A DENSITY PROBLEM FOR HARDY SPACES OF ALMOST PERIODIC FUNCTIONS

Robyn Owens

Abstract

We construct a counterexample, for $p=1$, to the conjecture posed by Milaszevitch in 1970: is the space of functions which are analytic in the upper half plane and uniformly almost periodic in its closure dense in the Hardy space $H^{p} \quad(0<p<\infty)$ of analytic almost periodic functions?

1. Introduction

Let A_{0} denote the space of functions that are analytic in the open upper half plane and uniformly almost periodic in its closure. In this paper we construct an analytic function f which is uniformly almost periodic on any horizontal line in the open half plane in such a way that. f is a member of the Hardy space H^{l} of almost periodic functions and yet f does not belong to the closure of A_{0} in H^{1}. This provides a counterexample to the conjecture, which we shall refer to as the density problem, posed by Milaszevich [4] in 1970: is A_{0} dense in H^{p}, $0<p<\infty$ (in analogy with the classical case where the space of bounded analytic functions on the unit disc D is dense in $H^{p}(D)$)?

Received 29 November 1984. The author would like to thank N.Th. Varopoulos and Walter Bloom for their kind help and encouragement.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 $\$ \mathrm{~A} 2.00+0.00$.

The class of Hardy spaces H^{p} of almost periodic functions combines many of the properties of the classical Hardy spaces of the upper half plane and the unit disc. H^{p} consists of functions that are analytic in the upper half plane, uniformly almost periodic on any horizontal line, and yet constrained by a bounded measure on the boundary \mathbb{R} of the upper half plane. This measure arises naturally [2] in the theory of abstract harmonic analysis, where the unit circle is replaced by any locally compact abelian group G and the set of indices over which one forms a "trigonometric series" is taken to be the dual group of G. In our case, the group R of real numbers endowed with the discrete topology is considered; its dual group can then be identified as $b \mathbb{R}$., the Bohr compactification of \mathbb{R}. The natural measure which arises by considering the space of generalized analytic functions on $b \mathbb{R}$ [2] turns out to define precisely the condition that the space be an amalgam of L^{p} and τ^{q} of \mathbb{R} [3].

2. Notation and preliminary results

We denote by P the open upper half plane and by \bar{P} its closure. The unit disc is denoted D and its boundary is $\partial D=\mathbb{T}$, the unit circle in the complex plane \mathbb{C}. Unless otherwise indicated, L^{p} spaces on subsets of the complex plane are taken with respect to Lebesgue measure on the appropriate subset.

$$
\begin{aligned}
\text { Suppose } 0 \leq & a<b \leq \infty \text { and define } \\
& \operatorname{strip}(a, b)=\{x+i y \in \mathbf{C}: a<y<b\} .
\end{aligned}
$$

If f is an harmonic function defined on P was say f is uniformly almost periodic in the strip (a, b) if for any $\varepsilon>0$ there is a $T>0$ such that any real interval of length T contains τ satisfying

$$
|f(z+\tau)-f(z)|<\varepsilon, z \in \operatorname{strip}(a, b)
$$

The above definitions can be extended in the obvious way to half open and closed strips in P.

Given a function f on \mathbb{C} we define the translated and reflected function f_{v} by

$$
f_{v}(x+i y)=f(v-x+i y), \quad v \in \mathbb{R} .
$$

Let $0<p<\infty$ and consider the collection of all analytic functions f on P which satisfy the following two conditions:
(2.1) for any $\varepsilon>0, f$ is uniformly almost periodic in the strip $[\varepsilon, \infty)$;
(2.2) $\|f\|_{p}^{p}=\sup _{y>0} \sup _{v \in \mathbb{R}} \frac{1}{\pi} \int_{-\infty}^{\infty}|f(x+i y)|^{p} \frac{d x}{1+(v-x)^{2}}<\infty$.

We define the Hardy space $H^{\ddot{P}}$ as the space of all analytic functions on P satisfying (2.1) and (2.2).

