Canad. Math. Bull. Vol. 42 (3), 1999 pp. 321-334

Averaging Operators and Martingale Inequalities in Rearrangement Invariant Function Spaces

Masato Kikuchi

Abstract. We shall study some connection between averaging operators and martingale inequalities in rearrangement invariant function spaces. In Section 2 the equivalence between Shimogaki's theorem and some martingale inequalities will be established, and in Section 3 the equivalence between Boyd's theorem and martingale inequalities with change of probability measure will be established.

1 Introduction and Notation

Recently several authors studied, independently in [1], [11], [15], some martingale inequalities in rearrangement invariant function spaces over the unit interval *I*. Using the Boyd indices they characterized rearrangement invariant function spaces in which the Burkholder-Davis-Gundy inequality is valid. In Section 2, we shall prove the equivalence between their result and Shimogaki's theorem on the boundedness of averaging operator. In Section 3 we shall consider some change of probability measure and extend the weighted norm inequalities established by Izumisawa and Kazamaki [10]. We shall investigate also some relations between Boyd's theorem and martingale inequalities under a change of probability measure.

In this note we shall deal with (local) martingales on complete probability spaces, say (Ω, \mathcal{F}, P) , endowed with a filtration satisfying the *usual conditions* (see [7, p. 183]). We always assume that Ω is not completely atomic, that is, $P(\Omega \setminus \Omega_0) > 0$, where Ω_0 is the union of all atoms in Ω . Furthermore, in Section 3 we assume that Ω contains no atom. Every process $X = (X_t)_{t\geq 0}$ is assumed to be adapted to a given filtration, right continuous, and have left-hand limits. We set $X_{0-} = 0$ and denote by $(\mathcal{M}X_t)_{t\geq 0}$ the maximal process of X; $\mathcal{M}X_t = \sup_{s\leq t} |X_s|$. We use this notation instead of X^* in order to reserve "*" for the decreasing rearrangement of random variables. If X is a (local) martingale, $([X, X]_t)_{t\geq 0}$ denotes the quadratic variation process of X. For details of the martingale theory we refer to Dellacherie and Meyer [8].

Now let *f* be a random variable on (Ω, \mathcal{F}, P) . The *decreasing rearrangement* of *f*, denoted by f^* , is a right continuous decreasing function on the interval I = [0, 1] such that

$$P\{|f| > \lambda\} = m\{s \in I : f^*(s) > \lambda\}, \quad \lambda > 0$$

where *m* stands for the Lebesgue measure on *I*. An explicit expression of f^* is given by

$$f^*(t) = \inf\{\lambda > 0 : P\{|f| > \lambda\} \le t\}, \quad t \in I.$$

Received by the editors October 8, 1997; revised July 2, 1998.

AMS subject classification: 60G44, 60G46, 46E30.

Keywords: Martingale inequalities, rearrangement invariant function spaces.

[©]Canadian Mathematical Society 1999.

For example, if X is a process and T is a stopping time, X_T^* denotes the decreasing rearrangement of the random variable X_T , but not $\mathcal{M}X_T = \sup_{t \leq T} |X_t|$. For a function x on I, x^* denotes the decreasing rearrangement with respect to the Lebesgue measure.

For two random variables *f* and *g*, we write $f \prec g$ if

$$\int_0^t f^*(s) \, ds \leq \int_0^t g^*(s) \, ds \quad \text{for all } t \in I.$$

A Banach space $(B, \|\cdot\|_{B})$ consisting of (equivalence classes) of random variables is called a rearrangement invariant (r.i.) function space if it has the following properties:

- (i) $L^{\infty} \hookrightarrow B \hookrightarrow L^1$;

(ii) $|f| \le |g|, g \in B$ implies $f \in B$ and $||f||_B \le ||g||_B$; (iii) $0 \le f_n \uparrow f$, $\sup_n ||f_n||_B < \infty$ implies $f \in B$ and $||f||_B = \sup_n ||f_n||_B$;

(iv) $f^* = g^*, g \in B$ implies $f \in B$ and $||f||_B = ||g||_B$.

If *B* has properties (i)–(iii) and

(iv')
$$f \prec g, g \in B$$
 implies $f \in B$ and $||f||_B \leq ||g||_B$,

then it is called a universally rearrangement invariant (u.r.i.) function space. Obviously every u.r.i. function space is r.i., and the converse is true if Ω contains no atom. An important characterization of r.i. function space is the Luxemburg representation theorem: B is u.r.i. if and only if there exists a r.i. function space \hat{B} over I with the Lebesgue measure m such that

(1)
$$||f||_{B} = ||f^{*}||_{\dot{B}} \quad \text{for all } f \in B$$

(cf. [13, p. 121], [2, p. 90]). Our assumption $t_0 := P(\Omega \setminus \Omega_0) > 0$ implies that if both $\hat{B_1}$ and $\hat{B_2}$ satisfy (1), then the norms of these spaces are equivalent. Indeed, if $x \in \hat{B_2}$, then there exists $f \in B$ such that $f^*(t) = x^*(t \land t_0) =: x^*_{t_0}(t), t \in I$ and hence we have $\|x\|_{\dot{B_1}} \leq \|x_{t_0}^*\|_{\dot{B_1}} = \|x_{t_0}^*\|_{\dot{B_2}} < \infty$. Thus $\dot{B_2} \subset \dot{B_1}$, and in the same way $\dot{B_1} \subset \dot{B_2}$. The equivalence of norms of \hat{B}_i follows from the closed graph theorem.

Now let B be a r.i. (or u.r.i.) function space. The associate space B' of B is the r.i. (u.r.t.) function space defined by

$$\begin{split} \|f\|_{B'} &:= \sup\{E[fg] : g \in B, \|g\|_B \le 1\};\\ B' &:= \{f : \|f\|_{B'} < \infty\}. \end{split}$$

The associate space of B' is equal to B(cf. [2, p. 10]).

