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A b s t r a c t . The structure of solar surface magnetic fields, the way they erupt from the the con-
vection zone below, and processes like flux expulsion and fragmentation instabilities support the 
view that magnetic flux in a stellar convection zone is in an intermittent, fragmented state which 
can be described as an ensemble of magnetic flux tubes. Depending on size and field strength, 
the dynamics of magnetic flux tubes can strongly differ from the behavior of a passive, diffuse 
field which is often assumed in conventional mean-field dynamo theory. Observed properties of 
active regions like emergence in low latitudes, Hale's polarity rules, tilt angles, and the process of 
sunspot formation from smaller fragments, together with theoretical considerations of the dynam-
ics of buoyant flux tubes indicate that the magnetic structures which erupt in an emerging active 
region are not paissive to convection and originate in a source region (presumably an overshoot 
layer below the convection zone proper) with a field strength of at least 105 G, far beyond the 
equipartition field strength with respect to convective flows. We discuss the consequences of such 
a situation for dynamo theory of the solar cycle and consider the possibility of dynamo models on 
the basis of flux tubes. A simple, illustrative example of a flux tube dynamo is presented. 
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1. Introduction 

Magnetic flux tubes are ubiquitous in the solar atmosphere. The observed surface 
fields of the Sun form a hierarchy of structures with strong fields ranging from large 
sunspots down to small-scale magnetic elements (e.g. Zwaan 1987, Stenflo 1989). 
The surface flux emerges in active regions from the convection zone below and 
apparently does so in a dynamically active way, not being dominated by convective 
flow patterns. For instance, large sunspots form out of fragments (Mcintosh 1981, 
Garcia de la Rosa 1984) and the initial polarity mix in an emerging active region 
rapidly disentangles to form a bipolar structure. This is in accordance with the 
'rising tree' picture (Zwaan 1978, 1992) of a partially fragmented, rising magnetic 
flux tube. Hale's polarity rules for active regions and sunspot groups are nearly 
strictly obeyed (Howard 1989) and the tilt angles of active regions show a systematic 
dependence on latitude (Hale et al. 1919, Wang & Sheeley 1991) which indicates 
that the emerging flux and the basic system of toroidal magnetic field from which 
it originates are not passively carried and distorted by convective flows and thus 
cannot be treated in the kinematic approximation. Only later, after the initial 
stage of flux emergence, the surface fields come progressively under the influence of 
convective flow patterns (granulation, supergranulation). 

What is the origin of the strong magnetic flux tubes which erupt from the solar 
convection zone ? One possibility is flux expulsion by flows within the convection 
zone itself (Galloway & Weiss 1981). Numerical simulations by Nordlund et al. 
(1992) clearly show flux expulsion and flux tube formation in the case of non-
stationary, three-dimensional convection. However, under the conditions prevailing 
in the solar convection zone the field strength of flux concentrations formed in this 
way does not exceed the limit of energy equipartition with respect to the generating 
convective flows so that they are unlikely to decouple dynamically from these flows. 

27 

F. Krause et al. (eds.), The Cosmic Dynamo, 27-39. 
© 1993 I A U. Printed in the Netherlands. 

https://doi.org/10.1017/S0074180900173826 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900173826


2 8 

Time and length scales as well as orientation of the generated flux concentrat ions 
are then determined by the perpetually changing flow patterns, in contrast to the 
large-scale order indicated by the polarity rules and inclination angles of act ive 
regions. Furthermore, as shown by the results of helioseismology (e.g. Christensen-
Dalsgaard 1992), differential rotation within the convection zone does not dominate 
over convective motions and thus cannot impose a preferred toroidal orientation on 
magnetic flux concentrations formed by flux expulsion. 