When $p \geq 1$ the quantity $\|f\|_{p}$ defines a norm under which the class of functions H^{p} is a Banach space and it is shown in [2] that these spaces display many of the characteristics of the classical Hardy spaces on the disc and the upper half plane. In particular, if $f \in H^{p}$ and $1 \leq p<\infty$ then the boundary function

$$
f(x)=\lim _{y \rightarrow 0} f(x+i y)
$$

exists almost everywhere and $f(x+i y)$ can be reproduced as the Poisson integral of $f(x)$. The boundary function f satisfies

$$
\begin{equation*}
\sup _{v \in \mathbb{R}} \int_{-\infty}^{\infty}|f(x)|^{p} \frac{d x}{1+(v-x)^{2}}<\infty \tag{2.3}
\end{equation*}
$$

a fact which can also be seen directly using Fatou's Lemma. In terms of the translated and reflected function f_{v} we have

$$
\sup _{v \in \mathbb{R}} \int_{-\infty}^{\infty}|f(x)|^{p} \frac{d x}{1+(v-x)^{2}}=\sup _{v \in R} \int_{-\infty}^{\infty}\left|f_{v}(x)\right|^{p} \frac{d x}{1+x^{2}}
$$

Let $P^{(y)}(t)=y / \pi\left(y^{2}+t^{2}\right), y, t \in \mathbf{R}$, denote the Poisson kernel and let X_{I} denote the characteristic function of a set $I \subseteq \mathbb{R}$. It is shown in [1] that there exist constants C_{1} and C_{2} such that

$$
C_{1} \sup _{v \in R} \int_{v}^{v+1}|f(x)|^{p} d x \leq \sup _{v \in R} \int_{-\infty}^{\infty}|f(x)|^{p} \frac{d x}{1+(v-x)^{2}}
$$

$$
\leqslant c_{2} \sup _{v \in \mathbb{R}} \int_{v}^{v+1}|f(x)|^{p} d x
$$

so that by replacing $p^{(1)}(v-t)$ with the box kernel $X_{[v, v+1]}$, the condition (2.3) becomes equivalent to the condition

$$
\begin{equation*}
\sup _{v \in R} \int_{v}^{v+1}|f(x)|^{p} d x<\infty . \tag{2.4}
\end{equation*}
$$

Condition (2.4) is usually expressed [3] by saying that f belongs to the amalgam space $\left(L^{p}, Z^{\infty}\right)$, with the quantity on the left hand side of (2.4) denoted by $\|f\|_{p, \infty}^{p}$.

When $u(x+i y)$ is an harmonic function in P satisfying the condition (2.2) and $p \geq 1$, the conjugate function \tilde{u} can be computed explicitly by defining the Hilbert transform on its boundary function $u(x)$. To do this we use the conformal mapping ψ between the unit disc D and the upper half plane given by

$$
\psi(z)=-i\left[\frac{z-1}{z+1}\right], \quad z \in \bar{D}, \quad z \neq-1 .
$$

Via this mapping we can define the Hilbert transform $H u_{v}$ of each of the functions $u_{v}(x)=u(v-x)$, since each u_{v} belonging to $L^{p}\left(\mathbb{R} ; d x /\left(1+x^{2}\right)\right)$ is mapped onto a function $u_{v} \circ \psi$ belonging to $L^{p}(\mathbf{T})$ and the usual Hilbert transform H is well-defined on this space. Explicitly, $H u_{v}$ is defined as $H\left(u_{v} \circ \psi\right) \circ \psi^{-1}$. Under the conformal mapping ψ however, the translations of u are not preserved; that is, in general $H u_{v} \neq(H u)_{v}$. But since (the Poisson integrals of) $H u_{v}$ and $(H u)_{v}$ both represent the imaginary part of the same analytic function their difference can only be a constant; we write $H u_{v}-(H u)_{v}=c(u, v)$.

Now if $u(x)$ is a continuous bounded function on \mathbb{R} then $\tilde{u}(x)$ is defined by the Hilbert transform and, up to an additive constant, is the boundary function of the conjugate of the harmonic extension of u. It is known [1] that $u \mapsto \tilde{u}$ is a continuous function from L^{∞} into BMO, the
space of functions of bounded mean oscillation.
PROPOSITION 1. If u is a continuous periodic function on R then \tilde{u} is also periodic.