To describe our results, we use the Boyd indices of B introduced by Boyd [5]: let D_s be the operator defined on $L^1(I)$ by

$$D_{s}x(t) = \begin{cases} x(st) & \text{if } 0 \le t \le 1 \land s^{-1}, \\ 0 & \text{if } 1 \land s^{-1} < t \le 1, \end{cases}$$

and set

$$\underline{\alpha}_{B} = \underline{\alpha}_{\hat{B}} = \inf_{t>1} \frac{\log \|D_{1/t}\|_{\hat{B}}}{\log t} = \lim_{t \to \infty} \frac{\log \|D_{1/t}\|_{\hat{B}}}{\log t};$$
$$\bar{\alpha}_{B} = \bar{\alpha}_{\hat{B}} = \sup_{0 < t < 1} \frac{\log \|D_{1/t}\|_{\hat{B}}}{\log t} = \lim_{t \downarrow 0} \frac{\log \|D_{1/t}\|_{\hat{B}}}{\log t},$$

where $||D_s||_{\dot{B}}$ denotes the norm of D_s as an operator from \hat{B} into itself. We call $\underline{\alpha}_B$ and $\bar{\alpha}_B$ the *upper* and *lower Boyd index* of *B*, respectively. Remark that in [1] and [11] the Boyd indices are taken to be reciprocals of ones we use here.

2 Averaging Operator and Martingale Inequalities

Throughout this section let (Ω, \mathcal{F}, P) be a fixed probability space and *I* be the interval [0, 1] with the Lebesgue measure *m*. For a function *x* on *I*, Hardy's averaging operator is defined by

$$\mathfrak{P}x(t) = \frac{1}{t} \int_0^t x(s) \, ds,$$

and its adjoint \mathcal{P}' is given by

$$\mathcal{P}'x(t) = \int_t^1 \frac{x(s)}{s} \, ds,$$

whenever the defining integrals exist a.e. Shimogaki [17] studied the boundedness of these operators in r.i. function spaces over *I*. His result, in terms of Boyd indices, is as follows:

Theorem A (Shimogaki [17]; Boyd [5]) Let \hat{B} be a r.i. function space over I. Then:

- (i) \mathcal{P} is a bounded linear operator on \hat{B} into itself if and only if $\underline{\alpha}_{\hat{B}} < 1$;
- (ii) \mathfrak{P}' is a bounded linear operator on \hat{B} into itself if and only if $\bar{\alpha}_{\hat{B}} > 0$.

In this section we shall prove that Shimogaki's theorem is equivalent to the following theorem on martingale inequalities.

Theorem B Let B be a u.r.i. function space over Ω . Then:

(i) The inequality

$$\|\mathcal{M}X_{\infty}\|_{B} \leq C_{B} \|X_{\infty}\|_{B}$$

is valid for every uniformly integrable martingale $X = (X_t)_{t\geq 0}$ with respect to an arbitrary filtration if and only if $\underline{\alpha}_B < 1$.

(ii) The inequalities

(3)
$$c_B \| [X, X]_{\infty}^{1/2} \|_B \le \| \mathcal{M} X_{\infty} \|_B \le C_B \| [X, X]_{\infty}^{1/2} \|_B$$

are valid for every martingale $X = (X_t)_{t \ge 0}$ with respect to an arbitrary filtration if and only if $\bar{\alpha}_B > 0$.

This theorem is proved independently by Antipa [1], Johnson and Schechtman [11] and Novikov [15], in the case where $\Omega = I$.

The following theorem shows that each of Theorems A and B is deduced from the other.

Theorem 1 Let B be a u.r.i. function space over Ω and \hat{B} be the r.i. function space over I satisfying (1). Then:

- (i) \mathcal{P} is a bounded linear operator on \hat{B} into itself if and only if (2) holds for every uniformly integrable martingale $X = (X_t)$ with respect to an arbitrary filtration.
- (ii) \mathfrak{P}' is a bounded linear operator on \hat{B} into itself if and only if (3) holds for every martingale $X = (X_t)$ with respect to an arbitrary filtration.

To prove this theorem, we need some preliminaries. For each $x \in L^1(I)$, we put $x^* = \mathfrak{P}x - x$. Then, since $\mathfrak{P}\mathfrak{P}'x = \mathfrak{P}x + \mathfrak{P}'x$ for every $x \in L^1(I)$, we have

(4)
$$(\mathfrak{P}'x)^{\#} = \mathfrak{P}x, \quad x \in L^1(I).$$

Furthermore if $x^* \in L^1(I)$ and $y^* \in L^\infty(I)$, then

(5)
$$\int_0^1 x(s)y(s) \, ds = \int_0^1 x^*(s)y^*(s) \, ds + \left(\int_0^1 x(s) \, ds\right) \left(\int_0^1 y(s) \, ds\right).$$

In fact, this follows from the identity

$$\mathcal{P}'\mathcal{P}x + \int_0^1 x(s)\,ds = \mathcal{P}x + \mathcal{P}'x,$$

which is valid at least for $x \in L^1$ such that $\mathfrak{P}x \in L^1$.

Note that, if $x^* \le y^*$ on *I*, then $x^* 1_{[0,t]}^* \le y^* 1_{[0,t]}^*$, and hence from (5) we obtain:

Lemma 2 Let $x, y \in L^1(I)$ be positive decreasing functions. If $x^* \leq y^*$ on I and $\int_I x \, ds \leq \int_I y \, ds$, then $x \prec y$.

Lemma 3 Let B and \hat{B} be as in Theorem 1 and suppose that \mathfrak{P}' is a bounded operator on \hat{B} into itself. If $Y \in L^1(\Omega)$ and $A = (A_t)_{t>0}$ is an adapted increasing process satisfying

(6)
$$E[A_{\infty} - A_{T-} | \mathcal{F}_T] \leq E[Y | \mathcal{F}_T]$$

for every stopping time T, then $||A_{\infty}||_{B} \leq ||\mathcal{P}'||_{\hat{B}} ||Y||_{B}$, where $||\mathcal{P}'||_{\hat{B}}$ denotes the norm of \mathcal{P}' .

