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A DENSITY PROBLEM FOR HARDY SPACES
OF ALMOST PERIODIC FUNCTIONS

ROBYN OWENS

We construct a counterexample, for p = 1 , to the conjecture

posed by Milaszevitch in 1970: is the space of functions which

are analytic in the upper half plane and uniformly almost

periodic in its closure dense in the Hardy space fF (0 < p < °°)

of analytic almost periodic functions?

1. Introduction

Let A denote the space of functions that are analytic in the open

upper half plane and uniformly almost periodic in its closure. In this

paper we construct an analytic function / which is uniformly almost

periodic on any horizontal line in the open half plane in such a way that •

/ is a member of the Hardy space H of almost periodic functions and yet

/ does not belong to the closure of A in H . This provides a

counterexample to the conjecture, which we shall refer to as the density

problem, posed by Mi laszevich [4] in 1970: is A dense in IF ,

0 < p < °° (in analogy with the classical case where the space of bounded

analytic functions on the unit disc D is dense in !r(D) )?
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316 Robyn Owens

The class of Hardy spaces W of almost periodic functions combines

many of the properties of the classical Hardy spaces of the upper half

plane and the unit disc. W consists of functions that are analytic in

the upper half plane, uniformly almost periodic on any horizontal line, and

yet constrained by a bounded measure on the boundary IR of the upper half

plane. This measure arises naturally [Z] in the theory of abstract

harmonic analysis, where the unit circle is replaced by any locally compact

abelian group G and the set of indices over which one forms a "trigono-

metric series" is taken to be the dual group of G . In our case, the

group R of real numbers endowed with the discrete topology is considered;

i t s dual group can then be identified as fclR , the Bohr compactification of

IR . The natural measure which arises by considering the space of

generalized analytic functions on i>IR [2] turns out to define precisely

the condition that the space be an amalgam of L and Z of IR [3].

2. Notation and preliminary results

We denote by P the open upper half plane and by P i ts closure.

The unit disc is denoted D and its boundary is 8Z? = T , the unit circle

in the complex plane C . Unless otherwise indicated, L spaces on sub-

sets of the complex plane are taken with respect to Lebesgue measure on the

appropriate subset.

Suppose 0 < a < b 5 °° and define

s t r i p ( a , b) = {x+iy € C : a < y < b} .

If / is an harmonic function defined on P was say / is uniformly

almost periodic in the strip (a, b) if for any £ > 0 there is a T > 0

such that any real interval of length T contains T satisfying

|f(s+x)-/(z) | < e , z € strip(a, b) .

The above definitions can be extended in the obvious way to half open and

closed strips in P .

Given a function f on C we define the translated and reflected

function f by

fv(x+iy) = f(v-xHy) , v € R .
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Let 0 < p < °° and consider the collection of all analytic functions

f on P which satisfy the following two conditions:

(2.1) for any £ > 0 , / is uniformly almost periodic in the strip

[e, -) ;

(2.2) ||/||P = sup sup J f \f(x+iy)\P dx

l+(v-x)2

We define the Hardy space IF as the space of all analytic functions on P

satisfying (2.1) and (2.2).

When p i l the quantity | | / | | defines a norm under which the class

of functions if is a Banach space and i t is shown in [2] that these

spaces display many of the characteristics of the classical Hardy spaces on

the disc and the upper half plane. In particular, if / € IF and

1 < p < 00 then the boundary function

f(x) = lim f{x+iy)
y-K)

exists almost everywhere and f(x+iy) can be reproduced as the Poisson

integral of f(x) . The boundary function / satisfies

(2.3) sup f |/(x)|P **—-<«>,
-I-co 1+(V-X)

a fact which can also be seen directly using Fatou's Lemma. In terms of

the translated and reflected function f we have

\f{x) 1̂  p = sup \fJx) I K •
c... -*> l+(v-x) v& }-°° l+x

Let P y'(t) = y/-n(y +t } , y, t € R , denote the Poisson kernel and

let Xr denote the characteristic function of a set I c R . I t is shown

in [/] that there exist constants C and C_ such that

sup f+1 \f(x)\Pdx < sup f l/(x)|P
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rv+X
C2 sup j \f(x)\Pdx ,

so that by replacing P (v-t) with the box kernel Xr i 1 ' t n e

condition (2.3) becomes equivalent to the condition

rv+X

(2.U) sup [ \f(x)\Pdx < °° .
u3R J u

Condition (2.k) is usually expressed [3] by saying that f belongs to

the amalgam space (iF, l) , with the quantity on the left hand side of

(2.H) denoted by ||/||PP,

When u(x+iy) is an harmonic function in P satisfying the condition

(2.2) and p > 1 , the conjugate function u can be computed explicitly by

defining the Hilbert transform on its boundary function u(x) . To do this

we use the conformal mapping 4» between the unit disc D and the upper

half plane given by

s-1

*<•> = -* Si z 6 D , z + -X

Via this mapping we can define the Hilbert transform Hu of each of

the functions M (a:) = u(v-x) , since each u belonging to

L (lR; dxl (l+x )) is mapped onto a function u ° ij) belonging to L"(T)

and the usual Hilbert transform H is well-defined on this space.