Proof. Without loss of generality we suppose u to be 2π-periodic. Then u can be identified with a continuous function g defined on \mathbb{T} and g has a Fourier series expansion

$$
g(\theta) \sim \sum_{n=-\infty}^{\infty} a_{n} e^{i n \theta}, \quad 0 \leq \theta<2 \pi .
$$

The conjugate function \tilde{g} is the unique harmonic function satisfying $g+i \tilde{g}$ analytic in D and $\tilde{g}(0)=0$. It is well known that \tilde{g} has a Fourier series

$$
-i \sum_{n \neq 0} \operatorname{sgn} n a_{n} e^{i n \theta}
$$

in the sense that the conjugate Poisson integral of g has an expression of the form

$$
\tilde{g}\left(\mathrm{re}{ }^{i \theta}\right)=-i \sum_{n \neq 0} \operatorname{sgn} n a_{n}{ }^{r}|n| e^{i n \theta}
$$

and this tends to a limit almost everywhere on π as $r \uparrow 1$.
Now let us define the function $\tilde{u}=\tilde{g} \circ \phi$ on P where $\phi(z)=\exp (i z)$. Since ϕ is analytic, \tilde{u} is harmonic and periodic on P. In the limit

$$
\tilde{u}(t)=-i \sum_{n \neq 0} \operatorname{sgn} n a_{n} e^{i n t}, t \in \mathbb{R}
$$

defines almost everywhere a periodic function on \mathbf{R} and gives a conjugate function for u since

$$
(u+i \tilde{u})(z)=2 \sum_{n \geq 0} a_{n} e^{i n z}
$$

is analytic in P. This completes the proof. We denote by $\Gamma(t)$ the cone

$$
\Gamma(t)=\{z=x+i y \in P:|x-t|<y\}, \quad t \in \mathbf{R} .
$$

If u is an harmonic function on P we define the non-tangential maximal
function u^{*} of u by

$$
u^{*}(t)=\sup _{z \in \Gamma(t)}|u(z)|, \quad t \in \mathbb{R} .
$$

The following proposition is proved in [5] and although the result is important for the construction of the counterexample in $\S 3$, the techniques of its proof are not and so the proof is omitted.

PROPOSITION 2. Suppose u is harmonic in P and $u^{*} \in\left(L^{1}, l^{\infty}\right)$. If $x \rightarrow \tilde{u}(x+i y) \in L^{\infty}$ for some $y>0$, then $\tilde{u} \in\left(L^{1}, z^{\infty}\right)$.

Note that in this case we have $u+i \tilde{u} \in H^{\perp}$, for u^{*} dominates u and the norm condition for membership of $\left(L^{1}, z^{\infty}\right)$ is precisely that of belonging to $H^{\text {l }}$.

A partial answer to the density problem was given by Milaszevitch [4, p. 425] in 1970 and may be stated as follows.

PROPOSITION 3. Let $f \in H^{p}, 0<p<\infty$. If f belongs to the closure of A_{0} in H^{p}.then the function $t \rightarrow f_{t}$ is continuous as a function from \mathbb{R} into H^{p}.

Recall that f_{t} denotes the function f translated and reflected in its real variable by $t \in \mathbb{R}$.

We now proceed to construct a function $f \in H^{1}$ that does not satisfy the above continuity condition.

3. The construction

The idea behind our counterexample is as follows:- we shall construct a real-valued bounded function $u \in\left(L^{l}, \tau^{\infty}\right)$ such that the function $t \rightarrow u_{t}$ is not continuous from R into $\left(L^{l}, l^{\infty}\right)$. The function u is to be such that its harmonic extension is uniformly almost periodic on any line $L_{y}=\{\operatorname{Im} z=y\}, y>0$, and also that the harmonic extension of its conjugate \tilde{u} is uniformly almost periodic on any such line. The maximal function u^{*} will belong to $\left(L^{l}, \tau^{\infty}\right)$ and since \tilde{u} is bounded on
any line $L_{y}, y>0$ (being uniformly almost periodic there), this implies $u \in\left(L^{l}, \tau^{\infty}\right)$, by Proposition 2. Thus $f=u+i \tilde{u} \in H^{l}$. But as $t \rightarrow f_{t}$ is not continuous as a function from \mathbb{R} into H^{1} we will have by Proposition 3 that f does not belong to the closure of A_{0} in H^{1}.

