
Canad. J. Math. Vol. 59 (6), 2007 pp. 1135–1153

Sobolev Extensions of Hölder Continuous
and Characteristic Functions on
Metric Spaces

Anders Björn, Jana Björn and Nageswari Shanmugalingam

Abstract. We study when characteristic and Hölder continuous functions are traces of Sobolev func-

tions on doubling metric measure spaces. We provide analytic and geometric conditions sufficient for

extending characteristic and Hölder continuous functions into globally defined Sobolev functions.

1 Introduction

For Lipschitz domains in Rn, the trace space of the Sobolev space W 1,p(Ω) is the
Slobodeckiı̆ space W 1−1/p,p(∂Ω, Hn−1), where Hn−1 is the (n−1)-dimensional Haus-
dorff measure, see [10], [25, Theorems 6.9.2, 8.3.13], [18, p. 212]. Similar results for

Sobolev spaces on Carnot–Carathéodory spaces have been obtained in [9]. A “nearly
sharp” description of traces on fractal subsets of Rn has been given in [13].

In the last decade, there has been much development in the theory of Sobolev
spaces and p-harmonic functions on metric spaces, see [7, 11, 28]. In particular,
the Dirichlet problem for p-harmonic functions has been solved for Sobolev-type

boundary data [23,29]. The fact that Sobolev spaces are natural spaces for solving the
Dirichlet problem for p-harmonic functions is one of the motivations for studying
traces of Sobolev functions. Unlike in Euclidean and Carnot–Carathéodory spaces,
very little is known about traces of Sobolev functions in general metric spaces.

In this paper, we study the question when characteristic and Hölder continuous
functions are traces of Sobolev functions on metric measure spaces. We provide an-

alytic and geometric conditions sufficient for extending characteristic and Hölder
continuous functions into globally defined Sobolev functions. In particular, if X is a
doubling metric measure space, then we prove the following (see Theorems 4.9 and
5.4 below):

Theorem Let F ⊂ X be closed and linearly locally connected, E ⊂ F, and assume that
the upper Minkowski dimension of the relative boundary ∂FE is strictly less than Q − p,

where Q is the “dimension” of X. Then the characteristic function χE is a restriction to
F of a globally defined Sobolev function.
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Theorem If Ω ⊂ X is open and satisfies the β-shell condition with β > p(1−κ), then
every κ-Hölder continuous function on ∂Ω is a trace on ∂Ω of a κ-Hölder continuous

Sobolev function on Ω.

This makes it possible to solve the Dirichlet problem for such boundary data,
which in turn has applications for p-harmonic measures and boundary regularity
of p-harmonic functions.

2 Notation and Preliminaries

We assume throughout the paper that X = (X, d, µ) is a metric space endowed with
a metric d and a doubling measure µ, i.e., there exists a constant C > 0 such that for
all balls B = B(x0, r) := {x ∈ X : d(x, x0) < r} in X (with the convention that balls
are nonempty and open), 0 < µ(2B) ≤ Cµ(B) < ∞, where λB = B(x0, λr). We

emphasize that the σ-algebra on which µ is defined is obtained by the completion of
the Borel σ-algebra. We also assume that 1 < p < ∞.

Note that we do not assume that X is complete unless explicitly required. Since
µ is doubling, X is proper (i.e., closed bounded sets are compact) if and only if it is

complete.
A curve is a continuous mapping from an interval. We will only consider curves

which are nonconstant, compact and rectifiable. A curve can thus be parameterized
by its arc length ds.

Definition 2.1 A nonnegative Borel function g on X is an upper gradient of an ex-
tended real-valued function f on X if for all curves γ : [0, lγ] → X,

(2.1) | f (γ(0)) − f (γ(lγ))| ≤

∫

γ

g ds,

whenever both f (γ(0)) and f (γ(lγ)) are finite, and
∫

γ
g ds = ∞ otherwise. If g is a

nonnegative measurable function on X and if (2.1) holds for p-almost every curve,

then g is a p-weak upper gradient of f .
By saying that (2.1) holds for p-almost every curve, we mean that it fails only for

a curve family with zero p-modulus, see [28, Definition 2.1]. It is implicitly assumed
that

∫
γ

g ds is defined (with a value in [0,∞]) for p-almost every curve.

If g ∈ Lp(X) is a p-weak upper gradient of f , then one can find a sequence {g j}
∞
j=1

of upper gradients of f such that g j → g in Lp(X); see [24, Lemma 2.4].
Following [28], we define a version of Sobolev spaces on the metric space X.

Definition 2.2 Whenever u ∈ Lp(X), let

‖u‖N1,p(X) =

(∫

X

|u|p dµ + inf
g

∫

X

g p dµ
) 1/p

,

where the infimum is taken over all upper gradients of u. The Newtonian space on X
is the quotient space N1,p(X) = {u : ‖u‖N1,p(X) < ∞}/∼, where u ∼ v if and only if
‖u − v‖N1,p (X) = 0.
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The space N1,p(X) is a Banach space and a lattice; see [28].

Definition 2.3 The p-capacity of a set E ⊂ X is the number C p(E) = inf ‖u‖
p

N1,p (X)
,

where the infimum is taken over all u ∈ N1,p(X) such that u = 1 on E.

The capacity is countably subadditive. For this and other properties as well as
equivalent definitions of the capacity, we refer to [20–22].

The capacity is the correct gauge for distinguishing between two Newtonian func-

tions. If u ∈ N1,p(X) and v is a function on X, then u ∼ v if and only if u = v outside
a set of capacity zero. Moreover, [28, Corollary 3.3] shows that if u, v ∈ N1,p(X) and
u = v µ-a.e., then u ∼ v. In particular, in the Euclidean setting, N1,p(Rn) is the
refined Sobolev space of quasicontinuous functions as defined in [15, p. 96]; see [5].

Definition 2.4 We say that X supports a weak (1, q)-Poincaré inequality if there
exist constants C > 0 and λ ≥ 1 such that for all balls B ⊂ X, all measurable
functions f on X and all upper gradients g of f ,

(2.2) −

∫

B

| f − fB| dµ ≤ C diam(B)
(
−

∫

λB

gq dµ
) 1/q

,

where fB := −
∫

B
f dµ := µ(B)−1

∫
B

f dµ.