On the other hand, if the fields are stronger than equipartition with convective 
flows, the magnetic buoyancy problem (Parker 1975) is further aggravated and, 
together with a number of other arguments (see Schmitt, this volume), casts doubt 
upon a convection zone dynamo as main source for the solar activity cycle. A 
weakly turbulent and stably stratified overshoot region with dominating differential 
rotation, on the other hand, could provide the proper environment for the formation 
of a strong toroidal flux system as source for the active regions at the surface (Spiegel 
k Weiss 1980, Galloway k Weiss 1981, Schüssler 1983). The magnetic Rayleigh-
Taylor instability (e.g. Acheson 1978, Cattaneo & Hughes 1988, Hughes 1992) may 
lead to the formation of flux tubes in a natural way while the undulatory tube 
instability (Spruit L· van Ballegooijen 1982, Moreno-Insertis 1986, Ferriz-Mas & 
Schüssler 1993) causes rapid eruption of flux loops towards the surface. 

2. Flux Tube Dynamics 

The dynamics of concentrated magnetic structures can be described with aid of the 
flux tube concept. In ideal MHD we define a flux tube as a bundle of magnetic field 
lines (constant magnetic flux) which is separated from its non-magnetic environ-
ment by a tangential discontinuity (surface current). As a consequence, the coupling 
between the tube and its environment becomes purely hydrodynamic, mediated by 
pressure forces, so that the flux tube can move relatively to a perfectly conducting 
surrounding plasma. This is different from a diffuse field which has to follow all 
plasma motions because of the flux freezing condition. 

If the diameter of the flux tube is small compared to all other relevant length 
scales (scale heights, wavelengths, radius of curvature, etc) the thin flux tube ap-
proximation can be employed, a quasi-lD description which greatly simplifies the 
mathematical treatment (Spruit 1981, Ferriz-Mas & Schüssler 1993). In what fol-
lows we shall assume that this approximation is valid. For a simple estimate of the 
relative importance of the various forces acting on a thin flux tube let us assume 
a toroidal tube (flux ring encircling the axis of rotation in axial distance R) with 
circular cross section of radius a which is in temperature equilibrium with its en-
vironment. The most important forces (per unit length) perpendicular to the tube 
axis are then: 

B2a2 

Buoyancy force : FB = TT (1) 
oHp 

B2a2 

Curvature force : Fq = — — (2) 
AR 
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Coriolis force : Fq = 2ρνΩπα2 

Drag force : i*b = CoQe^l^ 
(3) 

(4) 

where Β is the field strength, Hp the pressure scale height, ρ the density inside the 
tube, Qe the external density, υ the velocity component of the tube perpendicular 
to the axis of rotation, Ω the angular velocity, ve the external velocity component 
perpendicular to the tube axis, and Cd the drag coefficient (of order unity). The 
relative magnitudes and directions of these forces determine the dynamics of a flux 
tube (for a more detailed discussion see Schüssler 1984, 1987). In the following 
section we shall apply the thin flux tube concept to emerging solar active regions 
and show that quite large field strengths at the bottom of the convection zone are 
implied by the observed properties of active regions. 

A number of dynamical properties of magnetic flux tubes provide evidence that the 
parent toroidal flux system from which solar active regions originate must have a 
field strength which exceeds the equipartition value (of ~ 104 G in the lower part 
of the solar convection zone, cf. Spruit 1977) by at least on order of magnitude. 

3 . 1 . N o DOMINANCE O F C O N V E C T I V E DRAG F O R C E S 

Hale's polarity rules, the tilt angles of active regions, and the observed features of 
flux emergence and sunspot formation (for an overview see Zwaan 1992) indicate 
that convective flows do not dominate the dynamics of magnetic structures during 
the early phases of active region development. In later stages this is no longer 
the case, probably due to the progressive fragmentation and 'shredding' of large 
magnetic structures. 