To begin, take a periodic progression

$$
n_{k}^{(1)}=k T_{1}, \quad k \in \mathbb{Z},
$$

where $T_{1} \geq 10$ is a large integer to be determined later. Let ρ be a C^{∞} function with $\left\|\rho^{\prime}\right\|_{\infty}<\infty$ and such that $\rho \equiv 1$ on $\left[\frac{1}{4}, \frac{3}{4}\right], \rho \equiv 0$ outside $[0,1]$, and ρ is monotonic on each of the intervals $\left[0, \frac{1}{4}\right]$ and $\left[\frac{3}{4}, 1\right]$. Define ρ_{1} periodically by $\rho_{1}(x)=\rho(x)$, for $x \in\left[0, T_{1}\right]$ and $\rho_{1}\left(x+T_{1}\right)=\rho_{1}(x)$, for $x \in \mathbb{R}$. The function u_{1} is then determined by the formula

$$
u_{1}(t)=\rho_{1}(t) \sin \left(2 \pi N_{1} t\right), \quad t \in \mathbf{R}
$$

where N_{1} is a large integer to be determined later. Note that u_{1} is periodic with period T_{1} and so its harmonic extension is also periodic.

Proceeding in this fashion, suppose we have defined $u_{1}, u_{2}, \ldots, u_{m-1}$. To define u_{m} we begin by defining the arithmetic progression

$$
n_{k}^{(m)}=a_{m}+k T_{m}, \quad k \in \mathbb{Z}
$$

where $a_{m} \in \mathbb{Z}$ satisfies

$$
a_{m} \in \cap_{i<m} \bigcup_{j=1}^{\infty}\left[\frac{4 j T_{i}}{10}, \frac{6 j T_{i}}{10}\right]
$$

and $T_{m} \geq 10 T_{m-1}$ is a large integer to be determined later.
Note that the condition $T_{k} \geq 10 . T_{k-1}$ for each k ensures that it is possible to choose each a_{m}, that is,

$$
\cap_{i<m} \bigcup_{j=1}^{\infty}\left[\frac{4 j T}{10}, \frac{6 j T}{10}\right] \neq \varnothing
$$

Define ρ_{m} periodically by $\rho_{m}(x)=\rho\left(x-a_{m}\right)$ for $x \in\left[a_{m}, a_{m}+T_{m}\right]$ and $\rho_{m}\left(x+T_{m}\right)=\rho_{m}(x)$ for any $x \in \mathbb{R}$. Then u_{m} is defined by the formula

$$
u_{m}(t)=\rho_{m}(t) \sin \left(2 \pi N_{m} t\right), \quad t \in \mathbb{R},
$$

where $N_{m}>N_{m-1}$ is a large integer to be determined later.
Now each u_{m} is a periodic function on $\mathbb{R}, u_{m} \in L^{\infty}$, and none of the u_{m}^{\prime} s overlap; that is, on any interval $[v, v+1], v \in \mathbb{Z}$, at most one u_{m} is non-zero.

We put

$$
\begin{equation*}
u(t)=\sum_{m=1}^{\infty} u_{m}(t), \quad t \in \mathbb{R} \tag{3.1}
\end{equation*}
$$

The Poisson integral extends u naturally to all of P.
LEMMA 1. The sequences $\left(T_{m}\right)_{m \geq 1}$ and $\left(N_{m}\right)_{m \geq 1}$ can be chosen so that u is uniformly almost periodic on any line $L_{y}, y>0$.

Proof. Fix some line $L_{y_{0}}, y_{0}>0$. Since each u_{m} is periodic on this line it is enough to show that the series defining u in (3.1) converges uniformly on $L_{y_{0}}$.