In the definition of Poincaré inequality we can equivalently assume that g is a
q-weak upper gradient; see the comments above.

For some of the results in this paper we need to assume that X supports a

(1, p)-Poincaré inequality; this will always be mentioned explicitly when needed.

Unless otherwise stated, C denotes a positive constant whose value is unimpor-
tant, may vary with each appearance, and depends only on the fixed parameters.

3 The Geometry of Whitney Coverings

In this section we construct Whitney coverings of bounded open sets in X and prove
some of their properties. Whitney coverings in metric spaces were first constructed

by Coifman and Weiss [8]. We have chosen to provide complete proofs in order to
get the constants suitable for our purpose.

From now on, F always denotes a nonempty closed subset of X, R > 0 is a fixed

constant, and V = {x ∈ X : 0 < dist(x, F) ≤ 16R}. We also let W = {Bi, j} be a
corresponding Whitney covering given by the following theorem.

Theorem 3.1 There exists a countable family of balls

W = {Bi, j = B(xi, j , ri) : i ∈ N, j ∈ Ji}

such that for all i ∈ N and j ∈ Ji ,

(i) V ⊂
⋃

B∈W
B ⊂ X \ F;

(ii) ri = 2−iR;
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(iii) 8ri < dist(xi, j , F) ≤ 16ri ;
(iv) the balls { 1

2
B : B ∈ W} are pairwise disjoint.

Remark Note that if V is bounded, then all index sets Ji are finite.

Proof Let S0 = {x ∈ V : dist(x, F) > 8r0}. Using the Hausdorff maximality
principle, we find a maximal pairwise disjoint collection of balls B(x0, j ,

1
2
r0) with

x0, j ∈ S0, j ∈ J0. The doubling property of the measure µ implies that this collection

is at most countable, with the collection finite if V is bounded. Let B0, j = B(x0, j , r0)
and W0 = {B0, j : j ∈ J0}. Then S0 ⊂

⋃
B∈W0

B.

Next, we inductively construct families Wi = {Bi, j : j ∈ Ji}, i = 1, 2, . . . ,
and set W =

⋃∞
i=0 Wi . Assume that the families W0, . . . , Wi−1 have already been

constructed and let Si = {x ∈ V : 8ri < dist(x, F) ≤ 16ri}\
⋃

B∈Wi−1
B. Again, there

exists a maximal, at most countable, pairwise disjoint collection of balls B(xi, j ,
1
2
ri)

with xi, j ∈ Si when j ∈ Ji . Let Bi, j = B(xi, j , ri) and Wi = {Bi, j : j ∈ Ji}. Then
Si ⊂

⋃
B∈Wi

B.

It follows from the construction that the family W =
⋃∞

i=0 Wi satisfies (i)–(iii) in

the statement of the theorem. To complete the proof, it remains to verify property
(iv). By construction, the balls 1

2
Bi, j and 1

2
Bk,l are disjoint if i = k. If i > k, then

1
2
ri + 1

2
rk < rk ≤ d(xi, j , xk,l), as xi, j /∈ Bk,l by the construction of Si .

Remark Let Ω be a bounded open set in X with nonempty boundary. By choosing
R =

1
16

diam Ω and F = ∂Ω we obtain a Whitney covering of Ω.

The following two lemmas give us simple estimates on the overlap of the Whitney
balls.

Lemma 3.2 Let λ > 0. Then there is a constant M, depending only on λ and the
doubling constant of µ, such that for each Bi, j ∈ W,

#{l : λBi, j ∩ λBi,l 6= ∅} ≤ M.

Proof Without loss of generality we may assume that λ ≥ 1. If λBi, j ∩ λBi,l 6= ∅,
then 1

2
Bi,l ⊂ 3λBi, j . The pairwise disjointness of the balls { 1

2
B : B ∈ W} and the

doubling property of µ then give a bound on the number of such balls Bi,l.

Lemma 3.3 Let 0 < λ < 8. Then there exists a constant M > 0, depending only on

λ and the doubling constant of µ, such that we have the following.

(i) If λBi, j ∩ λBk,l 6= ∅, then ri < (16 + λ)rk/(8 − λ) and hence

i − log2

( 16 + λ

8 − λ

)
< k < i + log2

( 16 + λ

8 − λ

)
.

(ii) If Bi, j ∈ W, then #{B ∈ W : λBi, j ∩ λB 6= ∅} ≤ M, and hence for each x ∈ X,∑
B∈W

χλB(x) ≤ M.
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Proof (i) We have

16rk ≥ dist(xk,l, F) ≥ dist(xi, j , F) − d(xk,l, xi, j) > 8ri − λ(rk + ri),

from which the result follows.

(ii) For each of the balls Bk,l such that λBi, j ∩ λBk,l 6= ∅, we have ri/C < rk < Cri

by (i). Hence d(xk,l, xi, j) < λ(ri + rk) ≤ Cri , i.e., 1
2
Bk,l ⊂ C ′Bi, j . By the dou-

bling property, µ( 1
2
Bk,l) ≥ µ(C ′Bi, j)/C . Thus the pairwise disjointness of the balls

{ 1
2
B : B ∈ W} gives the desired bound.

Theorem 3.4 There exists a partition of unity Φ = {ϕi, j : i ∈ N, j ∈ Ji} subordinate
to the collection {2B : B ∈ W} and satisfying, for all i ∈ N and all j ∈ Ji ,

(i)
∑

i, j ϕi, j = 1 on
⋃

B∈W
B;

(ii) 0 ≤
∑

i, j ϕi, j ≤ 1 on X;
(iii) supp ϕi, j ⊂ 2Bi, j ;
(iv) ϕi, j is a nonnegative C/ri-Lipschitz function.

Proof Let ϕ̂i, j be a nonnegative 2/ri-Lipschitz function with supp ϕ̂i, j ⊂ 2Bi, j such

that ϕ̂i, j ≤ 1 with ϕ̂i, j ≡ 1 on Bi, j , e.g., let

ϕ̂i, j(y) = max{0, min{3 − 2d(y, xi, j)/ri , 1}}.

Set h :=
∑

i, j ϕ̂i, j . By Lemma 3.3, it follows that 1 ≤ h ≤ M on
⋃

B∈W
B, and that h

is CM/ri-Lipschitz in 2Bi, j . Thus also 1/ max{1, h} is CM/ri-Lipschitz in 2Bi, j , and

it follows that ϕi, j := ϕ̂i, j/ max{1, h} satisfies the requirements.

