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A well-functioning immune system is key to providing good defence against pathogenic
organisms and to providing tolerance to non-threatening organisms, to food components and to
self. The immune system works by providing an exclusion barrier, by identifying and elim-
inating pathogens and by identifying and tolerating non-threatening sources of antigens, and by
maintaining a memory of immunological encounters. The immune system is complex involving
many different cell types distributed throughout the body and many different chemical med-
iators some of which are involved directly in defence while others have a regulatory role.
Babies are born with an immature immune system that fully develops in the first few years of
life. Immune competence can decline with ageing. The sub-optimal immune competence that
occurs early and late in life increases susceptibility to infection. Undernutrition decreases
immune defences, making an individual more susceptible to infection. However, the immune
response to an infection can itself impair nutritional status and alter body composition. Prac-
tically all forms of immunity are affected by protein–energy malnutrition, but non-specific
defences and cell-mediated immunity are most severely affected. Micronutrient deficiencies
impair immune function. Here, vitamins A, D and E, and Zn, Fe and Se are discussed. The gut-
associated lymphoid tissue is especially important in health and well-being because of its close
proximity to a large and diverse population of organisms in the gastrointestinal tract and its
exposure to food constituents. Certain probiotic bacteria which modify the gut microbiota
enhance immune function in laboratory animals and may do so in human subjects.

Lymphocyte: Infection: Cytokine: Nutrient: Gut-associated lymphoid tissue

The aim of this paper is to provide an overview of why
good quality nutrition is important for the immune system
to function properly and to summarise the evidence
available, mainly, though not exclusively, from studies
in human subjects, to support this idea. For a broader
consideration of the topic the reader is referred to two
multi-author books(1,2), recent textbook chapters(3,4), earlier
comprehensive reviews of the topic(5–7) and the topic- and
nutrient-specific reviews cited within this paper.

The immune system

General overview

The immune system acts to protect the host from infectious
agents, including bacteria, viruses, fungi and parasites that
exist in the environment and from other noxious insults. It
is a complex system involving various cells distributed in
many locations throughout the body and moving between
these locations in the lymph and the bloodstream. In some
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locations, the cells are organised into discrete lymphoid
organs, classified as primary lymphoid organs where
immune cells arise and mature (bone marrow and thymus)
and secondary lymphoid organs (lymph nodes, spleen and
gut-associated lymphoid tissue) where mature immune
cells interact and respond to antigens. The immune system
has two general functional divisions: the innate (also called
natural) immune system and the acquired (also termed
specific or adaptive) immune system. A well functioning
immune system is key to providing good defence against

pathogenic organisms and to providing tolerance to non-
threatening organisms, to food components and to self. The
immune system works by providing an exclusion barrier,
by identifying and eliminating pathogens and by identify-
ing and tolerating non-threatening sources of antigens and
by maintaining a memory of immunological encounters.
Full details of the components of the immune system,
their roles and interactions and the chemical mediators
involved can be found in any good quality immunology
textbook(8,9).

Fig. 1. (Colour online) Structure and organisation of the gut-associated lymphoid tissue. Reprinted by permission from Macmillan Publishers

Ltd: Nat Rev Immunol 3, 331–341, copyright 2003. Antigen might enter through the microfold (M) cells (a), and after transfer to local dendritic

cells (DC), might then be presented directly to T cells in the Peyer’s patch (b). Alternatively, antigen or antigen-loaded DC from the Peyer’s

patch might gain access to draining lymph (c), with subsequent T-cell recognition in the mesenteric lymph nodes (d). A similar process of

antigen or antigen-presenting cell dissemination to mesenteric lymph nodes might occur if antigen enters through the epithelium covering

the lamina propria (e). In this case, there is also the possibility that enterocytes might act as local antigen presenting cells (f). In all cases, the

antigen-responsive CD4 + T cells leave the mesenteric lymph nodes in the efferent lymph (g) and after entering the bloodstream

through the thoracic duct, exit into the mucosa through vessels in the lamina propria. T cells which have recognised antigen first in the

mesenteric lymph node might also disseminate from the bloodstream throughout the peripheral immune system. Antigen might also gain direct

access to the bloodstream from the gut (h) and interact with T cells in peripheral lymphoid tissues (i). SED, subepithelial dome; TDA,

thymus-dependent area.
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The gut-associated immune system