We have

$$
u_{m}\left(x+i y_{0}\right)=\int_{-\infty}^{\infty} u_{m}(t) P^{\left(y_{0}\right)}(x-t) d t
$$

Since the Poisson kernel consists of two monotonic pieces, we can apply Bonnet's form of the Second Mean Value Theorem to each piece. Thus

$$
\begin{equation*}
\left|\int_{x}^{x+1} u_{m}(t) P^{\left(y_{0}\right)}(x-t) d t\right| \leq \frac{1}{\pi y_{0}} \cdot \frac{1}{\pi N_{m}}, \tag{3.2}
\end{equation*}
$$

where we have estimated the integral

$$
\begin{gathered}
\text { A density problem } \\
\left|\int_{x}^{x+1} u_{m}(t) d t\right|=\left|\int_{x}^{x+1} \rho_{m}(t) \sin \left(2 \pi N_{m} t\right) d t\right| \leq \frac{1}{\pi N_{m}}
\end{gathered}
$$

in the same fashion.
We now note that

$$
\left|\int_{x+1}^{\infty} u_{m}(t) P^{\left(y_{0}\right)}(x-t) d t\right| \leq \frac{1}{\pi} \sum_{N=1}^{\infty} \frac{y_{0}}{y_{0}^{2}+T_{m}^{2} N^{2}}
$$

since $\left|u_{m}(t)\right| \leq 1$, and that

$$
\begin{aligned}
\sum_{N=1}^{\infty} \frac{y_{0}}{y_{0}^{2}+T_{m}^{2} N^{2}} & \leq \frac{y_{0}}{y_{0}^{2}+T_{m}^{2}}+\int_{1}^{\infty} \frac{y_{0}}{y_{0}^{2}+T_{m}^{2} x^{2}} d x \\
& =\frac{y_{0}}{y_{0}^{2}+T_{m}^{2}}+\frac{y_{0}}{T_{m}} \int_{T_{m}}^{\infty} \frac{d s}{y_{0}^{2}+s^{2}} \\
& =\frac{y_{0}}{y_{0}^{2}+T_{m}^{2}}+\frac{1}{T_{m}} \int_{T_{m / y_{0}}}^{\infty} \frac{d \omega}{1+w^{2}} \\
& \leq \frac{y_{0}}{y_{0}^{2}+T_{m}^{2}}+\frac{y_{0}}{T_{m}^{2}}
\end{aligned}
$$

Similar estimates can be given for the intervals $(x-1, x)$ and $(-\infty, x-1)$ so that we obtain

$$
\left|\int_{-\infty}^{\infty} u_{m}(t) P{ }^{\left(y_{0}\right)}(x-t) d t\right| \leq \frac{2}{\pi^{2} y_{0} N_{m}}+\frac{2 y_{0}}{\pi}\left(\frac{1}{y_{0}^{2}+T_{m}^{2}}+\frac{1}{T_{m}^{2}}\right)
$$

We now select the $N_{m}{ }^{\prime} s$ and the $T_{m}{ }^{\prime}$ s to satisfy both the conditions of the construction and the inequality

$$
\begin{equation*}
\sum_{m=1}^{\infty}\left[\frac{2}{\pi^{2} y_{0} N_{m}}+\frac{2 y_{0}}{\pi}\left(\frac{1}{y_{0}^{2}+T_{m}^{2}}+\frac{1}{T_{m}^{2}}\right)\right]<\infty . \tag{3.3}
\end{equation*}
$$

This sum is independent of $x \in \mathbf{R}$ but will depend on the line $L_{y_{0}}$ chosen. With $\left(T_{m}\right)_{m \geq 1}$ and $\left(N_{m}\right)_{m \geq 1}$ thus chosen, u is the uniform sum of periodic functions on the line $L_{y_{0}}, y_{0}>0$, and hence u is almost
periodic on any line in the upper half plane.
Since the sequence $\left(N_{m}\right)_{m \geq 1}$ is increasing, we also have
LEMMA 2. The function $t \rightarrow u_{t}$ is not continuous from \mathbb{R} into $\left(L^{1}, 2^{\infty}\right)$.