If F ⊂ X is bounded, then the number of balls in each generation Wi of the

Whitney covering W is related to the upper Minkowski dimension of F. Thus, the
Whitney covering plays a crucial role in the geometry of subsets of X.

Definition 3.5 Let A ⊂ X be bounded and let P(A, ε) be the maximal number of
pairwise disjoint balls with centers in A and radius ε. The upper Minkowski dimension
of A is the nonnegative number

(3.1) dimM A := inf{s > 0 : lim sup
ε→0+

P(A, ε)εs
= 0}.

Note that P(A, ε) ≤ P(A, ε/2) and hence dimM A = dimM A. For more on
Minkowski dimensions, see [27, §5.3–5.12].

Lemma 3.6 Let A ⊂ X be bounded and α, β > 0. Then for each i ∈ N,

#{ j : αBi, j ∩ A 6= ∅} ≤ MP(A, βri),

where M depends only on α, β, and the doubling constant of µ.
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Proof Let {Bn}
P(A,βri )
n=1 be a maximal pairwise disjoint collection of balls with cen-

ters in A and radii βri . Then A ⊂
⋃P(A,βri )

n=1 2Bn, i.e., each ball αBi, j intersecting A
intersects at least one ball 2Bn.

On the other hand, if both αBi, j and αBi,l intersect the same ball 2Bn, then

(α + 2β)Bi, j ∩ (α + 2β)Bi,l 6= ∅,

and Lemma 3.2 gives a bound on the number of balls αBi, j intersecting each 2Bn.

To prove the extension theorems of this note we shall need a projection map

π : X → F such that d(x, π(x)) ≤ 2 dist(x, F). In the case when X is complete,
we could have replaced the constant 2 by 1, but in the noncomplete case such a pro-
jection would not always exist. Note also that there is no uniqueness for π (not even
in the case when X is complete and we require that d(x, π(x)) = dist(x, F).)

Lemma 3.7 Let C = {xi, j : Bi, j ∈ W}. Then π|C is a 65-Lipschitz map. Moreover, if

0 < α < 8, x ∈ αBi, j and y ∈ F, then

d(π(xi, j), y) ≤ 3d(xi, j , y) and d(π(x), xi, j ) ≤ (32 + 3α)ri.

Proof This is an easy exercise in triangle inequalities. If xi, j , xk,l ∈ C, then by the
fact that 1

2
Bi, j ∩

1
2
Bl,k is empty, we have d(xi, j , xk,l) ≥

1
2
(ri + rl), and hence

d(π(xi, j), π(xk,l)) ≤ d(π(xi, j), xi, j) + d(xi, j , xk,l) + d(xk,l, π(xk,l))

≤ 32ri + d(xi, j , xk,l) + 32rl ≤ 65 d(xi, j , xk,l),

i.e., π|C is a 65-Lipschitz map. Next,

d(π(xi, j), y) ≤ d(π(xi, j), xi, j ) + d(xi, j , y) ≤ 2 dist(xi, j , F) + d(xi, j , y) ≤ 3d(xi, j , y).

Finally,

d(π(x), xi, j ) ≤ d(π(x), x) + d(x, xi, j ) ≤ 2 dist(x, F) + d(x, xi, j)

≤ 2 dist(xi, j , F) + 3d(x, xi, j) ≤ 32ri + 3αri.

4 Extending Characteristic Functions

In this section we give sufficient conditions for extending characteristic functions of
bounded sets to obtain Newtonian functions on X. As a corollary, we generalize some

results about p-harmonic measures from [4] to metric spaces.
Let {ϕi, j} be the partition of unity associated with the Whitney covering W given

by Theorem 3.4, and fix a projection map π : X → F such that d(x, π(x)) ≤
2 dist(x, F).
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Given a function f : F → R, we define E f : X → R by

E f (x) =

{∑
i, j f (π(xi, j ))ϕi, j(x) if x /∈ F,

f (x) if x ∈ F.

The following lemma shows that the extension E f behaves well in a neighbour-
hood of F. Here ∂FE = E ∩ F \ E is the boundary of E in the relative topology of F.

Lemma 4.1 Let Y := F ∪
⋃

B∈W
B. For x0 ∈ F we have

sup
x∈Y∩B(x0 ,δ)

|E f (x) − f (x0)| ≤ sup
y∈F∩B(x0 ,4δ)

| f (y) − f (x0)|.

In particular, if E ⊂ F and x0 ∈ F \∂FE, then EχE is constant in a neighbourhood of x0.

Proof Let x ∈ Y ∩ B(x0, δ) be arbitrary. If x ∈ F, then

|E f (x) − f (x0)| = | f (x) − f (x0)| ≤ sup
y∈F∩B(x0 ,4δ)

| f (y) − f (x0)|.

Assume therefore that x /∈ F. As x ∈
⋃

B∈W
B, we get that

∑
i, j ϕi, j(x) = 1. Then

(4.1) |E f (x) − f (x0)| ≤
∑

i, j

| f (π(xi, j)) − f (x0)|ϕi, j(x),

where it suffices to sum only over those i and j for which x ∈ 2Bi, j . For such i and j,
we have

8ri < dist(xi, j , F) ≤ d(xi, j , x0) ≤ d(xi, j , x) + d(x, x0) < 2ri + δ,

i.e., ri < 1
6
δ. It follows from Lemma 3.7 that

d(π(xi, j), x0) ≤ 3d(xi, j , x0) < 3(2ri + δ) < 4δ.

Inserting this into (4.1) we find that

|E f (x) − f (x0)| ≤
∑

i, j

| f (π(xi, j )) − f (x0)|ϕi, j(x)

≤
(

sup
y∈F∩B(x0 ,4δ)

| f (y) − f (x0)|
) ∑

i, j

ϕi, j(x)

= sup
y∈F∩B(x0 ,4δ)

| f (y) − f (x0)|.

https://doi.org/10.4153/CJM-2007-049-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-049-7


1142 A. Björn, J. Björn and N. Shanmugalingam

Lemma 4.2 Let E ⊂ F and let WE be the collection of all balls B ∈ W for which π(5B)
intersects both E and F \ E. Furthermore, let g be defined by

g(x) =

{
1/ dist(x, F) if x ∈

⋃
B∈WE

B,

0 otherwise.