Recall that a process is called *increasing* if almost every path is positive and increasing. If A is predictable and $A_0 = 0$, then (6) can be replaced by

$$E[A_{\infty} - A_T | \mathcal{F}_T] \leq E[Y | \mathcal{F}_T].$$

Proof Setting $T = \inf\{t \ge 0 : A_t > \lambda\}$ for $\lambda > 0$, we have by (6),

$$E[(A_{\infty} - \lambda)1_{\{A_{\infty} > \lambda\}}] \le E[Y1_{\{A_{\infty} > \lambda\}}], \quad \lambda > 0,$$

Substituting $A_{\infty}^{*}(t)$ for λ , we have

$$\int_0^t \left(A_\infty^*(s) - A_\infty^*(t) \right) ds \le \sup \{ E[Y \ 1_F] : P(F) \le t \} \le \int_0^t Y^*(s) \, ds.$$

This, together with (4), implies that $(A_{\infty}^*)^*(t) \leq \mathfrak{P}Y^*(t) = (\mathfrak{P}'Y^*)^*(t)$ for all $t \in I$. Since (6) yields that

$$\int_0^1 A_{\infty}^*(s) \, ds = E[A_{\infty}] \le E[Y] = \int_0^1 \mathcal{P}' Y^*(s) \, ds,$$

Lemma 2 gives that $A^*_{\infty} \prec \mathcal{P}'Y^*$. It then follows that

$$\|A_{\infty}\|_{B} = \|A_{\infty}^{*}\|_{\dot{B}} \leq \|\mathcal{P}'Y^{*}\|_{\dot{B}} \leq \|\mathcal{P}'\|_{\dot{B}} \|Y^{*}\|_{\dot{B}} = \|\mathcal{P}'\|_{\dot{B}} \|Y\|_{B},$$

which completes the proof.

Lemma 3 will be used for the proof of "only if" part of (ii) in Theorem 1. The "if" part will be proved using the following two lemmas.

Lemma 4 Let \hat{B} be a r.i. function space over I and $0 < t_0 \leq 1$. Then:

(i) If the inequality

(7)
$$\|(\mathfrak{P}y)1_{[0,t_0[}\|_{\dot{\mathcal{B}}} \le c \|y\|_{\dot{\mathcal{B}}}$$

holds for every positive $y \in L^1(I)$, then $\mathfrak{P} \colon \hat{B} \to \hat{B}$ is bounded, where c is a positive constant.

(ii) If the inequality

(8)
$$\|(\mathcal{P}y)\mathbf{1}_{[0,t_0[}\|_{\dot{B}} \le c\left(\|y^*\|_{\dot{B}} + \|y\|_{1}\right)$$

holds for every $y \in L^1(I)$, then $\mathfrak{P}' \colon \hat{B} \to \hat{B}$ is bounded.

Proof Without loss of generality, we may assume that $||1||_{\hat{B}} = 1$. Let $x \in L^1(I)$. Since $|\mathcal{P}x(t)| \leq t_0^{-1} ||x||_1$ for every $t \in [t_0, 1]$, we have by (7)

$$\begin{aligned} \| \mathfrak{P} x \|_{\dot{B}} &\leq \| (\mathfrak{P} x) \mathbf{1}_{[0,t_0[} \|_{\dot{B}} + \| (\mathfrak{P} x) \mathbf{1}_{[t_0,1]} \|_{\dot{B}} \\ &\leq c \| x \|_{\dot{B}} + t_0^{-1} \| x \|_1 \leq C \| x \|_{\dot{B}} \,, \end{aligned}$$

where the last inequality follows from the fact that $\hat{B} \hookrightarrow L^1(I)$. Thus the operator $\mathfrak{P} \colon \hat{B} \to \hat{B}$ is bounded.

We now pass to the proof of the second statement. It suffices to show that $\|\mathcal{P}'x\|_{\dot{B}} \leq C \|x\|_{\dot{B}}$ for every positive $x \in L^1(I)$. Put $y = \mathcal{P}'x - x$. Clearly we have $y \in L^1(I)$ and

 $||y||_1 \le ||\mathcal{P}'x||_1 + ||x||_1 \le 2 ||x||_1$. Since $\mathcal{PP}' = \mathcal{P} + \mathcal{P}'$, we get $\mathcal{P}y = \mathcal{P}'x$ and $y^* = x$. As $|\mathcal{P}'x(t)| \le t_0^{-1} ||x||_1$ for $t \in [t_0, 1]$, (8) gives that

$$\begin{split} \|\mathcal{P}'x\|_{\hat{B}} &\leq \|(\mathcal{P}'x)\mathbf{1}_{[0,t_0[}\|_{\hat{B}} + \|(\mathcal{P}'x)\mathbf{1}_{[t_0,1]}\|_{\hat{B}} \\ &\leq \|(\mathcal{P}y)\mathbf{1}_{[0,t_0]}\|_{\hat{B}} + t_0^{-1} \|x\|_1 \\ &\leq c (\|y^*\|_{\hat{B}} + \|y\|_1) + t_0^{-1} \|x\|_1 \\ &\leq c \|x\|_{\hat{B}} + (2c + t_0^{-1}) \|x\|_1 \leq C \|x\|_{\hat{B}} \,, \end{split}$$

which completes the proof.

The following lemma is essential for the proof of "if" part of (i), and (ii) in Theorem 1.

Lemma 5 Let $t_0 = P(\Omega \setminus \Omega_0) > 0$. Then, for each $x \in L^1(I)$, there exists a uniformly integrable martingale $X = (X_t)_{t \ge 0}$ satisfying the following conditions:

- (*i*) $|X_0| \le t_0^{-1} ||x||_1$,
- (*ii*) $X^*_{\infty}(t) = (x \mathbf{1}_{[0,t_0]})^*(t), t \in I,$
- (*iii*) $\{(\mathfrak{P}x)1_{[0,t_0]}\}^*(t) \leq (\mathfrak{M}X_{\infty})^*(t), t \in I,$ (*iv*) $\{([X, X]_{\infty} X_0^2)^{1/2}\}^*(t) = (x^*1_{[0,t_0]})^*(t), t \in I.$

Proof Since $\Omega_1 = \Omega \setminus \Omega_0$ contains no atom, there exists a family of measurable sets {A(t) : $0 \le t \le t_0$ satisfying the following conditions:

a) $A(t) \subset A(s) \subset \Omega_1$ if $0 \le s \le t \le t_0$; b) $P(A(t)) = t_0 - t$ for every $0 \le t \le t_0$.

For the proof, see [6, p. 44]. For each $t \leq t_0$, let \mathcal{F}_t be the σ -field generated by all measurable subsets of $\Omega \setminus A(t)$ and P-negligible sets, and for each $t \ge t_0$, set $\mathcal{F}_t = \mathcal{F}_{t_0}$. Clearly $(\mathfrak{F}_t)_{t\geq 0}$ satisfies the usual conditions, and for $t\leq t_0$, A(t) is an \mathfrak{F}_t -atom.