LEMMA 3. $u^{*} \in\left(L^{l}, \tau^{\infty}\right)$.
Proof. This is trivial since $u \in L^{\infty}$.
LEMMA 4. The sequences $\left(T_{m}\right)_{m \geq 1}$ and $\left(N_{m}\right)_{m \geq 1}$ can be chosen so that \tilde{u} is wniformly almost periodic on any line $L_{y}, y>0$.

Proof. Note first of all that

$$
u(t)=\sum_{m=1}^{\infty} \tilde{u}_{m}(t), \quad t \in \mathbb{R},
$$

since the conjugation operator is continuous from L^{∞} into BMO and the series (3.1) defining u converges absolutely. Fix some line $L_{y_{0}}$, $y_{0}>0$; since each \tilde{u}_{m} is periodic on this line (Proposition l) it is enough to show that

$$
\sum_{m=1}^{\infty} \tilde{u}_{m}\left(x+i y_{0}\right)
$$

converges uniformly in $x \in \mathbb{R}$.
We begin by studying the boundedness of

$$
u_{m}(t)=\left[\rho_{m}(t) \sin \left(2 \pi N_{m} t\right)\right]^{\sim}, \quad t \in \mathbb{R}
$$

Since each u_{m} is periodic on \mathbb{R} we can consider it as a function on T by writing $g_{m}(t)=u_{m}\left(T_{m} t / 2 \pi\right), 0 \leq t<2 \pi$. Then we have [6, p. 55],

$$
\begin{aligned}
& \left.\left.\left|\left[\rho_{m}\left(\frac{x T}{2 \pi}\right) \sin \left(T_{m}^{N} N_{m} x\right)\right]^{\sim}-\rho_{m}\left(\frac{x T}{2 \pi}\right)\right| \sin \left(T_{m} N_{m} x\right)\right|^{\sim} \right\rvert\, \\
&=\left|P \cdot V \cdot \int_{0}^{2 \pi} \frac{\rho_{m}\left(t T_{m} / 2 \pi\right)-\rho_{m}\left(x T_{m} / 2 \pi\right)}{\tan ((t-x) / 2)} \sin \left(T_{m} N_{m} t\right) d t\right| \\
& \leq \frac{K T_{m}}{2 \pi}\left\|\rho^{\prime}\right\|_{\infty} \cdot \frac{1}{T_{m} N_{m}} \\
&=K\left\|\rho^{\prime}\right\|_{\infty} / 2 \lambda_{m} .
\end{aligned}
$$

To obtain this estimate we have used the Mean Value Theorem applied separately to each of the monotonic pieces of the kernel

$$
\frac{\rho_{m}\left(t T_{m} / 2 \pi\right)-\rho_{m}\left(x T_{m} / 2 \pi\right)}{\tan ((t-x) / 2)}
$$

and the fact that this kernel is bounded by $T_{m}\left\|\rho^{\prime}\right\|_{\infty} / 2$. The constant K is an upper bound for the number of monotonic pieces of the kernel and is independent of m.

Transferring back to \mathbb{R} we have

$$
\tilde{u}_{m}(t)=\rho_{m}(t) \cos \left(2 \pi N_{m} t\right)+h_{m}(t), \quad t \in \mathbb{R},
$$

where

$$
\left|h_{m}(t)\right|<K\left\|\rho^{\prime}\right\|_{\infty} / 2 N_{m}, \quad t \in \mathbb{R},
$$

and hence

$$
\begin{equation*}
\left|\tilde{u}_{m}(t)\right| \leq 1+K\left\|\rho^{\prime}\right\|_{\infty} / 2 N_{m}, \quad t \in \mathbb{R} \tag{3.4}
\end{equation*}
$$

From this we see that if I is any interval of unit length in \mathbb{R} we have

$$
\begin{aligned}
\left|\int_{I} \tilde{u}_{m}(t) d t\right| & =\left|\int_{I}\left[\rho_{m}(t) \cos \left(2 \pi N_{m} t\right)+h_{m}(t)\right] d t\right| \\
& \leq \frac{1}{\pi N_{m}}+\frac{K\left\|\rho^{\prime}\right\|_{\infty}}{2 N_{m}},
\end{aligned}
$$

where again we have used the Mean Value Theorem applied separately to the (at most) two monotonic pieces of $\rho_{m}(t)$ over the interval I.