Then Cg is an upper gradient in V of EχE, where χE is the characteristic function of E
and the constant C is independent of E.

Note that π(5B) ⊂ 47B, by Lemma 3.7. Hence, the set π(5B) in the definition
of WE can be replaced by 47B and the resulting function Cg will still be an upper
gradient for u.

Proof Let γ be a curve connecting x and y in V . By cutting γ into small segments if
necessary, we may assume that γ ⊂ Bk,l for some k and l. Let u := EχE. We have

u(x) − u(y) =

∑

i, j

χE(π(xi, j ))(ϕi, j (x) − ϕi, j(y))

=

∑

i, j

(
χE(π(xi, j )) − χE(π(xk,l))

)
(ϕi, j(x) − ϕi, j(y)).

(4.2)

The term ϕi, j(x) − ϕi, j(y) is nonzero only if at least one of x and y is in 2Bi, j , and
hence we only need to sum over those i and j for which 2Bi, j ∩ Bk,l 6= ∅. For such i,
we have by Lemma 3.3(i) that 1

3
rk < ri < 3rk and thus as rk = 2−kR and ri = 2−iR,

we have 1
2
rk ≤ ri ≤ 2rk. Hence, d(xk,l, xi, j) < rk + 2ri ≤ 5rk, i.e., xi, j ∈ 5Bk,l.

Therefore, if π(5Bk,l) intersects only one of the sets E and F \E, then each term in the
sum on the right-hand side in (4.2) is zero.

So, let us consider the case when Bk,l ∈ WE. In this case,

|u(x) − u(y)| ≤
∑

{(i, j):2Bi, j∩Bk,l 6=∅}

|ϕi, j(x) − ϕi, j(y)|.

By Lemma 3.3(ii), there are at most M balls Bi, j such that 2Bi, j∩Bk,l is nonempty, and

|ϕi, j(x)−ϕi, j(y)| ≤ Cd(x, y)/ri ≤ Cd(x, y)/rk for such i and j. As dist(z, F) ≤ 17rk

for all z ∈ Bk,l, we see that

|u(x) − u(y)| ≤ CMd(x, y)/rk ≤ C

∫

γ

ds

dist( · , F)
,

which completes the proof.

Definition 4.3 The measure µ is said to have a Q-upper mass bound if there is a
constant C > 0 such that for all x ∈ X and for all r > 0 we have µ(B(x, r)) ≤ CrQ.

If rQ/C ≤ µ(B(x, r)) ≤ CrQ for all x ∈ X and for all r > 0, then X is Ahlfors
Q-regular.
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For our purpose it is enough to know that for every ball B ′ ⊂ X there is a constant
CB ′ such that µ(B(x, r)) ≤ CB ′rQ for all balls B(x, r) ⊂ B ′. It is known that doubling

measures on uniformly perfect metric spaces have such a local version of a Q-upper
mass bound for some Q; see the exercises in [14, Ch. 13].

Theorem 4.4 Assume that µ has a Q-upper mass bound, and let E be a bounded subset
of F. Suppose that there exists a nonempty bounded subset E0 of F with dimM E0 < Q−p
and that there exist constants r > 0 and λ ≥ 1 such that for all x ∈ F \ E with

dist(x, E) ≤ r,

(4.3) dist(x, E0) ≤ λ dist(x, E).

Then u := EχE ∈ N1,p(V ). If moreover C p(∂FE) = 0, then χE is the restriction to F of
a function in N1,p(X).

Proof Clearly, 0 ≤ u ≤ 1 and u(x) 6= 0 for x /∈ F only if x ∈ 2Bi, j for some
Bi, j ∈ W with π(xi, j) ∈ E. For such x we have

dist(x, E) ≤ d(x, xi, j) + d(xi, j , π(xi, j)) ≤ 34ri ≤ 34R.

As E is bounded, we see that u ∈ Lp(X). Let WE and g be as in Lemma 4.2. By
Lemma 4.2, the function Cg is an upper gradient of u in V . We shall show that
g ∈ Lp(V ).

It is clear that when computing the Lp-norm of g it suffices to consider only those

balls Bi, j for which Bi, j lies in WE. For such balls we have

(4.4)

∫

Bi, j

g p dµ ≤
Cµ(Bi, j)

r
p
i

≤ Cr
Q−p
i .

For large i, we shall estimate the number of such balls Bi, j . Let i be large enough
so that 94ri < r. Since π(5Bi, j) intersects both E and F \ E, we can find x, y ∈ 5Bi, j

such that π(x) ∈ E and π(y) ∈ F \ E. By Lemma 3.7,

d(π(x), π(y)) ≤ d(π(x), xi, j ) + d(xi, j , π(y)) ≤ 94ri < r.

By the assumption (4.3), dist(π(y), E0) ≤ λd(π(x), π(y)) ≤ 94λri , and thus there
exists z ∈ E0 such that d(π(y), z) < 95λri . Hence

d(xi, j , z) ≤ d(xi, j , π(y)) + d(π(y), z) < 47ri + 95λri < 142λri,

i.e., E0 ∩ 142λBi, j is nonempty. Lemma 3.6 implies that for each i, there are at most
MP(E0, ri) such balls Bi, j . As dimM E0 < Q − p, there exists s < Q − p such that
P(E0, ri) ≤ Cr−s

i for sufficiently large i. Hence, using (4.4),

∫

V

g p dµ ≤ C +
∑

{i, j: 142λBi, j∩E0 6=∅}

Cr
Q−p
i ≤ C +

∞∑

i=0

CMr
Q−p−s
i < ∞,
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i.e., g ∈ Lp(V ), and hence u ∈ N1,p(V ).
Now assume that C p(∂FE) = 0. We shall show that g is a p-weak upper gradient

of u in V ∪ F. Let γ : [0, L] → V ∪ F be a curve which does not intersect ∂FE. As
C p(∂FE) = 0, p-almost every curve in X has this property. If γ does not intersect F,
then we already know that |u(γ(0)) − u(γ(L))| ≤

∫
γ

g ds. Assume therefore that γ
intersects F, and let

a = inf{t ∈ [0, L] : γ(t) ∈ F} and b = sup{t ∈ [0, L] : γ(t) ∈ F}.