Decoupling from convective flows means that the drag forces (4) exerted by 
them do not dominate over the other forces, particularly the buoyancy force, on 
a rising flux tube. Introducing the equipartition field strength by Beq = vcy/^ge 
where vc is the convective velocity we find from equations (1) and (4) that the ratio 
of buoyancy to drag force exerted by convective flows (ve = vc) is given by (ignoring 
numerical factors of order unity): 

Similar relations can be found for the other forces. They show that the drag forces 
due to convective flows dominate for sufficiently small tube diameter: very small 
tubes inevitably become passive with respect to convection. We see from equation 
(5) that for Β ~ Beq, the drag force dominates unless a > Hp (which would 
violate the condition for validity of the thin flux tube approximation). In the lower 
part of the solar convection zone we have Hp ~ 5 · 104 km, i.e. only huge tubes 
which fill a significant part of the whole convection zone could decouple dynamically 
from convective flows if the field strength is of the order of the equipartition field 

104 G). Only one of these tubes would already comprise 1024 mx, a major part 

3. A case for strong fields 

(5) 
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of the total magnetic flux which erupts during a whole 11-year cycle. A tube with 
1023 mx (already corresponding to a very large active region) and Fb/Fo = 10 
(buoyancy dominates) requires Β ~ 105 G and a / H p ~ 0.1 which gives a radius 
of about 5,000 km. Consequently, a field strength significantly in excess of Beq is 
required in order to avoid the dominance of convective drag forces. 

3 . 2 . T H E E F F E C T OF ROTATION AND POLAR ESCAPE 

In a rotating star the Coriolis force tends to suppress any motion which changes 
the distance of a mass element from the axis of rotation. Assume an axisymmetric, 
toroidal flux tube (a flux ring) which encircles the axis of rotation and expands in 
the (cylindrically) radial direction. The expansion leads to an azimuthal Coriolis 
force which drives an azimuthal flow against the direction of rotation (angular 
momentum conservation). This flow, on the other hand, causes a Coriolis force 
directed inward, i.e. against the expansion. A corresponding process acts against 
a (cylindrically) radial contraction of the flux ring. If the flux ring is under the 
influence of a spherically radial buoyancy force, the Coriolis force tends to suppress 
its expansion perpendicular to the axis of rotation while motion under the influence 
of the axial component of the buoyancy force (which is non-zero if the ring is located 
outside the equatorial plane) is unaffected. Consequently, buoyant flux tubes tend 
to rise parallel to the axis of rotation and emerge in high latitudes if the Coriolis 
force dominates over the buoyancy force. Using equations (1) and (3) we find for 
the ratio of buoyancy to Coriolis force 

where Ro is the Rossby number defined by Ro ΞΞ vc/{2Hpü). The Rossby number 
essentially is the ratio between the period of rotation and the convective turnover 
time and thus measures the degree of rotational influence on the convective motions. 
Since a rough estimate yields that the velocity of buoyant rise is of the order of 
the Alfvén velocity vA = B/y/4πρ6 (Parker 1975) we may write vc/v = Beq/B and 
obtain 

where Rom = νΑ/(2ΗρΩ) defines a 'magnetic Rossby number'. At the bottom 
of the solar convection zone we have Ro « 0.2, so that for equipartition fields 
of the order of 104 G the right-hand side of equation (7) has a value of about 
0.1 and the Coriolis force dominates. Consequently, flux tubes with equipartition 
field strength have to move parallel to the rotation axis and would emerge at high 
latitudes, in contradiction to the observed characteristics of solar activity. Motion 
perpendicular to the axis of rotation is suppressed or, more precisely, transformed 
into inertial oscillations with a frequency ω = 2Qcos0 where θ is the colatitude 
(Moreno-Insertis et al. 1992). The amplitude of these oscillations increases with the 
field strength. Simulations of Choudhuri & Gilman (1987, see also Choudhuri 1989) 

(6) 

(7) 
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Fig. 1. Motion of toroidal flux tubes (flux rings) starting at a latitude of 20° at the 
bottom of the solar convection zone. The curves show the trajectories of the intersection 
of axisymmetric flux rings with a meridional plane which contains the (vertical) axis of 
rotation. The dotted curve is for initial field strength of 104 G (equipartition field), the 
dashed curve for 5 - 104 G, and the full curve for 2 - 105 G. While the tubes with weaker 
fields emerge at high latitudes, the tube with an initial field of 2 · 105 G rises radially. 

have demonstrated the dominance of Coriolis forces for large equipartition flux 
tubes in the solar convection zone. The effects of turbulence and Kelvin-Helmholtz 
instability are unlikely to modify this conclusion since they lead to suppression of 
the polar escape of equipartition fields only for tiny tubes with diameters below a 
few hundred km, much smaller than the sizes of sunspots (D'Silva L· Choudhuri, 
1991). Consequently, we may conclude from Equation (7) that in the case of the Sun 
the initial field strength of the erupting tubes at the bottom of the solar convection 
zone must be at least an order of magnitude larger than the equipartition value of 
104 G in order to avoid emergence in high latitudes. 