We now write

$$
\tilde{u}_{m}\left(x+i y_{0}\right)=\int_{-\infty}^{\infty} \tilde{u}_{m}(t) P^{\left(y_{0}\right)}(x-t) d t
$$

and argue as in Lemma 1. We have

$$
\left|\int_{x}^{x+1} \tilde{u}_{m}(t) P{ }^{\left(y_{0}\right)}(x-t) d t\right| \leq \frac{1}{\pi y_{0}}\left(\frac{1}{\pi N_{m}}+\frac{K\left\|\rho^{\prime}\right\|_{\infty}}{2 N_{m}}\right)
$$

and by (3.4),

$$
\left|\int_{x+1}^{\infty} \tilde{u}_{m}(t) P^{\left(y_{0}\right)}(x-t) d t\right| \leq\left(1+\frac{K\left\|\rho^{\prime}\right\|_{\infty}}{2 N_{m}}\right) \frac{y_{0}}{\pi}\left(\frac{1}{y_{0}^{2}+T_{m}^{2}}+\frac{1}{T_{m}^{2}}\right) .
$$

Similar estimates hold over the intervals $(x-1, x)$ and $(-\infty, x-1)$ so that finally

$$
\begin{aligned}
&\left|\int_{-\infty}^{\infty} \tilde{u}_{m}(t) P{ }^{\left(y_{0}\right)}(x-t) d t\right| \\
& \leq \frac{2}{\pi y_{0}}\left(\frac{1}{\pi N_{m}}+\frac{K\left\|\rho^{\prime}\right\|_{\infty}}{2 N_{m}}\right)+\frac{2 y_{0}}{\pi}\left(1+\frac{K\left\|\rho^{\prime}\right\|_{\infty}}{2 N_{m}}\right)\left(\frac{1}{y_{0}^{2}+T_{m}^{2}}+\frac{1}{T_{m}^{2}}\right)
\end{aligned}
$$

We now select the N_{m} 's and T_{m} 's to satisfy all previous conditions as well as

$$
\sum_{m=1}^{\infty} \frac{2}{\pi y_{0}}\left(\frac{1}{\pi N_{m}}+\frac{K \rho^{\prime}{ }_{\infty}}{N_{m}}\right)+\frac{2 y_{0}}{\pi}\left(1+\frac{K \rho^{\prime}{ }_{\infty}}{2 N_{m}}\right)\left(\frac{1}{y_{0}^{2}+T_{m}^{2}}+\frac{1}{T_{m}^{2}}\right)<\infty
$$

This sum is independent of $x \in \mathbb{R}$ but will depend on the line $L_{y_{0}}$ chosen. With $\left(T_{m}\right)_{m \geq 1}$ and $\left(N_{m}\right)_{m \geq 1}$ thus chosen, \tilde{u} is the uniform sum of periodic functions on the line $L_{y_{0}}$, and hence is uniformly almost periodic on any line in the upper half plane. This completes the proof.

In conclusion, the function $f=u+i \tilde{u}$ belongs to H^{1} but does not belong to the closure of A_{0} in H^{\top}.

References

[1] J. Garnett, Bounded analytic functions (Academic Press, New York and London, 1980).
[2] K. Hoffman, "Boundary behaviour of generalized analytic functions", Trans. Amer. Math. Soc. 87 (1958), 447-466.
[3] F. Holland, "Harmonic analysis on amalgams of L^{p} and $\tau^{q} ", J$. London Math̆. Soc. (2) 10 (1975), 295-305.
[4] J. Milaszevitch, "Hardy spaces of almost periodic functions", Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1970), 401-428.
[5] R. Owens, "A maximal function characterization of a class of Hardy spaces", submitted.
[6] A. Zygmund, Trigonometrical series, 2nd edition (Cambridge University Press, Cambridge, 1959).

Department of Mathematics, University of Western Australia, Nedlands, Western Australia 6009, Australia.