As F is a closed set, γ(a) and γ(b) belong to F, and Lemma 4.1 yields

|u(γ(0)) − u(γ(L))|

≤ |u(γ(0)) − u(γ(a))| + |u(γ(a)) − u(γ(b))| + |u(γ(b)) − u(γ(L))|

≤

∫

γ1

g ds + |u(γ(a)) − u(γ(b))| +

∫

γ2

g ds,

(4.5)

where γ1 and γ2 are the restrictions of γ to the intervals [0, a] and [b, L], respectively.

If u(γ(a)) = u(γ(b)), then by (4.5), |u(γ(0)) − u(γ(L))| ≤
∫

γ
g ds. Assume there-

fore that γ(a) ∈ E and γ(b) ∈ F \ E, and let

a ′
= sup{t ∈ [0, L] : γ(t) ∈ E}, b ′

= inf{t ∈ [a ′, L] : γ(t) ∈ F \ E}.

Note that γ(a ′) ∈ E and γ(b ′) ∈ F \ E. Moreover, as γ ∩ ∂FE is empty, we have
actually γ(a ′) ∈ E \ ∂FE, γ(b ′) ∈ F \ E and a ′ < b ′. Lemma 4.1 then implies that

there exist a ′′, b ′′ such that a ′ < a ′′ < b ′ ′ < b ′,

u(γ(a ′ ′)) = u(γ(a ′)) = 1 = u(γ(a)), u(γ(b ′ ′)) = u(γ(b ′)) = 0 = u(γ(b)),

and the restriction γ ′ of γ to the interval [a ′′, b ′′] lies in V . Hence,

|u(γ(a)) − u(γ(b))| = 1 = |u(γ(a ′ ′)) − u(γ(b ′ ′))| ≤

∫

γ ′

g ds.

Inserting this into (4.5) gives |u(γ(0)) − u(γ(L))| ≤
∫

γ
g ds, which shows that

u ∈ N1,p(V ∪ F).
To complete the proof, let η be a Lipschitz function with bounded support in V ∪F

such that η = 1 on E. Then χE is the restriction to F of the function ηu ∈ N1,p(X).

In the proof of Theorem 4.4, it is essential to have C p(∂FE) = 0. On the other
hand, [17, Example 3] shows that there exist Cantor sets E ⊂ Rn−1 with positive

(n − 1)-dimensional Hausdorff measure (and hence C p(∂Rn−1 E) is positive for all
p > 1), such that χE is the restriction to Rn−1 of a function from N1,p(Rn) for all
1 < p < 2.

In our next theorems, we shall give some more explicit conditions under which

the assumptions of Theorem 4.4 are satisfied. A crucial role will be played by the
relative boundary ∂FE = E∩F \ E of E with respect to F and by the following relative
r-boundary. As far as we are aware, the notion of relative r-boundary is new. It is
useful for us when X is complete.
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Sobolev Extensions of Hölder Continuous and Characteristic Functions on Metric Spaces 1145

Definition 4.5 Given r > 0, the relative r-boundary of E ⊂ F is the set

∂F,rE := {x ∈ E : d(y, x) = dist(y, E) ≤ r for some y ∈ F \ E}.

The following proposition clarifies the relationship between the relative boundary
∂FE and the relative r-boundary ∂F,rE.

Proposition 4.6 Let E ⊂ F and r > 0. Then

(4.6) ∂FE =
⋂
r>0

∂F,rE.

Moreover, if X is complete, then ∂F,rE is closed and

∂F,rE =
⋂
ρ>r

∂F,ρE.

Proof If x ∈ ∂FE, then x ∈ E ∩ F \ E, and d(x, x) = dist(x, E) = 0, so x ∈ ∂F,rE.

Conversely, if x ∈ ∂F,rE for all r > 0, then there exist y j ∈ F \ E such that

d(y j , x) = dist(y j , E) ≤ 1/ j, j = 1, 2, . . . . Therefore lim j→∞ y j = x and x ∈ F \ E.
On the other hand, as x ∈ ∂F,rE, we see that x ∈ E and hence x ∈ ∂FE and (4.6) is
proved.

Next let x j ∈ ∂F,rE with x j → x0 ∈ E and assume that X is complete (and thus

proper). Then there exist points y j ∈ F \ E such that d(y j , x j) = dist(y j , E) ≤ r. As
X is proper, the sequence {y j}

∞
j=1 has a subsequence, also denoted {y j}

∞
j=1, converg-

ing to some y0 ∈ F \ E. Then

d(y0, x0) = lim
j→∞

d(y j , x j) = lim
j→∞

dist(y j , E) = dist(y0, E) ≤ r,

i.e., x0 ∈ ∂F,rE and thus ∂F,rE is closed.

Finally, if x ∈
⋂

ρ>r ∂F,ρE, then for each j ∈ N we consider y j ∈ F \ E such that
d(y j , x) = dist(y j , E) ≤ r + 1/ j. Again we extract a convergent subsequence, also

denoted {y j}
∞
j=1, converging to a point y0 ∈ F \ E, and note that

d(y0, x) = lim
j→∞

d(y j , x) = lim
j→∞

dist(y j , E) = dist(y0, E) ≤ r,

and hence x ∈ ∂F,rE. As ∂F,rE ⊂ ∂F,ρE for every ρ > r, we have the desired equality.

Note also that if ∂F,rE 6= ∂FE, then ∂F,rE 6= ∂F,r(F \ E). It is also possible to have

∂F,rE = ∂FE 6= ∂F,r(F \ E); let

F = [−3, 3]2 \
{

(x, y) : 0 < y < 2
√

1 − x2
}
⊂ R2,

and E = {(x, y) ∈ F : y > 0}. Then ∂FE = ∂F,rE = {(x, 0) : 1 ≤ |x| ≤ 3} and

∂F,r(F \ E) = {(x, 0) : 1 −
√

1 − r2/4 ≤ |x| ≤ 3}.
Following [16], we consider the following definition.
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Definition 4.7 Given two sets A ⊂ D ⊂ X, we say that A is linearly locally connected
in D if there are constants C ≥ 1 and r0 > 0, such that whenever x, y ∈ A and

d(x, y) < r < r0, there is a curve in B(x,Cr) ∩ D connecting x and y.