The immune system of the gut, often referred to as the gut-
associated lymphoid tissue is extensive and includes the
physical barrier of the intestinal wall and its mucosal
coating as well as components of the innate and adaptive
immune systems(10). The physical barrier includes acid in
the stomach, mucus and tightly connected epithelial cells,
which all act to prevent the entry of pathogens. Within the
intestinal wall, cells of the immune system are organised
into specialised structures, termed Peyer’s patches which
are located directly beneath the epithelium in a region
called the lamina propria (Fig. 1)(10). This also contains M
cells which sample small particles derived from food or
from micro-organisms in the gut lumen. The gut-associated
immune system not only plays a vital role in providing
host defence against pathogens within the gastrointestinal
lumen but also in generating tolerogenic responses to
harmless micro-organisms and to food components(11).

The immune system changes over the life course

Newborn babies have an immature immune system. After
birth, immunological competence is gained partly as a
result of maturation factors present in breast milk and
partly as a result of exposure to antigens (from food and
from environmental micro-organisms, the latter starting
during the birth process itself)(12,13). Some of the early
encounters with antigens play an important role in ensuring
tolerance and a breakdown in this system of ‘immune
education’ can lead to disease(12,13). At the other end of the
lifecycle, older people experience a progressive dysregu-
lation of the immune system, leading to decreased acquired
immunity and a greater susceptibility to infection(14–17).
This age-related decline in acquired immunity is termed
immunosenescence. An additional consequence of immu-
nosenescence is an impaired response to vaccination(18,19).
Innate immunity appears to be less affected by ageing than
acquired immunity.

Why should nutrition affect immune function?

The immune system is functioning at all times, but specific
immunity becomes increasingly active in the presence of
pathogens. This results in a significant increase in the
demand of the immune system for substrates and nutrients
to provide a ready source of energy. This demand can be
met from exogenous sources (i.e. from the diet) and/or
from endogenous pools. Cells of the immune system are
able to utilise glucose, amino acids and fatty acids as fuels
for energy generation(20), which involves electron carriers
and a range of coenzymes, which are usually derivatives of
vitamins. The final component of the pathway for energy
generation (the mitochondrial electron transfer chain)
includes electron carriers that have Fe or Cu at their active
site. Activation of the immune response induces the
production of proteins (including Ig, cytokines, cytokine
receptors, adhesion molecules and acute-phase proteins)
and lipid-derived mediators (including prostaglandins
and leucotrienes). To respond optimally to an immune

challenge there must be appropriate enzymic machinery in
place for RNA and protein synthesis and their regulation
and ample substrate available (including nucleotides for
RNA synthesis, the correct mix of amino acids for protein
synthesis and PUFA for eicosanoid synthesis). An impor-
tant component of the immune response is oxidative burst,
during which superoxide anion radicals are produced from
oxygen in a reaction linked to the oxidation of glucose.
The reactive oxygen species produced can be damaging to
host tissues and thus antioxidant protective mechanisms
are necessary. Among these are the classic antioxidant
vitamins (vitamins E and C), glutathione, the antioxidant
enzymes superoxide dismutase and catalase, and the
glutathione recycling enzyme glutathione peroxidase. The
antioxidant enzymes all have metal ions at their active site
(Mn, Cu, Zn, Fe and Se). Cellular proliferation is a key
component of the immune response, providing amplifica-
tion and memory: before division there must be replication
of DNA and then of all cellular components (proteins,
membranes, intracellular organelles, etc.). In addition to
energy, this clearly needs a supply of nucleotides (for DNA
and RNA synthesis), amino acids (for protein synthesis),
fatty acids, bases and phosphate (for phospholipid synth-
esis) and other lipids (e.g. cholesterol) and cellular com-
ponents. Some of the cellular building blocks cannot be
synthesised in mammalian cells and must come from the
diet (e.g. essential fatty acids, essential amino acids and
minerals). Amino acids (e.g. arginine) are precursors for
synthesis of polyamines, which play roles in regulation of
DNA replication and cell division. Various micronutrients
(e.g. Fe, folic, Zn and Mg) are also involved in nucleotide
and nucleic acid synthesis. Some nutrients, such as vita-
mins A and D, and their metabolites are direct regulators
of gene expression in immune cells and play a key role
in the maturation, differentiation and responsiveness of
immune cells. Thus, the roles for nutrients in immune
function are many and varied and it is easy to appreciate
that an adequate and balanced supply of these is essential
if an appropriate immune response is to be mounted. In
essence, good nutrition creates an environment in which
the immune system is able to respond appropriately to a
challenge, irrespective of the nature of the challenge. The
response may be an active destructive one, or a more
passive tolerogenic one.