Now for each $\omega \in \Omega$, put

$$T(\omega) = \begin{cases} \sup\{s \in [0, t_0] : \omega \in A(s)\} & \text{if } \omega \in A(0), \\ 0 & \text{otherwise.} \end{cases}$$

It is easy to see that $\{T > t\} = A(t)$ a.s. for every $t \in [0, t_0]$. Hence T is an (\mathcal{F}_t) -stopping time, and $T^*(s) = (t_0 - s)^+ = (t_0 - s) \lor 0, s \in I$. Let $x \in L^1(I)$. Since $x(t_0 - T)1_{\{T>0\}}$ and $x1_{[0,t_0]}$ have the same distribution, $x(t_0 - T)1_{\{T>0\}}$ is integrable over Ω . Let $X = (X_t)$ be the martingale induced by $x(t_0 - T)1_{\{T>0\}}$, that is,

(9)
$$X_t = E[x(t_0 - T) \mid \mathcal{F}_t] \mathbf{1}_{\{T > 0\}} = x(t_0 - T) \mathbf{1}_{\{0 < T \le t\}} + \mathcal{P}x(t_0 - t) \mathbf{1}_{\{t < T\}}.$$

Note that the processes on both sides of (9) are indistinguishable, that is, (9) holds for every $t \ge 0$ on a set Ω' of probability one.

We show that X satisfies the required conditions. In fact, (i) and (ii) are straightforward consequences of the definition: we have $|X_0| \leq |\mathfrak{P}x(t_0)| \leq t_0^{-1} ||x||_1$ and $X_{\infty}^* = \{x(t_0 - t_0)\}$ T)1_{T>0} $\}^* = (x1_{[0,t_0[})^*, \text{ since } T^*(s) = (t_0 - s)^+.$

It is easy to see from (9) that $|\Re(t_0 - T)| 1_{\{T>0\}} = |X_{T-}| \le \mathcal{M}X_{\infty}$, which implies (ii). Now it remains to prove (iv). Again from (9) we see that the path $t \mapsto X_t(\omega)$ is of bounded variation on $[0, \infty[$, continuous on $[0, T(\omega)]$ and constant on $[T(\omega), \infty[$, provided that $\omega \in \Omega'$. Therefore we have $\Delta X_T 1_{\{T>0\}} = -x^*(t_0 - T) 1_{\{T>0\}}$ and the continuous martingale part X^c of X is equal to zero (cf. [14, p. 267]). This implies that

$$([X, X]_{\infty} - X_0^2)^{1/2} = |x^{*}(t_0 - T)| \mathbb{1}_{\{T > 0\}}$$

Thus (iv) is obtained and the lemma is established.

We are now in a position to prove Theorem 1.

Proof of Theorem 1 (i) Suppose that $\mathfrak{P}: \hat{B} \to \hat{B}$ is bounded. By Doob's inequality we have

(10)
$$\lambda \leq P(\mathcal{M}X_{\infty} \geq \lambda)^{-1} \int_{\{\mathcal{M}X_{\infty} \geq \lambda\}} X_{\infty} dP \leq \mathcal{P}X_{\infty}^{*} \left(P(\mathcal{M}X_{\infty} \geq \lambda) \right)$$

for every $\lambda > 0$ and every uniformly integrable martingale $X = (X_t)$, where we have used Hardy's inequality

$$\int_A f \, dP \leq \int_0^{P(A)} f^*(s) \, ds, \quad f \in L^1(P), \quad A \in \mathfrak{F}.$$

Setting $\lambda = (\mathcal{M}X_{\infty})^*(t)$ in (10), we get

$$(\mathcal{M}X^*_{\infty})(t) \leq \mathcal{P}X^*_{\infty}(t), \quad t \in I.$$

since $P(\mathcal{M}X_{\infty} \ge (\mathcal{M}X_{\infty})^*(t)) \ge t$. Hence we have

$$\|\mathcal{M}X_{\infty}\|_{B} = \|(\mathcal{M}X_{\infty})^{*}\|_{\dot{B}} \le \|\mathcal{P}X_{\infty}^{*}\|_{\dot{B}} \le \|\mathcal{P}\|_{\dot{B}} \|X_{\infty}^{*}\|_{\dot{B}} \le \|\mathcal{P}\|_{\dot{B}} \|X_{\infty}\|_{B}.$$

Conversely assume that (2) holds for every uniformly integrable martingale. Let $x \in L^1(I)$ be a positive function and, using Lemma 5, choose a uniformly integrable martingale $X = (X_t)$ so as to satisfy (ii) and (iii) of Lemma 5. Then we have

$$\|(\mathcal{P}x)1_{[0,t_0[}\|_{\dot{B}} \le \|(\mathcal{M}X_{\infty})^*\|_{\dot{B}} = \|\mathcal{M}X_{\infty}\|_{B} \le C_B \|X_{\infty}\|_{B} \le C_B \|x\|_{\dot{B}}.$$

Lemma 4 (i) shows that $\mathcal{P}: \hat{B} \to \hat{B}$ is bounded. Thus (i) of Theorem 1 is established.

(ii) Suppose that $\mathcal{P}': \hat{B} \to \hat{B}$ is bounded. By Davis's inequality we have

$$E\left[\mathcal{M}X_{\infty} - \mathcal{M}X_{T-} \mid \mathcal{F}_{T}\right] \leq cE\left[\left[X, X\right]_{\infty}^{1/2} \mid \mathcal{F}_{T}\right];$$
$$E\left[\left[X, X\right]_{\infty}^{1/2} - \left[X, X\right]_{T-}^{1/2} \mid \mathcal{F}_{T}\right] \leq cE\left[\mathcal{M}X_{\infty} \mid \mathcal{F}_{T}\right]$$

for every stopping time *T*. For the proof *e.g.* see [14, p. 349]. Therefore (3) follows from Lemma 3.