Explicitly, Hu is defined as H[u o ^] o ij) . Under the conformal

mapping ij> however, the translations of u are not preserved; that i s ,

in general Hu ± {Hu) . But since (the Poisson integrals of) Hu and

(Hu) both represent the imaginary part of the same analytic function

their difference can only be a constant; we write Hu - (Hu) = e(u, v) .

Now if u(x) is a continuous bounded function on IR then u(x) is

defined by the Hilbert transform and, up to an additive constant, is the

boundary function of the conjugate of the harmonic extension of u . I t is

known [7] that u '—• u is a continuous function from L into BMO, the
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space of functions of bounded mean oscillation.

PROPOSITION 1. If u is a continuous periodic function on R then

u is also periodic.

Proof. Without loss of generality we suppose u to be 2ir-periodic.
Then u can be identified with a continuous function g defined on T
and g has a Fourier series expansion

00

<7(0) ~ £ o e 1 * 9 , 0 5 6 < 2TT .

The conjugate function g is the unique harmonic function satisfying

g + ig analytic in D and g(0) = 0 . It is well known that g has a

Fourier series

-i £ Sgn na e
%n

n

in the sense that the conjugate Poisson integral of g has an expression

of the form

~r i%\ . v I"Ig[re \ = -T, )_ sgn na r1 'e
n

and this tends to a limit almost everywhere on T as r + 1 .

Now le t us define the function u = g o § on P where
<J>(z) = exp(iz) . Since <(> is analytic, u is harmonic and periodic on
P . In the limit

u(t) = -i Y, sSa na e , t € R ,
n

defines almost everywhere a periodic function on R and gives a conjugate
function for u since

( u + i u ) ( z ) = 2 L a s
riZO

is analytic in P . This completes the proof.

We denote by Tit) the cone

Tit) = {3 = x+iy € P : \x-t\ < y) , t € R .

If u is an harmonic function on P we define the non-tangential maximal
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function u* of u by

u*(t) - sup \u(z) | , t € IR .
()

The following proposition is proved in [5] and although the result is

important for the construction of the counterexample in §3, the techniques

of i ts proof are not and so the proof is omitted.

PROPOSITION 2. Suppose u is harmonic in P and u* € (L1 , 1°) .

If x •* u(xHy) € L° for some y > 0 , then u € [L , 1°) .

Note that in this case we have u + iu € IT , for u* dominates u

and the norm condition for membership of [L , l) is precisely that of

belonging to H .

A partial answer to the density problem was given by Milaszevitch [4,

p. U25] in 1970 and may be stated as follows.

PROPOSITION 3. Let f € if , 0 < p < °° . If f belongs to the

closure of An in IF then the function t •* f. is continuous as a

function from R into iP .

Recall that / denotes the function / translated and reflected in

i ts real variable by t € R .

We now proceed to construct a function f € U that does not satisfy

the above continuity condition.

3. The construction

The idea behind our counterexample is as follows:- we shall construct

a real-valued bounded function u € [L , i ) such that the function

t -*• u. is not continuous from R into [L , Z°°) . The function u is to

be such that i t s harmonic extension is uniformly almost periodic on any

line i, = {Im z = y} , y > 0 , and also that the harmonic extension of

i t s conjugate u is uniformly almost periodic on any such line. The

/•I "Smaximal function u* will belong to \L , I) and since u is bounded on
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any line L , y > 0 (being uniformly almost periodic there), this

implies u (• [L , l) , by Proposition 2. Thus / = u + iu € H . But as

t -*• f. is not continuous as a function from IR into « we will have by

Proposition 3 that f does not belong to the closure of 4. in n .

To begin, take a periodic progression

n™ =kTx , k «2Z ,

where T S 10 i s a large integer to be determined l a t e r . Let p be a

C°° function with ||p'IL < ™ and such that p = l on [k, \] , P = 0

outside [0, l ] , and p is monotonic on each of the in te rva ls [0, %]

and [i, l] . Define p per iodica l ly by p (x) = p(x) , for x € [p, T]

and p (x+r ) = p (x) , for x € R . The function u i s then determined

by the formula

where N is a large integer to be determined later. Note that u.. is

periodic with period T and so its harmonic extension is also periodic.

Proceeding in this fashion, suppose we have defined

u-, > wo» •• • > u • To define u we begin by defining the arithmetic
-L ^ m-1 m

progression

where a € 2Z s a t i s f i e s
m

m i<m j=\ [_ _[

and T > 103" n i s a large integer to be determined l a t e r .
m rn-1

Note that the condition T, > 10.T, for each fe ensures that i t is

possible to choose each a , that i s ,
m
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n u 10 ' 10 * 0 •

Define p p e r i o d i c a l l y by p (x) = p [x-a ) for x € [a , a +T ] and
m m y m> L m m m'

p [x+T ) = p (x) for any x € IR . Then u i s defined by the formula
m nr m m

um(t) = Pm(t)sin(2TT^t) , t € IR ,

where N > N is a large integer to be determined later.
m m-1

a>
Now each u is a periodic function on R , u € L , and none of

m m

t h e u ' s over lap ; t h a t i s , on any i n t e r v a l [u, v+l] , V € TL , at most

one u i s non-zero,m

We put

(3.1) "(*) = I « * € R •
m=l

The Poisson integral extends u naturally to al l of P .