Protein–energy malnutrition and immune function

It is well known that undernutrition impairs the immune
system, suppressing immune functions that are required for
protection against pathogens and increasing susceptibility
to infection(5–7). Undernutrition leading to impairment
of immune function can be due to insufficient intake of
energy and macronutrients and/or due to deficiencies in
specific micronutrients. These may occur in combination.
There are a number of reviews of the effect of protein–
energy malnutrition on aspects of immune function and
on susceptibility to infection(5–7,21–23). Practically all forms
of immunity are affected by protein–energy malnutrition
but non-specific defences and cell-mediated immunity
are more severely affected than humoral (antibody)
responses(21–23). Barrier function can be impaired by
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protein–energy malnutrition(24,25), which may permit
bacterial translocation into the circulation(24,26). Protein–
energy malnutrition causes atrophy of primary and
secondary lymphoid organs and there is a decline in the
number of circulating lymphocytes, in proportion to the
extent of malnutrition(27,28). The ability of T-lymphocytes
to proliferate is decreased by protein–energy malnutrition
as in the synthesis of cytokines central to cell-mediated
immune response including IL-2 and interferon-g (29,30),
suggesting a decline in T-helper (Th)1-type responses.
There is a lowered ratio of CD4 +:CD8 + cells in the cir-
culation(31) and the activity of natural killer cells is
diminished(32–35). Phagocytic capacity of monocytes and
macrophages appears to be unaffected(36,37). The response
to a controlled antigenic challenge is reduced by protein–
energy malnutrition(38), reflecting the effects on individual
cellular components. The numbers of B-cells in the circu-
lation and serum Ig levels appear to be unaffected by
malnutrition and may even be increased. The functional
consequence of malnutrition-induced immune impairment
was shown in a study in malnourished Bangladeshi chil-
dren in which those with the fewest skin reactions to
common bacterial antigens (i.e. the weakest cell-mediated
immune response) had the greatest risk of developing
diarrhoeal disease(39,40).

The influence of individual micronutrients on
immune function

The effects of individual micronutrients on immune func-
tion have been identified from studies of deficiency in
animals and human subjects and from controlled animal
studies in which the nutrient under investigation is inclu-
ded at known levels in the diet. These studies provide good
evidence that a number of nutrients are required for an
efficient immune response and that deficiency in one or
more of them will impair immune function and provide a
window of opportunity for pathogens. It seems likely that
multiple nutrient deficiencies might have a more significant
impact on immune function, and therefore resistance to
infection, than a single nutrient deficiency. This section
will describe the importance of six selected micronutrients
on immune function and susceptibility to infection. These
micronutrients have been chosen because each is widely
studied and known to be of great importance for immune
function and because they are each the focus of much
current research activity with significant new discoveries
being made.

Vitamin A

There are a number of reviews of the role of vitamin A and
its metabolites in the immune system and in host suscept-
ibility to infection(5–7,41–45). Vitamin A deficiency impairs
barrier function, alters immune responses and increases
susceptibility to a range of infections(5–7,41–45). Vitamin A-
deficient mice show breakdown of the gut barrier and
impaired mucus secretion (due to loss of mucus-producing
goblet cells), both of which would facilitate entry of
pathogens(46). Many aspects of innate immunity, in addi-
tion to barrier function, are affected by vitamin A(5–7,41–45).

