} \alpha_{j_k} c_{j_k}\right| \le 2$ for all $l \le n$.

This is obvious when l = 1, 2. Now let l be any even number smaller than n such that the above inequality holds.

Since sgn $(\alpha_{j_{l+1}}c_{j_{l+1}}) = -\text{sgn}(\sum_{k=1}^{l} \alpha_{j_k}c_{j_k})$ we clearly have $|\sum_{k=1}^{l+1} \alpha_{j_k}c_{j_k}| \le 2$. If l+1 = n, then the proof is complete. Otherwise, we consider two cases. First, if

$$|\alpha_{j_{l+1}}c_{j_{l+1}}| \leq \left|\sum_{k=1}^{l} \alpha_{j_k}c_{j_k}\right|,$$

then

$$\begin{vmatrix} \sum_{k=1}^{l+2} \alpha_{j_k} c_{j_k} \end{vmatrix} \leq \left| \sum_{k=1}^{l} \alpha_{j_k} c_{j_k} + \alpha_{j_{l+1}} c_{j_{l+1}} \right| + |\alpha_{j_{l+2}} c_{j_{l+2}}| \\ = \left| \sum_{k=1}^{l} \alpha_{j_k} c_{j_k} \right| - |\alpha_{j_{l+1}} c_{j_{l+1}}| + |\alpha_{j_{l+2}} c_{j_{l+2}}|.$$

Since

$$|\alpha_{j_{l+1}}c_{j_{l+1}}| = |c_{j_{l+1}}| \ge |c_{j_{l+2}}| = |\alpha_{j_{l+2}}c_{j_{l+2}}|$$

we infer

$$\left|\sum_{k=1}^{l+2} \alpha_{j_k} c_{j_k}\right| \leq \left|\sum_{k=1}^{l} \alpha_{j_k} c_{j_k}\right| \leq 2.$$

If

$$\left|\alpha_{j_{l+1}}c_{j_{l+1}}\right| > \left|\sum_{k=1}^{l} \alpha_{j_{k}}c_{j_{k}}\right|,$$

then

$$\left|\sum_{k=1}^{l+2} \alpha_{j_{k}} c_{j_{k}}\right| \leq \left|\sum_{k=1}^{l} \alpha_{j_{k}} c_{j_{k}} + \alpha_{j_{l+1}} c_{j_{l+1}}\right| + |\alpha_{j_{l+2}} c_{j_{l+2}}|$$
$$\leq |\alpha_{j_{l+1}} c_{j_{l+1}}| + |\alpha_{j_{l+2}} c_{j_{l+2}}| \leq 1 + 1 = 2.$$
Hence $\left|\sum_{i=1}^{n} \alpha_{i} c_{i}\right| = \left|\sum_{k=1}^{n} \alpha_{j_{k}} c_{j_{k}}\right| \leq 2$ and, similarly, $\left|\sum_{i=1}^{n} \alpha_{i} d_{i}\right| \leq 2.$

416

December

LEMMA 2. Let g be the function defined on Z by means of g(n) = 1 for $n \ge 0$, g(n) = 0 for n < 0. Then g is not weakly almost periodic.

Proof. If g were almost periodic, each sequence from the set of translates of g would possess a subsequence which converges weakly to an element of l_{∞} (by the Eberlein-Šmulian theorem). So in particular the sequence $\{g_i: i = 1, 2, ...\}$ where $g_i(n) = g(n-i)$ would have a subsequence $\{g_{i_j}: j = 1, 2, ...\}$ converging weakly to $h \in l_{\infty}$.

Each $n \in \mathbb{Z}$ defines a continuous linear functional F_n on l_{∞} by means of $F_n(k) = k(n)$ $(k \in l_{\infty})$. Hence, for each $n \in \mathbb{Z}$ we would have $F_n(g_{i_j}) \rightarrow F_n(h)$ for $j \rightarrow \infty$, or $g_{i_j}(n) \rightarrow h(n)$ for $j \rightarrow \infty$. Since for each n we have $n - i_j < 0$ for all large enough values of j, $g_{i_j}(n)$ is zero for such j. Hence h(n) = 0 for all n of \mathbb{Z} , and so h = 0.

Denote by βZ the Stone-Čech compactification of Z and let x_{∞} in βZ be a cluster point of Z^+ . For each fixed j, $g_{i_j}(x_{\infty}) = 1$; so $F_{x_{\infty}}(g_{i_j}) \rightarrow 1$ for $j \rightarrow \infty$. On the other hand $F_{x_{\infty}}(h) = h(x_{\infty}) = 0$. This leads to a contradiction.