LEMMA 1. The sequences [T ) . and {N ) . can be chosen so that
mJm>l m'rritl

u is uniformly almost periodic on any line L , y > 0 .

Proof. Fix some line L , w_ > 0 . Since each u is periodic on
J/Q 0 m

th i s line i t is enough to show that the series defining u in (3-1)

converges uniformly on L

We have

fro)

Since the Poisson kernel consists of two monotonic pieces, we can apply

Bonnet's form of the Second Mean Value Theorem to each piece. Thus

(3-2)
•x+1

u (t)P u (x-t)dt
m m

where we have estimated the integral
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rx+1

Jx
um(t)dt

rx+l
p (t)sin{2TtN t)dt
m m T\N

m

in the same fashion.

We now note that

r »
m

(t)P u (x-t)dt

*=i yr

s i n c e \u (t)\ 5 1 , and t h a t

i O I O O dx

m SO m
yo

m SO

P _P T7 ' P

4 < m >Tm,u 1+W

m m

Similar estimates can be given for the intervals (x-1, x) and

(-00, x-l) so that we obtain

f
' —a

(x-t)dt 2 _,_ °0

m m

We now select the N 's and the T 's to satisfy both the conditions
m m

of the construction and the inequality

2 . 2h
(3.3) 1

m = l m

This sum is independent of x (. R but will depend on the line L

chosen. With [T ] , and [fl ) thus chosen, u is the uniform sum

of periodic functions on the line L , j/ > 0 , and hence u is almost
1/ /-* U
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periodic on any line in the upper half plane.

Since the sequence [N ) r t > , is increasing, we also have

LEMMA 2. The function t -*• u. is not continuous from IR into

l~) .

LEMMA 3 . u* € ( L 1 , O .
GO

Proof. This is trivial since u € L .

LEMMA 4. The sequences [T \ „ and [N \ _, can be chosen so that
v m'rrsi mJmz.±

u is uniformly almost periodic on any line L , y > 0 .

Proof. Note first of all that

OO

u(t) = Y u it) , t € R ,
m

since the conjugation operator is continuous from L into BMO and the

series (3.1) defining u converges absolutely. Fix some line L ,
yo

y > 0 ; since each u is periodic on this line (Proposition l) it is

enough to show that
CO

converges uniformly in x € IR •

We begin by studying the boundedness of

u (t) = fp (-fc)sin(2TTff t )]-" , t ( R .

Since each u i s per iodic on |R we can consider i t as a function on T
m

by w r i t i n g g it) = u [T t/2n) , 0 < t < 2TT . Then we have [ 6 , p . 5 5 ] ,
m mK m J
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T N x)\ -f
m m J\ y

•xT •
m

2TT
Isinfr N x)
1 v m m '

„ f
KT

m
2TT IIP1

tan(( t-x)/2)
s i n ( r iV t

r N
m m

To obtain t h i s estimate we have used the Mean Value Theorem applied

separately to each of the monotonic pieces of the kernel

p [tT /2TT)-P (XT /2ir)

tan((t;-a;)/2)

and the fact tha t t h i s kernel i s bounded by T \\p'\\m/2 . The constant K

i s an upper bound for the number of monotonic pieces of the kernel and i s

independent of m .

Transferring back t o R we have

um(t) = Pm(t)cos(2TTiy:) + hjt) , t € R ,

where

and hence

(3.»*)

| y * ) | < K\\pl\\j2Nm , t € R ,

|5 m (*) | 5 , t € R .

From this we see that if I is any interval of unit length in R we have

I'p (*)cosf2TriV t)+h (t)]dt
m mm

m

f u

2N

where again we have used the Mean Value Theorem applied separately to the

(at most) two monotonic pieces of p (t) over the in te rva l I .
m

We now wri te
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Um{t)P

and argue as in Lemma 1. We have

uJt)P u (x-t)dt 2N

and by (3-1*),

r
Jx+1

u {t)P (x-t)dt 1 +
2N

m m m'

Similar estimates hold over the intervals (x-1, a;) and (-°°, x-l) so

that finally

f
J —a

um(t)P u (x-t)dt

KIIP'IL
2N,

m
+ ^ 1

IT

K\\P'\

2N
0 m m

We now select the N 's and T 's to satisfy all previous conditions
m m

as well as

K p'

T\N

K p'
1 +

This sum is independent of x € IR but will depend on the line L
y0

chosen. With [T \ _., and [N } _, thus chosen, u is the uniform sum

of periodic functions on the line L , and hence is uniformly almost

periodic on any line in the upper half plane. This completes the proof.

In conclusion, the function / = u + iu belongs to a but does not

belong to the closure of A in
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