For example, vitamin A controls neutrophil maturation(47)

and in vitamin A deficiency, blood neutrophil numbers
are increased, although their phagocytic function is
impaired(48) resulting in decreased ability to ingest and kill
bacteria(49). Natural killer cell activity is diminished by
vitamin A deficiency(50). The impact of vitamin A on
acquired immunity is less clear, but there is some evidence
that vitamin A deficiency alters the balance of Th1 and
Th2 cells, decreasing Th2 response, without affecting or, in
some studies enhancing, Th1 response(41–45,51). This would
suggest that vitamin A will enhance Th1-cell mediated
immunity. However, in contrast to this, studies in several
experimental models show that vitamin A metabolite reti-
noic acid decreases Th1-type responses (cytokines, cyto-
kine receptors and the Th1-favouring transcription factor
T-bet), while enhancing Th2-type responses (cytokines and
the Th2-favouring transcription factor GATA-3)(52–54).
Vitamin A also appears to be important in differentiation
of regulatory T-cells while suppressing Th17 differen-
tiation(55,56), effects which have implications for control of
adverse immune reactions. Retinoic acid seems to promote
movement of T-cells to the gut-associated lymphoid
tissue(57), and, interestingly, some gut-associated immune
cells are able to synthesise retinoic acid(57,58). Vitamin A
deficiency can impair response to vaccination, as discussed
elsewhere(50). In support of this, vitamin A deficient
Indonesian children provided with vitamin A showed a
higher antibody response to tetanus vaccination than seen
in vitamin A deficient children(59). Vitamin A deficiency is
associated with increased morbidity and mortality in chil-
dren, and appears to predispose to respiratory infections,
diarrhoea and severe measles(5–7,41–45). Replenishment of
vitamin A in deficient children improves recovery from
infectious diseases and decreases mortality(5–7,41–45).

Vitamin D

There are a number of reviews of the role of vitamin D and
its metabolites in the immune system, autoimmunity and
host susceptibility to infection(60–65). In this paper, vitamin
D refers to the active form of vitamin D (1,25-dihydroxy
vitamin D3). Many immune cells express the cytosolic
vitamin D receptor and some can synthesise the active
form of vitamin D from its precursor(66,67). These obser-
vations suggest that immune cells can both respond to
and produce vitamin D indicating that it is likely to
have immunoregulatory properties. Indeed, vitamin D can
induce macrophages to synthesise anti-microbial pep-
tides(67,68), directly affecting host defence. Individuals with
low vitamin D status have been reported to have a higher
risk of respiratory tract viral infections(69), while supple-
mentation of Japanese school children with vitamin D for
4 months during winter decreased the risk of influenza by
about 40%(70). These studies suggest that vitamin D acts to
reduce susceptibility to infection, which may result from
improved immune function. However, in contrast, there is
a large body of literature showing that vitamin D and its
analogues have immunosuppressive effects(71–73). It seems
that under physiological conditions vitamin D probably
aids immune responses, but that it may also play an active
role in prevention of autoimmunity and that there may
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even be a therapeutic role for vitamin D in some immune-
mediated diseases. Vitamin D acts by binding to its
receptor and regulating gene expression in target cells. Its
effects include promotion of phagocytosis, superoxide
synthesis and bacterial killing, but it is also reported to
inhibit T-cell proliferation and production of Th1-type
cytokines(74–84) and of antibodies by B-cells(85), high-
lighting the paradoxical nature of its effects. Effects on
Th2-type responses are not clear(86–88) and there may be an
increase in numbers of regulatory T-cells(89,90). Overall,
the current evidence suggests that vitamin D is a regulator
of immune function but that its effects will depend upon
the immunological situation (e.g. health, infectious disease
and autoimmune disease).