Proof of Proposition 3. From Lemma 2 and the connection between weakly almost periodic g and weakly compact H_g , it follows that the convolution operator H_g with g as defined in Lemma 2 is not weakly compact. We show that, however, H_g is strictly singular.

Let M be a closed infinite dimensional subspace of l_1 , and $\varepsilon > 0$ arbitrary. If f_1 is a function in l_1 with $||f_1||_1 = 1$, we may choose a compact subset K_1 of Z such that $\sum_{x \in Z \setminus K_1} |f_1(x)| \le \varepsilon$. Since M has infinite dimension, there exist functions g_1 and g_2 in M which are different and such that $g_1 = g_2$ on K_1 . Putting $g_1 - g_2 = h$ we obtain a function $h \in M$ for which $||h||_1 \neq 0$. Multiplying h with a constant leads to the following result: there exists a function $f_2 \in M$ with $||f_2||_1 = 1$ and $f_2 = 0$ on K_1 ; for this function f_2 we may find a compact subset $K_2 \supset K_1$ in Z such that $\sum_{x \in Z \setminus K_2} |f_2(x)| \le \varepsilon$.

We use this procedure in the following manner. Let *n* and *m* be natural numbers, both not smaller than 2, and let $\varepsilon > 0$ be arbitrary. For $1 \le i \le m$ and $1 \le j \le n$ we may then choose functions f_{ij} in *M* and strictly positive integers x_{ij} such that

(i) $x_{11} < x_{12} < \cdots < x_{1n} < x_{21} < \cdots < x_{2n} < x_{31} < \cdots < x_{mn}$.

(ii) $f_{ij}(x) = 0$ for $x \in [-x_{i'j'}, x_{i'j'}]$, where $x_{i'j'}$ is the point in (i) just preceding x_{ij} , with the convention that i' = j' = 0 if i = j = 1, and $x_{00} = 0$.

(iii) $||f_{ii}||_1 = 1$

(iv) $\sum_{x \in \mathbb{Z} \setminus [-x_{ij}, x_{ij}]} |f_{ij}(x)| \leq \varepsilon \cdot 2^{-n(i-1)-j}$.

For $1 \le i \le m$, $1 \le j \le n$ we put $C_{ij} = [-x_{ij}, -x_{i'j'}[, D_{ij} =]x_{i'j'}, x_{ij}]$ (with the same convention as in (ii)), and $c_{ij} = \sum_{x \in C_{ij}} f_{ij}(x)$, $d_{ij} = \sum_{x \in D_{ij}} f_{ij}(x)$.

Since $|c_{ij}| \le 1$, $|d_{ij}| \le 1$, we conclude from Lemma 1 that for each fixed $i \in \{1, ..., m\}$ there exist complex numbers α_{ij} $(1 \le j \le n)$ where $|\alpha_{ij}| = 1$ such

that

$$\left|\sum_{j=1}^{n} \alpha_{ij} c_{ij}\right| \leq 2$$
 and $\left|\sum_{j=1}^{n} \alpha_{ij} d_{ij}\right| \leq 2.$

If we put

$$f(x) = \sum_{i,j}^{m,n} \alpha_{ij} f_{ij}(x)$$

we obtain a function f belonging to M, and

$$\begin{split} \|f\|_{1} &= \sum_{\mathbf{y}\in Z} \left| \sum_{i,j}^{m,n} \alpha_{ij} f_{ij}(\mathbf{y}) \right| \geq \sum_{i,j}^{m,n} \sum_{\mathbf{x}\in C_{ij}\cup D_{ij}} \left| \sum_{r,s}^{m,n} \alpha_{rs} f_{rs}(\mathbf{x}) \right| \\ &\geq \sum_{i,j}^{m,n} \sum_{\mathbf{x}\in C_{ij}\cup D_{ij}} \left(|f_{ij}(\mathbf{x})| - \sum_{r,s}^{m,n} |f_{rs}(\mathbf{x})| \right) \\ &\geq \sum_{i,j}^{m,n} \left(1 - \varepsilon \cdot 2^{-n(i-1)-j} \right) - \sum_{i,j}^{m,n} \varepsilon \cdot 2^{-n(i-1)-j} \geq nm - 2\varepsilon \end{split}$$

For the convolution operator $H_{\rm g}$ we have

$$(H_g(f))(x) = \sum_{y \in Z} f(y)g(x-y) = \sum_{y \leq x} f(y).$$

Considering different cases (e.g., $x < -x_{mn}, x > x_{mn}, x \in C_{ij}, x \in D_{ij}, x = 0$) it can be shown that $||H_g(f)||_{\infty} \le 4m + n + \varepsilon$.