A set is linearly locally connected if it is linearly locally connected in itself.

Connected components of boundaries of bounded Lipschitz domains in Rn are
linearly locally connected. Boundaries of domains in Rn with cusps usually are lin-

early locally connected if n ≥ 3, but not if n = 2. It was shown in [12, Proposi-
tion 4.5] that Ahlfors Q-regular metric measure spaces, Q > 1, supporting a weak
(1, Q)-Poincaré inequality are linearly locally connected. In general, it is not clear
when the boundary of a domain is linearly locally connected.

Theorem 4.8 Assume that µ has a Q-upper mass bound. Let E ⊂ F be bounded and

assume that one of the following conditions is satisfied:

(i) dist(E, F \ E) > 0 (this does not require a Q-upper mass bound);
(ii) dimM E < Q − p;
(iii) dimM(F \ E) < Q − p.

Then χE is the restriction to F of a function from N1,p(X).

Proof (i) In this case we can find a Lipschitz function η with bounded support such
that η|E = 1 and η|F\E = 0.

(ii) Since the Hausdorff dimension dimH ∂FE ≤ dimM ∂FE < Q − p, it follows
that C p(∂FE) = 0. Setting E0 = E we obtain the desired result by Theorem 4.4. (In
the case when E = ∅ we cannot apply Theorem 4.4, since E0 needs to be nonempty,
but in this case the conclusion is trivial.)

(iii) Since dimM(F \ E) < Q − p, F must be bounded. Hence by (ii), χF\E is
the restriction to F of a function v ∈ N1,p(X). Now let η be a Lipschitz function

with bounded support such that η = 1 on F. Then χE is the restriction to F of
η(1 − v) ∈ N1,p(X).

In the case when X is complete, we can say more.

Theorem 4.9 Assume that X is complete and that µ has a Q-upper mass bound. Let

E ⊂ F be bounded, r > 0 and assume that one of the following conditions is satisfied:

(i) ∂FE = ∅ (this does not require a Q-upper mass bound);
(ii) dimM ∂F,rE < Q − p;

(iii) dimM ∂F,r(F \ E) < Q − p;
(iv) F is linearly locally connected and dimM ∂FE < Q − p;
(v) ∂F,rE ∪ ∂F,r(F \ E) is linearly locally connected in F and dimM ∂FE < Q − p.

Then χE is the restriction to F of a function from N1,p(X).

Proof (i) As X is proper, dist(E, F \ E) > 0 (or E = ∅), and we can thus apply

Theorem 4.8.

(ii) Set E0 = ∂F,rE. Note that as dimH ∂FE ≤ dimM ∂FE ≤ dimM ∂F,rE < Q − p,
it follows that C p(∂FE) = 0. To see that condition (4.3) is satisfied, let x ∈ F \ E be
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such that dist(x, E) ≤ r. Find y ∈ E such that d(x, y) = dist(x, E). Such a point y
exists because X is proper. Then y ∈ ∂F,rE and hence

dist(x, ∂F,rE) ≤ d(x, y) = dist(x, E) ≤ r,

i.e., (4.3) holds with λ = 1. Now the desired result follows from Theorem 4.4.

(iii) Let F̃ = {x ∈ F : dist(x, E) ≤ r}, which is a closed bounded set. Then
∂eF,r(F̃\E) = ∂F,r(F\E), and therefore, by (ii), χeF\E is the restriction to F̃ of a function

v ∈ N1,p(X). Now let η be a Lipschitz function with bounded support such that
η = 1 on E and η = 0 on F \ F̃. Then χE is the restriction to F of η(1− v) ∈ N1,p(X).

(iv) This follows from (v).

(v) We shall show that E0 = ∂FE satisfies condition (4.3). Let x ∈ F \ E be
such that dist(x, E) ≤ r, and find y ∈ E such that d(x, y) = dist(x, E). Choose

z ∈ F \ E satisfying d(y, z) = dist(y, F \ E) ≤ d(y, x) ≤ r. Note that y ∈ ∂F,rE
and z ∈ ∂F,r(F \ E). As ∂F,rE ∪ ∂F,r(F \ E) is linearly locally connected in F, there
exists a curve γ connecting y and z in B(y,Cd(y, z)) ∩ F. We observe that γ ∩ ∂FE is
nonempty. Let x0 ∈ γ ∩ ∂FE. Thus,

dist(x, ∂FE) ≤ d(x, x0) ≤ d(x, y) + d(y, x0) ≤ d(x, y) + Cd(y, z)

≤ (1 + C)d(x, y) = (1 + C) dist(x, E),

i.e., ∂FE satisfies (4.3) with λ = 1 + C . Finally, as dimH ∂FE ≤ dimM ∂FE < Q − p, it

follows that C p(∂FE) = 0, and we can apply Theorem 4.4.

We shall now demonstrate how Theorems 4.4, 4.8 and 4.9 enable us to generalize
some results from [4] to metric measure spaces.

Definition 4.10 Assume that X is complete and supports a weak (1, p)-Poincaré
inequality. Let Ω ⊂ X be a nonempty bounded open set such that C p(X\Ω) > 0. The
upper and lower p-harmonic measure of E ⊂ ∂Ω evaluated at x ∈ Ω are, respectively,

ωx,p(E) := PχE(x) and ωx,p(E) := PχE(x),

where P f and P f are the upper and the lower Perron solutions of the Dirichlet prob-
lem for p-harmonic functions in Ω with the boundary data f .

For the definition of Perron solutions on metric spaces, see [3]. (Note that the

results in [3] are stated for bounded domains, but the proofs and results hold for
nonempty bounded open sets.) If ωx,p(E) = ωx,p(E), then we call ωx,p(E) := ωx,p(E)
the p-harmonic measure of E. Note that despite its name, the p-harmonic measure is
not a measure in general, merely a nonlinear analogue of the harmonic measure.
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Corollary 4.11 Assume that X is complete and that µ has a Q-upper mass bound.
Assume further that X supports a weak (1, p)-Poincaré inequality for some 1 < p < Q.

Let Ω ⊂ X be a nonempty bounded open set such that C p(X \ Ω) > 0. If E ⊂ F := ∂Ω

satisfy at least one of the conditions in Theorems 4.4, 4.8 or 4.9, then ωx,p(E) = ωx,p(E)
for all x ∈ Ω.