Vitamin E

Vitamin E is the major lipid-soluble antioxidant in the
body and is required for protection of membrane lipids
from peroxidation. Free radicals and lipid peroxidation are
immunosuppressive and hence vitamin E should act to
maintain or even to enhance the immune response. There
are a number of reviews of the role of vitamin E in the
immune system and host susceptibility to infection(91–94).
In laboratory animals, vitamin E deficiency decreases
lymphocyte proliferation, natural killer cell activity,
specific antibody production following vaccination and
phagocytosis by neutrophils(91–94). Vitamin E deficiency
also increases susceptibility of animals to infectious
pathogens(91). Vitamin E supplementation of the diet of
laboratory animals enhances antibody production, lympho-
cyte proliferation, Th1-type cytokine production, natural
killer cell activity and macrophage phagocytosis(91–94).
There is a positive association between plasma vitamin E
and cell-mediated immune responses, and a negative associ-
ation has been demonstrated between plasma vitamin E and
the risk of infections in healthy older adults(95). Vitamin E
appears to be of benefit in the elderly(96–98), with studies
demonstrating enhanced Th1 cell-mediated immunity
(lymphocyte proliferation and IL-2 production) and
improved vaccination responses at fairly high intakes(96,97).
Although some studies report that vitamin E decreases risk
of upper respiratory tract infections in the elderly(99), other
studies did not see an effect on the incidence, duration or
severity of respiratory infections in elderly populations(100).

Zinc

Zn is important for DNA synthesis, in cellular growth and
differentiation, and in antioxidant defence, all important to
immune cell function. It is also a cofactor for many
enzymes. There are a number of reviews of the role of
Zn in the immune system and host susceptibility to
infection(5–7,101–105). Zn deficiency has a marked impact
on bone marrow, decreasing the number of precursors to
immune cells(106). Zn deficiency impairs many aspects of
innate immunity, including phagocytosis, natural killer
cell activity and respiratory burst(107–111). There are also
marked effects of Zn deficiency on acquired immunity,
with decreases in the circulating number and function of
T-cells and an imbalance to favour Th2 cells(112,113).

Moderate or mild Zn deficiency or experimental Zn
deficiency in human subjects decreases natural killer
cell activity, lymphocyte proliferation, IL-2 production
and cell-mediated immune responses which can all be
corrected by Zn repletion(111,113). In patients with Zn
deficiency related to sickle-cell disease, natural killer cell
activity is decreased, but Zn supplementation returns this
to normal(114). The wide ranging impact of Zn deficiency
on immune components is an important contributor
to increased susceptibility to infection, especially lower
respiratory tract infection and diarrhoea, seen in Zn
deficiency(5–7,102–105). Correcting Zn deficiency lowers the
likelihood of diarrhoea and of respiratory and skin infec-
tions, although some studies fail to show benefit of Zn
supplementation in respiratory disease(5–7,102–105).

Iron

There are a number of reviews of the role of Fe in the
immune system and host susceptibility to infection(115–122).
Fe deficiency induces thymus atrophy and has multiple
effects on immune function in human subjects(115–118). The
effects are wide ranging and include impairment of
respiratory burst and bacterial killing, T-cell proliferation
and production of Th1 cytokines(115–118). However, the
relationship between Fe deficiency and susceptibility to
infection remains uncertain(115–122). Indeed, there is evi-
dence that infections caused by organisms that spend part
of their life cycle intracellularly, such as plasmodia and
mycobacteria, may actually be enhanced by Fe. In children
in the tropics, Fe at doses above a particular threshold has
been associated with increased risk of malaria and other
infections, including pneumonia(123–126). Thus, Fe inter-
vention in malaria-endemic areas is not advised, particu-
larly high doses in the young, those with compromised
immunity (e.g. HIV infection) and during the peak malaria
transmission season. Fe treatment for anaemia in a malar-
ious area must be preceded by effective anti-malarial
therapy and should be oral. There are different explana-
tions for the detrimental effects of Fe administration
on infections. First, Fe overload causes impairment of
immune function(115–118). Second, excess Fe favours
damaging inflammation. Third, micro-organisms require Fe
and providing it may favour the growth of the pathogen.
Perhaps, for the latter reasons, several mechanisms have
developed for withholding Fe from a pathogen(127). Oral Fe
supplementation has not been shown to increase risk of
infection in non-malarious countries(118).