327

Next suppose that (3) holds for every martingale. For each $x \in L^1$ there exits a martingale $X = (X_t)$ which satisfies (i), (iii) and (iv) of Lemma 5. Assuming $||1||_B = 1$ for simplicity, we have

$$\begin{split} \|(\mathfrak{P}x)\mathbf{1}_{[0,t_0[}\|_{\hat{B}} &\leq \|\mathcal{M}X_{\infty}\|_{B} \leq C_{B}\|[X,X]_{\infty}^{1/2}\|_{B} \\ &\leq C_{B}\|([X,X]_{\infty}-X_{0}^{2})^{1/2}\|_{B} + C_{B}\|X_{0}\|_{B} \\ &\leq C_{B}\|x^{*}\mathbf{1}_{[0,t_0[}\|_{\hat{B}} + C_{B}t_{0}^{-1}\|x\|_{1} \\ &\leq C_{B}t_{0}^{-1}(\|x^{*}\mathbf{1}_{[0,t_0[}\|_{\hat{B}} + \|x\|_{1}). \end{split}$$

Lemma 4 (ii) implies the boundedness of $\mathcal{P}': \hat{B} \to \hat{B}$. The theorem is established.

3 Change of Probability Measure

In this section we shall prove that there exists a close relation between Boyd's theorem on the boundedness of the averaging operators, and some martingale inequalities relative to some equivalent probability measures. We first recall Boyd's theorem: for $p \ge 1$ define the operators \mathcal{P}_p and \mathcal{P}'_p by

$$\mathcal{P}_p x(t) = t^{-1/p} \int_0^t x(s) s^{-1/p'} \, ds,$$

$$\mathcal{P}'_p x(t) = t^{-1/p} \int_t^1 x(s) s^{-1/p'} \, ds,$$

whenever the integrals exist, where p' stands for the exponent conjugate to p.

Theorem C (Boyd [5]) Let \hat{B} be a r.i. function space over I. Then \mathcal{P}_p (resp. \mathcal{P}'_p) is a bounded linear operator from \hat{B} into itself if and only if $\underline{\alpha}_{\hat{B}} < 1/p$ (resp. $\bar{\alpha}_{\hat{B}} > 1/p$).

We consider equivalent probability measures *P* and *Q* on (Ω, \mathcal{F}) . For the sake of simplicity, we assume that the probability space (Ω, \mathcal{F}, P) (or (Ω, \mathcal{F}, Q)) is nonatomic throughout this section.

Let W_{∞} denote the Radon-Nikodym derivative dQ/dP, and $W = (W_t)_{t\geq 0}$ the martingale $W_t = E_P[W_{\infty} | \mathcal{F}_t], t \geq 0$, where and in what follows E_P and E_Q denote the (conditional) expectations relative to P and Q respectively. We denote by $\mathfrak{M}(P, (\mathcal{F}_t))$ the family of all uniformly integrable martingales on the system $(\Omega, \mathcal{F}, (\mathcal{F}_t), P)$.

Now let $1 . We say that <math>W_{\infty} = dQ/dP$ satisfies (A_p) with respect to P and (\mathfrak{F}_t) if

$$(A_p) \qquad \sup_{T} \left\| E_P \left[(W_T/W_{\infty})^{\frac{1}{p-1}} \mid \mathcal{F}_T \right] \right\|_{\infty} < \infty,$$

where the supremum is taken over all (\mathcal{F}_t) -stopping times T. We write $W_{\infty} \in A_p(P, (F_t))$ when W_{∞} satisfies (A_p) with respect to P and (\mathcal{F}_t) . Condition (A_p) is introduced by Izumisawa and Kazamaki [10]. It was proved by Tsuchikura [18] and Uchiyama [19] (also see

Kazamaki [12, p. 74]) that $W_{\infty} \in A_p(P, (\mathcal{F}_t))$ if and only if

$$(W_p) \qquad \qquad \lambda^p Q(\mathcal{M} X_{\infty} \ge \lambda) \le \int_{\{\mathcal{M} X_{\infty} \ge \lambda\}} |X_{\infty}|^p \, dQ, \quad \lambda > 0$$

holds for all $X \in \mathfrak{M}(P, (F_t))$.

Let \hat{B} be a r.i. function space over *I*. We define the space B(Q) by

$$B(Q) := \{ f : ||f||_{B(Q)} < \infty \};$$
$$||f||_{B(Q)} := ||f_Q^*||_{\hat{B}},$$

where f_Q^* denotes the decreasing rearrangement of f relative to Q. Our main results in this section are the following.

Theorem 6 Let P, Q, W, \hat{B} and B(Q) be as above and 1 .

(i) If $dQ/dP = W_{\infty} \in A_p(P, (\mathfrak{F}_t))$ and $\underline{\alpha}_{\hat{R}} < 1/p$, then the inequality

(11)
$$\left\|\mathcal{M}X_{\infty}\right\|_{B(O)} \le c \left\|X_{\infty}\right\|_{B(O)}$$

holds for every $X \in \mathfrak{M}(P, (\mathfrak{F}_t))$.

(ii) If (11) holds for all $X \in \mathfrak{M}(P,(\mathfrak{F}_t))$ whenever $dQ/dP = W_{\infty} \in A_p(P,(\mathfrak{F}_t))$, then $\underline{\alpha}_{k} \leq 1/p$.

If $\hat{B} = L^q(I)$, q > p, then (i) of the above theorem yields the weighted norm inequalities established by Izumisawa and Kazamaki. Theorem 6 will be proved using Theorem C. On the other hand, we have the following.

Theorem 7 Theorem C is deduced from the assertion of Theorem 6.

Combing this with a result of Doléans-Dade and Meyer, we have the following.

Corollary 8 If $\underline{\alpha}_{\underline{\beta}} \leq 1/p$, $dQ/dP = W_{\infty} \in A_p(P, (\mathcal{F}_t))$ and

$$(S^{-}) W_{T-} \le K W_T$$

holds for every (\mathcal{F}_t) -stopping time T, where $W = (W_t)$ denotes the martingale $W_t = E_P[W_{\infty} | \mathcal{F}_t], t \ge 0$, then (11) holds for every $X \in \mathfrak{M}(P, (\mathcal{F}_t))$.

We begin with some lemmas.