Without putting in the laborious checking of all the cases, we show the way by noting that for all i

$$\begin{split} \left| \sum \left\{ f(x) \colon x \in \bigcup_{j=1}^{n} C_{ij} \right\} \right| &\leq \left| \sum_{j=1}^{n} \sum_{x \in C_{ij}} \alpha_{ij} f_{ij}(x) \right| + \left| \sum_{j=1}^{n} \sum_{x \in C_{ij}} \sum_{(r,s) \neq (i,j)} \alpha_{rs} f_{rs}(x) \right| \\ &\leq \left| \sum_{j=1}^{n} \alpha_{ij} \sum_{x \in C_{ij}} f_{ij}(x) \right| + \sum_{r,s} \sum \left\{ |\alpha_{rs} f_{rs}(x)| \colon x \in \bigcup_{i} C_{ij} \setminus C_{rs} \right\} \\ &\leq \left| \sum_{j=1}^{n} \alpha_{ij} c_{ij} \right| + \sum_{r,s} \sum \left\{ |f_{rs}(x)| \colon x \in Z \setminus [-x_{rs}, +x_{rs}] \right\} \\ &\leq 2 + \sum_{r,s} \varepsilon \cdot 2^{-n(r-1)-s} \leq 2 + \varepsilon. \end{split}$$

Anyhow, we conclude

$$\frac{\|H_{g}(f)\|_{\infty}}{\|f\|_{1}} \leq \frac{4m+n+\varepsilon}{nm-2\varepsilon},$$

which tends to zero for $n, m \rightarrow \infty$. From this we conclude that H_g does not have a bounded inverse on M, and so H_g is strictly singular.

https://doi.org/10.4153/CMB-1980-060-4 Published online by Cambridge University Press

418

1980]

3. Remarks

3.1. It is easy to see that the following result is true: H_g belongs to $A_5 \Leftrightarrow$ for each $\varepsilon > 0$, there exists a finite set $\{c_i\}_{i=1}^n$ of complex numbers such that $\sum_{i=1}^n |c_i| = 1$, and a corresponding set $\{a_i\}_{i=1}^n$ of different points in Z such that $\|\sum_{i=1}^n c_{i,a_i}g\|_{\infty} < \varepsilon$.

3.2. As we mentioned in the introduction, the compact and weakly compact operators H_g in $\mathcal{M}(l_1, l_{\infty})$ are completely determined by g being either almost periodic or weakly almost periodic. This is even true for more general locally compact groups (see the references). The problem of giving necessary and sufficient conditions on $g \in l_{\infty}$ for H_g to be in A_3 (= A_4) remains unsolved.

ACKNOWLEDGEMENT. The authors express their appreciation to the referee for some valuable suggestions.

REFERENCES

1. C. Comisky, Multipliers of Banach modules. Ph.D. dissertation, University of Oregon, 1970.

2. G. Crombez and W. Govaerts, Compact convolution operators between $L_p(G)$ -spaces. Colloq. Math. **39** (1978), 325–329.

3. R. Hermann, Generalizations of weakly compact operators. Trans. Amer. Math. Soc., 132 (1968), 377–386.

4. J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces*. Berlin, Springer, 1973 (Lecture Notes, 338).

5. A. Pelczynski, On strictly singular and strictly cosingular operators. I. Strictly singular and strictly cosingular operators in C(S)-spaces. Bull. Acad. Polon. Sci., Sér. Sc. Math. Astronom. Phys. **13** (1965), 31–36.

6. — , On strictly singular and strictly cosingular operators. II. Strictly singular and strictly cosingular operators in $L(\nu)$ -spaces. Bull. Acad. Polon. Sci., Sér. Sc. Math. Astronom. Phys. **13** (1965), 37–41.

7. K. Ylinen, Characterizations of B(G) and $B(G) \cap AP(G)$ for locally compact groups. Proc. Amer. Math. Soc. **58** (1976), 151–157.

STATE UNIVERSITY OF GHENT SEMINAR OF HIGHER ANALYSIS GALGLAAN 2 B-9000 GENT, BELGIUM