Selenium

Se is a cofactor for a number of enzymes including some
involved in antioxidant defences such as glutathione per-
oxidase. Therefore, Se may protect against the immuno-
suppressive effects of oxidative stress, thus acting to
enhance immune function. There are a number of reviews
of the role of Se in the immune system and host suscept-
ibility to infection(128–132). Se deficiency in laboratory
animals affects both innate and acquired immunity and
increases susceptibility to infections. Lower Se concentra-
tions in human subjects have also been linked with
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increased virulence(131–133), diminished natural killer cell
activity(133,134) and increased mycobacterial disease(135). Se
supplementation has been shown to improve various
aspects of immune function in human subjects(136–138),
including in the elderly(139,140). Se supplementation in
Western adults with low Se status improved some aspects
of their immune response to a poliovirus vaccine(141).

Probiotics, prebiotics, immunity and infection

Indigenous commensal bacteria within the gastrointestinal
tract are believed to play a role in host immune defence
by creating a barrier against colonisation by pathogens.
Disease and the use of antibiotics can disrupt this barrier,
creating an environment that favours the growth of patho-
genic organisms. There is now evidence that providing
exogenous, live, ‘desirable’ bacteria, termed probiotics,
can contribute to maintenance of the host’s gastrointestinal
barrier. Probiotic organisms are found in fermented foods
including traditionally cultured dairy products and some
fermented milks and the most commonly used commercial
organisms are lactobacilli and bifidobacteria. These
organisms are able to colonise the gut temporarily, making
their regular consumption necessary. In addition to creating
a physical barrier, some of the products of the metabolism
of probiotic bacteria, including lactic acid and antibiotic
proteins, can directly inhibit the growth of pathogens(142).
Probiotic bacteria also compete with some pathogenic
bacteria for available nutrients. In addition, to these direct
interactions between commensal and probiotic organisms
on the one hand and pathogens on the other, commensal
and probiotic organisms can interact with the host’s gut
epithelium and gut-associated immune tissues(142). These
communications with the host may occur through chemi-
cals released from the bacteria or through direct cell–cell
contact(142) and it is through these interactions that pro-
biotics are thought to be able to influence immune func-
tion, even at sites distant from the gut(143). Nevertheless,
the precise nature of these interactions is not very well
understood, although there is significant research activity
in this area(144). A large number of studies have examined
the influence of various probiotic organisms, either alone
or in combination, on immune function, infection and
inflammatory conditions in human subjects(145). Certain
probiotic organisms appear to enhance innate immunity
(particularly phagocytosis and natural killer cell activity),

but they seem to have a less pronounced effect on
acquired immunity. A small number of studies show
improved vaccination responses in individuals taking pro-
biotics(146,147), as extensively reviewed recently(148). Some
studies in children report lower incidence and duration of
diarrhoea with certain probiotics(145). In adults, some
studies demonstrate a reduction in the risk of traveller’s
diarrhoea in subjects taking probiotics(145), while there is
now quite good evidence that probiotics protect against
antibiotic-associated diarrhoea(149–153). There are, however,
considerable differences in the effects of different probiotic
species and strains and effects observed with one type of
probiotic cannot be extrapolated to another.

Prebiotics are typically, though not exclusively, carbo-
hydrates which are not digestible by mammalian enzymes
but which are selectively fermented by gut microbiota,
leading to increased numbers of beneficial bacteria within
the gut. Prebiotics include inulin-type fructoligosacchar-
ides, galactooligosaccharides and xylooligosaccharides.
The bacteria promoted by prebiotics are often lactobacilli
and bifidobacteria. Consequently, prebiotics have the
potential to induce the same sorts of immune effects as
seen with probiotics, acting through similar mechanisms,
although there may also be direct communications between
the prebiotics themselves and the host immune cells(154).
There is some evidence for immunomodulatory effects of
prebiotics, but many experiments conducted in human
subjects are difficult to interpret because prebiotics and
probiotics are often used in combination(154).