Proof Note that by [19], X supports a weak (1, q)-Poincaré inequality for some
q ∈ [1, p), which was earlier a standard assumption. By Theorems 4.4, 4.8 or 4.9,
the characteristic function χE is the restriction to ∂Ω of a function u ∈ N1,p(X).
By [3, Theorem 5.1], u is resolutive and ωx,p(E) = PχE(x) = Hu(x), where Hu is the

p-harmonic extension of u to Ω, i.e., Hu is p-harmonic in Ω and

Hu − u ∈ N
1,p
0 (Ω) := { f |Ω : f ∈ N1,p(X) and f = 0 on X \ Ω}.

Now, let ū(x) = 1 if x ∈ E and ū(x) = u(x) otherwise. As C p(∂∂ΩE) = 0, ū belongs

to the same equivalence class in N1,p(X) as u and Hu(x) = Hū(x) = ωx,p(E).

Example 4.12 Let ϕ : [0, 1] → R be a positive increasing continuous function such
that

lim
t→0+

ϕ(t)

t
= 0 and lim

t→0+

ϕ(1) − ϕ(1 − t)

t
< ∞,

and let Ω ⊂ R2 be the cuspidal domain

Ω = {(x1, x2) ∈ R2 : 0 < x1 < 1 and 0 < x2 < ϕ(x1)}.

Let 0 < r < 1 and E = {(x1, x2) ∈ R2 : 0 < x1 < 1 and x2 = ϕ(x1)}. Then
∂∂Ω,r(∂Ω \ E) contains the interval [0, ϕ−1(r)] ⊂ R and has dimension one. On the
other hand, the countable set

E0 = {(ti, j , 0) : i, j ∈ N} ∪ {(1, ϕ(1))}

with ti,0 = ϕ−1(2−ir) and ti, j = ti,0 − 2−i jr > 0 satisfies (4.3) for some λ.

We shall estimate dimM E0. Let ε = 2−kr. For i < k, we can place at most
ϕ−1(2−ir)/2−ir pairwise disjoint balls with radius ε and centers in the points (ti, j , 0),
j ∈ N. Along the interval [0, tk,0] ⊂ R we can put at most tk,0/ε = ϕ−1(2−kr)/2−kr

such balls. Hence

P(E0, ε) ≤ 1 +

k∑

i=0

ϕ−1(2−ir)

2−ir
.

If ϕ(t) ≥ Ctα with α > 1, then P(E0, ε) ≤ Cε1/α−1 and dimM E0 ≤ 1 − 1/α. It

follows that for p < 1 + 1/α, the characteristic function of E is the restriction to
∂Ω of a function from N1,p(R2) and the p-harmonic measure of E with respect to Ω

equals the p-harmonic measure of E.
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5 Extending Hölder Continuous Functions

In this section we study when Hölder continuous functions on the boundary of an
open set Ω ⊂ X can be extended as Newtonian functions in N1,p(Ω) that are Hölder

continuous on Ω.

Definition 5.1 Let A ⊂ X and f : A → R. For 0 < κ ≤ 1, the κ-Hölder norm of f

is given by

‖ f ‖κ,A = sup
x,y∈A

| f (x) − f (y)|

d(x, y)κ
+ sup

x∈A

| f (x)|.

Under this norm, the vector space of all κ-Hölder continuous functions on A is a
Banach space.

Definition 5.2 We say that Ω ⊂ X satisfies a β-shell condition with β > 0 if for
all sufficiently small t > 0, the shell St = {x ∈ Ω : dist(x, ∂Ω) ≤ t} satisfies

µ(St ) ≤ Ctβ .

It is clear that if Ω satisfies a β1-shell condition and 0 < β2 < β1, then Ω satisfies a
β2-shell condition as well. The following simple proposition shows a connection be-
tween the β-shell conditions and the upper Minkowski dimension in Ahlfors regular

spaces. In particular, this generates many nontrivial examples in Carnot groups. For
a similar result in Euclidean spaces and for related notions, see [26].

Proposition 5.3 Let K be a nonempty compact subset of an Ahlfors Q-regular metric
measure space X such that µ(K) = 0. Then

dimM K = inf{s : X \ K satisfies a (Q − s)-shell condition}.

In particular, a bounded open set Ω ⊂ X satisfies a β-shell condition for all β <
Q − dimM ∂Ω.

Proof Let s > dimM K, ρ > 0 and {Bn}
P(K,ρ)
n=1 be a maximal pairwise disjoint col-

lection of balls with centers in K and radii ρ. Then K ⊂
⋃P(K,ρ)

n=1 2Bn and hence

Sρ := {x ∈ X \ K : dist(x, K) ≤ ρ} ⊂
⋃P(K,ρ)

n=1 3Bn, which in turn yields

µ(Sρ) ≤ CP(K, ρ)ρQ
= CP(K, ρ)ρsρQ−s ≤ CρQ−s,

where the last inequality follows from (3.1).

Conversely, let s < s ′ < dimM K. By the definition of Minkowski dimension, there

exists δ > 0 and a sequence ρ j → 0+ such that P(K, ρ j )ρ
s ′

j ≥ δ for all j = 1, 2 . . . . It

follows that µ(Sρ) ≥ P(K, ρ j)ρ
Q
j ≥ δρQ−s

j ρs−s ′

j and letting j → ∞ shows that X \ K
does not satisfy the (Q − s)-shell condition.

If X is a geodesic metric space and µ is doubling, then there exists β0 > 0 such
that balls in X satisfy a β-shell condition for every β < β0; see [6, (1.1)].
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It is easily verified that bounded Lipschitz domains in Euclidean spaces satisfy
a 1-shell condition, while it follows from [26, Theorem 4.22] that complements of

many self-similar fractals in Rn (including the von Koch snowflake domain in R2)
satisfy an (n − α)-shell condition, where α is the dimension of the fractal.

Note that it is possible to have β > 1. The domain Ω = Rn \ I, where I ⊂ R is an
interval, satisfies the (n−1)-shell condition. For an example with a bounded domain,
let Ω = [0, 1]n\{(0, . . . , 0)} and X = Ω∪{(x1, . . . , xn) ∈ Rn : x j ≤ 0, j = 1, . . . , n}.