Lemma 9 If x is a positive decreasing function on I, then

(12)
$$\left\{\int_0^t x(s)^p \, ds\right\}^{1/p} \le p^{-1} \int_0^t x(s) s^{-1/p'} \, ds \quad \text{for every } t \in I.$$

Proof Suppose first that *x* is of the form

(13)
$$x(t) = \sum_{k=1}^{n} a_k \mathbf{1}_{[0,t_k]}(t), \quad a_k \ge 0, \quad 0 \le t_1 < t_2 < \cdots < t_n \le 1.$$

Masato Kikuchi

Then by Minkowski's inequality we have

$$\left\{\int_0^t x(s)^p \, ds\right\}^{1/p} \leq \sum_{k=1}^n a_k (t \wedge t_k)^{1/p} = p^{-1} \int_0^t x(s) s^{-1/p'} \, ds$$

For an arbitrary decreasing function x, we can find a sequence of the functions (x_n) of the form (13) such that $0 \le x_n \uparrow x$ a.e. Hence by the monotone convergence theorem, we have (12).

Lemma 10 If $1 and <math>dQ/dP = W_{\infty} \in A_p(P, (\mathcal{F}_t))$, then $(\mathcal{M}X_{\infty})_Q^* \leq p^{-1}\mathcal{P}_p(X_{\infty})_Q^*$ on I for every $X \in \mathfrak{M}(P, (\mathcal{F}_t))$.

Proof Since $dQ/dP = W_{\infty} \in A_p(P, (\mathcal{F}_t))$, we have by (W_p) that

$$\begin{split} \lambda^p &\leq Q(\mathcal{M}X_{\infty} \geq \lambda)^{-1} \int_{\{\mathcal{M}X_{\infty} \geq \lambda\}} |X_{\infty}|^p \, dQ \\ &\leq Q(\mathcal{M}X_{\infty} \geq \lambda)^{-1} \int_0^{Q(\mathcal{M}X_{\infty} \geq \lambda)} (X_{\infty})_Q^*(s)^p \, ds, \quad \lambda > 0, \end{split}$$

for every $X \in \mathfrak{M}(P, (\mathfrak{F}_t))$. We set $\lambda = (\mathcal{M}X_{\infty})^*_{o}(t)$. In view of Lemma 9, we obtain that

$$(\mathcal{M}X_{\infty})_{Q}^{*}(t) \leq \left\{\frac{1}{t} \int_{0}^{t} (X_{\infty})_{Q}^{*p}(s) \, ds\right\}^{1/p} \leq p^{-1} \mathcal{P}_{p}(X_{\infty})_{Q}^{*}(t), \quad t \in I.$$

The following lemma is a key result to the proof of Theorem 6 (ii) and Theorem 7.

Lemma 11 Let 1 be fixed. If <math>q > p and $x \in L^1(I)$ is positive, then we can construct equivalent probability measures P and Q, a filtration $(\mathcal{F}_t)_{t\geq 0}$ and a martingale $X = (X_t)_{t\geq 0}$ so that

(i) $dQ/dP = W_{\infty} \in A_q(P, (\mathcal{F}_t)),$ (ii) $(X_{\infty})_q^* = x^* \text{ on } I,$ (iii) $(\mathcal{M}X_{\infty})_q^* = p^{-1}\mathcal{P}_p x^* \text{ on } I.$

Proof Let *Q* be a probability measure such that Ω contains no *Q*-atom. There exists a random variable *V* such that $V_Q^*(s) = p^{-1}s^{-1/p'}$ [6, p. 44]. Let *P* be the probability measure dP := V dQ. Clearly *P* and *Q* are equivalent and Ω contains no *P*-atom. For each $t \in I$, put

$$A(t) := \{ \omega \in \Omega : V(\omega) > p^{-1}(1-t)^{-1/p'} \}.$$

Then A(t) decreases with t and

(14)
$$Q(A(t)) = 1 - t, \quad t \in I,$$

(15)
$$P(A(t)) = (1-t)^{1/p}, \quad t \in I.$$

For each $t \in I$, let \mathcal{F}_t denote the σ -field generated by the measurable subsets of $\Omega \setminus A(t)$ and the negligible sets. For t > 1 we set $\mathcal{F}_t = \mathcal{F}_1$. Then (\mathcal{F}_t) satisfies the usual conditions (relative to both *P* and *Q*).

We now prove that $W_{\infty} := 1/V = dQ/dP \in A_q(P, (\mathfrak{F}_t))$ for each q > p. It suffices to show that

$$E_P[(W_t/W_\infty)^{\frac{1}{q-1}} \mid \mathfrak{F}_t] \leq C$$
 a.s.

for every $t \in I$, since every stopping time is the decreasing limit of a sequence of stopping times with values in the set of rationals. By (14) and (15) we have

$$W_t = W_{\infty} \mathbf{1}_{\Omega \setminus A(t)} + P(A(t))^{-1} Q(A(t)) \mathbf{1}_{A(t)} = W_{\infty} \mathbf{1}_{\Omega \setminus A(t)} + (1-t)^{1/p'} \mathbf{1}_{A(t)}$$

for each $t \in I$, and on A(t) we have

$$E_P\left[W_{\infty}^{-\frac{1}{q-1}} \mid \mathcal{F}_t\right] = (1-t)^{-1/p} \int_0^{1-t} V_Q^*(s)^{q'} \, ds = p^{-q'} \cdot \frac{p'}{p'-q'} (1-t)^r$$

where $r = 1 - p^{-1} - p'^{-1}q' = -\{p'(q-1)\}^{-1}$. It then follows that

$$\begin{split} E_{P} \Big[(W_{t}/W_{\infty})^{\frac{1}{q-1}} \mid \mathcal{F}_{t} \Big] &= \mathbf{1}_{\Omega \setminus A(t)} + p^{-q'} \cdot \frac{p'}{p'-q'} (1-t)^{r+\{p'(q-1)\}^{-1}} \mathbf{1}_{A(t)} \\ &\leq p^{-q'} \cdot \frac{p(q-1)}{q-p}, \end{split}$$

Thus $dQ/dP = W_{\infty} \in A_q(P, (\mathcal{F}_t))$.