Impact of infection on nutrient status

Although a poor nutritional state impairs immunity and
predisposes to infections, the immune response to an
infection can itself impair nutritional status and alter body
composition(5,6). Thus, there is a bidirectional interaction
between nutrition, infection and immunity (Fig. 2). Infec-
tion impairs nutritional status and body composition in the
following ways (Fig. 3):

(1) Infection causes anorexia with reduced food intake
ranging from as little as 5% to an almost complete loss
of appetite. This can lead to nutrient deficiencies, even

Infection

Under
nutrition

Impaired host 
defence

Fig. 2. Schematic depiction of the interrelationship between under-

nutrition, impaired immunity and infection.

INFECTION 

Diarrhoea Malabsorption Intestinal damage Anorexia 

Decreased intake Decreased absorption Increased loss 

Activation of inflammatory  
& immune response 

Redistribution of  
nutrients 

Increased metabolic  
rate 

INCREASED DEMAND FOR NUTRIENTS 

DECREASED NUTRIENT AVAILABILITY 

Fig. 3. Schematic depiction of the opposing effects of infection on

nutrient availability and nutrient demand.
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if the host is not deficient before the infection, and
may make apparent existing borderline deficiencies.

(2) Infection can cause nutrient malabsorption and loss,
especially infections that damage the intestinal wall
or that cause diarrhoea or vomiting(155).

(3) Infection increases resting energy expenditure,
placing a demand on nutrient supply, particularly when
coupled with anorexia, diarrhoea and other nutrient
losses.

(4) Infection causes altered metabolism and redistribution
of nutrients, including both macronutrients (e.g. amino
acids) and micronutrients (e.g. vitamin A, Zn and Fe).
A catabolic response occurs with all infections and
brings about a redistribution of energy substrates for
energy and biosynthesis away from skeletal muscle and
adipose tissue towards the host immune system and
its supporting tissues including the liver. As a result
plasma concentrations of vitamin A, Zn and Fe, among
others, decrease with infection.

Anorexia, increased energy expenditure and redistribu-
tion of nutrients are brought about by host factors (mainly
inflammatory cytokines), while malabsorption and mal-
digestion are brought about by the pathogen. The result is
that an increased nutrient requirement coincides with
reduced nutrient intake, reduced nutrient absorption and
nutrient losses (Fig. 3).

Summary and conclusions

A well functioning immune system is key to providing
good defence against pathogenic organisms and to
providing tolerance to non-threatening organisms, to
food components and to self. The immune system works
by providing an exclusion barrier, by identifying and
eliminating pathogens and by identifying and tolerating
non-threatening sources of antigens, and by maintaining a
memory of immunological encounters. The immune sys-
tem is complex involving many different cell types dis-
tributed throughout the body and many different chemical
mediators some of which are involved directly in defence
while others have a regulatory role. Babies are born with
an immature immune system that fully develops in the first
few years of life. This immune maturation requires the
presence of specific immune factors and exposure to anti-
gens from food and from micro-organisms. Immune com-
petence can decline with ageing. This process is termed
immunosenescence. The sub-optimal immune competence
that occurs early and late in life increases susceptibility to
infection. Undernutrition impairs immune defences at all
stages of the life cycle, although infants and the elderly
may be more vulnerable, making an individual more sus-
ceptible to infection. However, the immune response to an
infection can itself impair nutritional status and alter body
composition. Practically all forms of immunity are affected
by protein–energy malnutrition, but non-specific defences
and cell-mediated immunity are most severely affected.
Micronutrient deficiencies impair immune function.
The gut-associated lymphoid tissue is especially important
in health and well-being because of its close proximity
to a large and diverse population of organisms in the

gastrointestinal tract and its exposure to food constituents.
Probiotic bacteria which modify the gut microbiota may
enhance immune function in human subjects lowering the
risk of certain infections and improving the response to
vaccination.
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