Theorem 5.4 Let Ω be a bounded open set in X with nonempty boundary. Assume
that Ω satisfies a β-shell condition for some β > 0, and let max{0, 1 − β/p} < κ ≤ 1.

Then there exists C > 0 such that every κ-Hölder continuous function f : ∂Ω → R

has a κ-Hölder continuous extension E f : Ω → R with ‖E f ‖N1,p(Ω) ≤ C‖ f ‖κ,∂Ω and
‖E f ‖κ,Ω ≤ C‖ f ‖κ,∂Ω.

Proof Let F = ∂Ω, R =
1

16
diam Ω and the notation be as in the previous sections.

As ∂Ω is bounded, so is supp E f , and thus ‖E f ‖Lp(X) ≤ C‖ f ‖κ,∂Ω. We will show that
E f has an Lp-integrable upper gradient in Ω = Ω ∩ V ⊂

⋃
B∈W

B. Let γ be a curve
in Ω connecting x and y. By splitting γ into segments if necessary, we may assume
that γ ⊂ 2Bk,l for some k and l.

As in (4.2), we have

|E f (x) − E f (y)| ≤
∑

i, j

| f (π(xi, j )) − f (π(xk,l))| · |ϕi, j(x) − ϕi, j(y)|,(5.1)

where we only need to sum over those i and j for which 2Bi, j ∩ 2Bk,l 6= ∅. Note that

by Lemma 3.3, there are at most M such balls Bi, j and that ri ≤ 2rk for such i. Hence,

d(π(xi, j), π(xk,l)) ≤ d(π(xi, j), xi, j) + d(xi, j , xk,l) + d(xk,l, π(xk,l))

≤ 34(ri + rk) ≤ 102rk

and it follows that

| f (π(xi, j )) − f (π(xk,l))| ≤ C‖ f ‖κ,∂Ωd(π(xi, j), π(xk,l))κ ≤ C‖ f ‖κ,∂Ωrκ
k .

Inserting this into (5.1), together with the estimate |ϕi, j(x)−ϕi, j(y)| ≤ Cd(x, y)/rk,

implies

(5.2) |E f (x)−E f (y)| ≤ CM‖ f ‖κ,∂Ωrκ−1
k d(x, y) ≤ C‖ f ‖κ,∂Ω

∫

γ

dist( · , ∂Ω)κ−1 ds,

i.e., the function g(x) = C‖ f ‖κ,∂Ω dist(x, ∂Ω)κ−1 is an upper gradient for E f in Ω.
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Hence, by the Cavalieri principle,

∫

Ω

g p dµ ≤ C‖ f ‖
p
κ,∂Ω

∫

Ω

dist(x, ∂Ω)p(κ−1) dµ(x)

≤ C‖ f ‖
p
κ,∂Ω

∫ 16R

0

t p(κ−1)−1µ({x ∈ Ω : dist(x, ∂Ω) < t}) dt

≤ C‖ f ‖
p
κ,∂Ω

∫ 16R

0

t p(κ−1)−1+β dt

≤ C‖ f ‖
p
κ,∂Ω

,

and thus ‖E f ‖N1,p(Ω) ≤ C‖ f ‖κ,∂Ω.

We now show that E f is κ-Hölder continuous on Ω. Observe that by Lemma 4.1,

|E f (x) − E f (y)| ≤ C‖ f ‖κ,∂Ωd(x, y)κ

for all x ∈ ∂Ω and y ∈ Ω.
Let x ∈ Bk,l. Assume first that y ∈ 2Bk,l. Then by (5.2),

|E f (x) − E f (y)| ≤ C‖ f ‖κ,∂Ωrκ−1
k d(x, y) ≤ C‖ f ‖κ,∂Ωd(x, y)κ.

Assume next that y /∈ 2Bk,l, but y ∈ Bi, j for some i and j. Without loss of
generality we can assume that k ≤ i. Then

d(x, π(x)) ≤ 34rk, d(y, π(y)) ≤ 34ri ≤ 34rk, d(x, y) ≥ rk,

d(π(x), π(y)) ≤ d(x, y) + 68rk.

Hence by Lemma 4.1,

|E f (x) − E f (y)| ≤ |E f (x) − f (π(x))| + | f (π(x)) − f (π(y))| + | f (π(y)) − E f (y)|

≤ C‖ f ‖κ,∂Ω(d(x, y) + rk)κ ≤ C‖ f ‖κ,∂Ωd(x, y)κ.

Remark The assumption that Ω is bounded in Theorem 5.4 is no restriction in gen-
eral. Indeed, if Ω is unbounded with bounded boundary, then we can apply Theo-
rem 5.4 to the open set Ω∩B for some large ball B (letting f = 0 on ∂B). Multiplying
the obtained extension by a Lipschitz continuous cut-off function η with compact

support in B and η = 1 in a neighbourhood of ∂Ω produces the desired extension.

Corollary 5.5 Assume that X is complete and supports a weak (1, p)-Poincaré in-
equality. Let Ω ⊂ X be a nonempty bounded open set such that C p(X\Ω) > 0. Suppose

that Ω satisfies a β-shell condition for some β > 0, and let max{0, 1 − β/p} < κ ≤ 1.
If f is a κ-Hölder continuous function on ∂Ω, then P f ∈ N1,p(Ω), where P f is the
Perron solution of the Dirichlet problem for p-harmonic functions in Ω with boundary
data f .
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Proof Note that by [19], X supports a weak (1, q)-Poincaré inequality for some q ∈
[1, p). Let E f be the κ-Hölder continuous extension of f to Ω, as in Theorem 5.4, and

let u be the p-harmonic extension of E f to Ω, i.e., u is p-harmonic in Ω and u−E f ∈

N
1,p
0 (Ω); see [23, Theorem 3.2], for the existence and uniqueness of the p-harmonic

extension in this case. Then [1, Theorem 5.1] shows that limΩ∋y→x u(y) = f (x) for
all regular boundary points x ∈ ∂Ω. By the Kellogg property [2, Theorem 3.9], the

set of irregular boundary points has p-capacity zero. Now [3, Corollary 6.2] implies
that u = P f .
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Sobolev Extensions of Hölder Continuous and Characteristic Functions on Metric Spaces 1153

[24] P. Koskela and P. MacManus, Quasiconformal mappings and Sobolev spaces. Studia Math.
131(1998), no. 1, 1–17.
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