Now let τ be the random variable defined by

$$\tau(\omega) = \sup\{t \in I : \omega \in A(t)\}$$

It is easy to see that $\{\tau > t\} = A(t), t \in I$, *P*-a.s. and *Q*-a.s., and therefore τ is an (\mathcal{F}_t) -stopping time. Moreover by (14) and (15), we have $\tau_p^*(t) = 1 - t^p$ and $\tau_q^*(t) = 1 - t$ for all $t \in I$. It follows that if $y \in L^1(I)$, then

(16)
$$\int_{A(t)} y(1-\tau) dP = \int_0^{(1-t)^{1/p}} y(s^p) ds = p^{-1} \int_0^{1-t} y(s) s^{-1/p'} ds$$

Assume that $x \in L^1(I)$ is positive and let $X_t = E_P[x^*(1 - \tau) | \mathcal{F}_t], t \ge 0$. Then $X = (X_t)$ satisfies (ii) and (iii) of the statement. Indeed, (ii) follows immediately from the equality $\tau_o^*(t) = 1 - t$. Hence it remains only to prove (iii). Observe that

$$X_t = x^*(1-\tau)\mathbf{1}_{\{t \ge \tau\}} + p^{-1}\mathcal{P}_p x^*(1-t)\mathbf{1}_{\{t < \tau\}},$$

which follows from (16). This expression shows that each path is increasing on $[0, \tau(\omega)]$, constant on $[\tau(\omega), \infty]$, and has a jump at $\tau(\omega)$. Therefore, from the fact that $X_{\tau-} = p^{-1} \mathcal{P}_p x^* (1-\tau) \ge x^* (1-\tau) = X_{\tau}$, we obtain

$$\mathcal{M}X_{\infty} = p^{-1}\mathcal{P}_p x^*(1-\tau)$$

As $\tau_0^*(t) = 1 - t$, this implies (iii) and the lemma is established.

The last lemma, due to Boyd [4], is for the proof of Theorem 7. The assertion follows directly from Theorem C. For the proof of Theorem 7, however, we cannot use Theorem C and must prove the following lemma without using Theorem C.

Lemma 12 Let \hat{B} be a r.i. function space over I. If $1 and <math>\mathbb{P}_p$ is a bounded linear operator from \hat{B} into itself, then for q > p sufficiently close to p, \mathbb{P}_q is a bounded linear operator from \hat{B} into itself.

Proof According to Lemma 2 of [4], we have

$$\mathcal{P}_p^n x(t) = \frac{1}{(n-1)!} \int_0^1 \left(\log \frac{1}{s} \right)^{n-1} x(st) s^{-1/p'} \, ds, \quad t \in I,$$

where \mathcal{P}_p^n stands for the *n*-th iterate of \mathcal{P}_p . From this it follows that

$$\mathcal{P}_q x(t) = \sum_{n=0}^{\infty} \left(\frac{1}{q'} - \frac{1}{p'}\right)^n \mathcal{P}_p^{n+1} x(t)$$

for q > p and for positive *x*. Taking q > p so close to *p* that $(1/q' - 1/p') \|\mathcal{P}_p\|_{\hat{B}} < 1$, we have

$$\begin{split} \left\| \mathcal{P}_{q} x \right\|_{\hat{B}} &= \lim_{N \to \infty} \left\| \sum_{n=0}^{N} (1/q' - 1/p')^{n} \mathcal{P}_{p}^{n+1} x \right\|_{\hat{B}} \\ &\leq \sum_{n=0}^{\infty} (1/q' - 1/p')^{n} \left\| \mathcal{P}_{p} \right\|_{\hat{B}}^{n+1} \left\| x \right\|_{\hat{B}} = C \left\| x \right\|_{\hat{B}} \end{split}$$

where $\|\mathcal{P}_p\|_{\hat{B}}$ denotes the norm of $\mathcal{P}_p: \hat{B} \to \hat{B}$. This completes the proof. Now we give the proof of Theorems 6 and 7, and Corollary 8.

Proof of Theorem 6 (i) Suppose that $dQ/dP = W_{\infty} \in A_p(P, (\mathcal{F}_t))$ and $\underline{\alpha}_{\hat{B}} < 1/p$. According to Lemma 10 and Theorem C, we have

$$\|\mathcal{M}X_{\infty}\|_{B(Q)} = \|(\mathcal{M}X_{\infty})_{Q}^{*}\|_{\dot{B}} \le p^{-1} \|\mathcal{P}_{p}(X_{\infty})_{Q}^{*}\|_{\dot{B}} \le p^{-1} \|\mathcal{P}_{p}\|_{\dot{B}} \|X_{\infty}\|_{B(Q)}$$

for every $X \in \mathfrak{M}(P, (\mathfrak{F}_t))$.

(ii) Now assume that (11) holds for every $X \in \mathfrak{M}(P, (\mathfrak{F}_t))$ whenever $dQ/dP \in A_p(P, (\mathfrak{F}_t))$. Let 1 < q < p. By Lemma 11, for each positive $x \in L^1(I)$ we can find equivalent measures P, Q and a martingale $X = (X_t) \in \mathfrak{M}(P, (\mathfrak{F}_t))$ such that $dQ/dP \in A_p(P, (\mathfrak{F}_t)), (X_{\infty})_q^* = x^*$ and $(\mathfrak{M}X_{\infty})_q^* = q^{-1}\mathfrak{P}_q x^*$. Then by hypothesis, we get

$$q^{-1} \left\| \mathcal{P}_{q} x \right\|_{\dot{B}} \leq q^{-1} \left\| \mathcal{P}_{q} x^{*} \right\|_{\dot{B}} = \left\| \mathcal{M} X_{\infty} \right\|_{B(Q)} \leq c \left\| X_{\infty} \right\|_{B(Q)} = c \left\| x \right\|_{\dot{B}}.$$

Thus $\mathcal{P}_q: \hat{B} \to \hat{B}$ is a bounded linear operator. It follows from Theorem C that $\underline{\alpha}_{\hat{B}} < 1/q$. Letting $q \uparrow p$, we obtain $\underline{\alpha}_{\hat{B}} \leq 1/p$. Theorem 6 is proved.

Proof of Theorem 7 We use Theorem 6. We shall prove the assertion of Theorem C for \mathcal{P}_p only. Suppose that $\underline{\alpha}_{\hat{B}} < 1/q < 1/p$. Choose *P*, *Q* and $X = (X_t)$ so as to satisfy (i)–(iii) of Lemma 11 for a given $x \ge 0$ in $L^1(I)$. Since we have assumed that Theorem 6 is true, we may use (11) to get

$$p^{-1} \left\| \mathcal{P}_{p} x \right\|_{\dot{B}} \leq p^{-1} \left\| \mathcal{P}_{p} x^{*} \right\|_{\dot{B}} = p^{-1} \left\| \mathcal{M} X_{\infty} \right\|_{B(Q)} \leq c \left\| X_{\infty} \right\|_{B(Q)} = c \left\| x \right\|_{\dot{B}}.$$

Thus $\mathfrak{P}_p: \hat{B} \to \hat{B}$ is bounded.

Now assume that $\mathcal{P}_p: \hat{B} \to \hat{B}$ is bounded. Then by Lemma 12, there exists q > p such that \mathcal{P}_q is a bounded operator from \hat{B} into itself. Suppose that $dQ/dP \in A_q(P, (\mathcal{F}_t))$. Then Lemma 10 gives that $(\mathcal{M}X_{\infty})_q^* \leq q^{-1}\mathcal{P}_q(X_{\infty})_q^*$; hence (11) is valid for all $X \in \mathfrak{M}(P, (\mathcal{F}_t))$. Thus we have proved that $dQ/dP \in A_q(P, (\mathcal{F}_t))$ implies (11). From Theorem 6 (ii), we obtain $\underline{\alpha}_{\hat{R}} \leq 1/q < 1/p$, which completes the proof.

Proof of Corollary 8 In [9] Doléans-Dade and Meyer proved that if $dQ/dP = W_{\infty} \in A_p(P, (\mathcal{F}_t))$ and $W = (W_t)$ satisfies (S^-) , then $dQ/dP \in A_q(P, (\mathcal{F}_t))$ for some q < p. Hence Theorem 6 gives that (11) is valid for all $X \in \mathfrak{M}(P, (\mathcal{F}_t))$ if $\underline{\alpha}_{R} \leq 1/p$.

Finally we mention the Burkholder-Davis-Gundy type inequality without proof. Sekiguchi [16] (and independently Bonami and Lépingle [3]) proved that if $dQ/dP = W_{\infty} \in A_p(P, (\mathcal{F}_t))$ for some p > 1 and $W = (W_t)$ satisfies

$$(S) 0 < k \le W_{T-}/W_T \le K$$

with some constants k and K, then

$$cE_Q\left[\Phi(\mathcal{M}X_{\infty})\right] \le E_Q\left[\Phi\left(\left[X, X\right]_{\infty}^{1/2}\right)\right] \le CE_Q\left[\Phi(\mathcal{M}X_{\infty})\right]$$

hold for all local martingales $X = (X_t)_{t \ge 0}$ with respect to P and (\mathcal{F}_t) , where Φ is a Young function satisfying the Δ_2 -condition. Using this inequality with $\Phi(t) = t$ and Lemma 3, we can prove that if $\bar{\alpha}_{\beta} > 0$, then the inequalities

$$c \|\mathcal{M}X_{\infty}\|_{B(Q)} \le \|[X, X]_{\infty}^{1/2}\|_{B(Q)} \le C \|\mathcal{M}X_{\infty}\|_{B(Q)}$$

holds for all local martingales $X = (X_t)$ with respect to P and (\mathcal{F}_t) , provided $dQ/dP \in A_p(P, (\mathcal{F}_t))$ and $W = (W_t)$ satisfies (S).

References

- A. Antipa, Doob's inequality for rearrangement-invariant function spaces. Rev. Roumaine Math. Pures Appl. 35(1990), 101–108.
- [2] C. Bennett and R. Sharpley, Interpolation of operators. Academic Press, New York, 1988.
- [3] A. Bonami and D. Lépingle, Fonction maximale et variation quadratique des martingales en présence d'un poids. In: Séminaire de Probabilités, Lecture Notes in Math. 721, Springer-Verlag, New York, 1979, 294– 306.
- [4] D. W. Boyd, The spectral radius of averaging operators. Pacific J. Math. 24(1968), 19–28.
- [5] _____, Indices of function spaces and their relationship to interpolation. Canad. J. Math. 21(1969), 1245– 1254.

Masato Kikuchi

- [6] K. M. Chong and N. M. Rice, *Equimeasurable rearrangements of functions*. Queen's Papers in Pure and Appl. Math. 28(1971).
- [7] C. Dellacherie and P. A. Meyer, Probabilités et potentiel, Chapitres I à IV. Hermann, Paris, 1976.
- [8] _____, Probabilités et potentiel, Chapitres V à VIII. Hermann, Paris, 1980.
- C. Doléans-Dade and P. A. Meyer, *Inégalités de normes avec poids*. In: Séminaire de Probabilités, Lecture Notes in Math. **721**, Springer-Verlag, New York, 1979, 313–331.
- [10] M. Izumisawa and N. Kazamaki, Weighted norm inequalities for martingales. Tôhoku Math. J. 29(1977), 115–124.
- W. B. Johnson and G. Schechtman, Martingale inequalities in rearrangement invariant function spaces. Israel J. Math. 64(1988), 267–275.
- [12] N. Kazamaki, Continuous exponential martingales and BMO. Lecture Notes in Math. 1579, Springer-Verlag, New York, 1994.
- [13] W. A. J. Luxemburg, *Rearrangement-invariant Banach function spaces*. In: Proceedings of the symposium in analysis, Queen's Papers in Pure and Appl. Math. 10(1967), 83–144.
- P. A. Meyer, Un cours sur les intégrales stochastiques. In: Séminaire de Probabilités, Lecture Notes in Math. 511(1976), Springer-Verlag, New York, 245–400.
- [15] I. Ya. Novikov, Martingale inequalities in rearrangement invariant function spaces. In: Function spaces, Teubner-Texte Math. 120, Teubner, Stuttgart, 1991, 120–127.
- [16] T. Sekiguchi, BMO-martingales and inequalities. Tôhoku Math. J. 31(1979), 355-358.
- [17] T. Shimogaki, Hardy-Littlewood majorants in function spaces. J. Math. Soc. Japan 17(1965), 365–373.
- [18] T, Tsuchikura, A remark to weighted means of martingales. Seminar on real analysis 1976, Hachiooji (in Japanese).
- [19] A. Uchiyama, Weight functions on probability spaces. Tôhoku Math. J. 30(1978), 463–470.

Department of Mathematics Toyama University 3190 Gofuku Toyama 930-8555 Japan email: kikuchi@sci.toyama-u.ac.jp