Fig. 1 illustrates the dependence of the path taken by a rising flux tube on its 
(initial) field strength: the trajectories of rising axisymmetric flux rings starting at 
20° latitude at the lower boundary of the solar convection zone is given for three 
values of the initial field strength, namely 104 G (equipartition value, dotted curve), 
5 · 104 G (dashed curve), and 2· 105 G (full curve). The trajectories which have been 
calculated by numerical integration (see Moreno-Insertis et al. 1992) are depicted as 
curves in a meridional plane containing the (vertical) rotation axis. The flux tubes 
pierce this plane perpendicularly and stay toroidal during the whole evolution. 
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In accordance with the simple estimate given in equation (7), a tube with 104 G 
is constrained to move parallel to the axis of rotation and erupts at high latitudes 
(about 50° in this case). The inertial oscillation which is superposed over the axial 
motion is well visible for the tube with 5 · 104 G. Buoyancy dominates only if the 
field strength exceeds 105 G and forces a radial path of the rising flux tube and an 
emergence at low latitudes, as observed in the case of the Sun. 

As a side remark, let us mention that there are observations of very active cool 
stars with large spots which rotate much more rapid than the Sun. A polar emer-
gence of buoyant flux tubes cannot be avoided for these stars since the necessary 
initial field strengths would be much larger than the critical fields for the onset of 
non-axisymmetric tube instabilities (Schüssler L· Solanki 1992). Indeed, many of 
these stars show prominent polar spots (Byrne 1992). 

3 . 3 . T I L T ANGLES O F A C T I V E REGIONS 

It is well known (Hale et al. 1919) that bipolar active regions are always inclined 
with respect to the East-West direction: the preceding (p) polarity is closer to the 
equator than the following (f) polarity. The angle between the line connecting both 
parts and the E-W direction (the tilt angle 7) varies linearly with latitude Λ ("Joy's 
law"): 

sin 7 = 0.48 sin λ -f 0.03 (8) 

(Wang h Sheeley 1991). The tilt can be understood in terms of the Coriolis force 
acting on a rising flux loop (Schmidt 1968): Matter flowing downward along the 
legs of a rising loop experiences a Coriolis force which leads to the correct sense 
of the tilt. D'Silva and Choudhuri (1993) have performed numerical simulations of 
erupting flux loops and showed that Joy's law provides a stringent constraint for 
the initial field strength of rising tubes. They find that fields below about 5 · 104 G 
show tilt angles which disagree with the observations; for the equipartition value 
of 104 G even negative tilt angles appear. Very strong fields, on the other hand, 
lead to insignificant tilts: the magnetic tension resists the twisting Coriolis force. 
The best fit to the observed tilts is obtained for field strengths around 105 G which 
reproduce the observed relation (8) very well. Although this value may somewhat 
depend on the initial conditions used in the calculation, in any case field strengths 
far beyond equipartition are required at the bottom of the solar convection zone. 

3 . 4 . E X P A N S I O N OF A RISING T U B E 

Since pressure and density decrease strongly towards the solar surface a rising tube 
must expand significantly in order to keep pressure equilibrium with its environ-
ment. Unless the initial field is very strong this has the consequence that along the 
rise the field strength sooner or later falls below the local equipartition value. At 
that point, the tube cannot resist being fragmented and shredded by convective 
motions. If this happens already deep within the convection zone, a later formation 
of sunspots and of a coherent active region is unlikely, let alone subtleties like Joy's 
law. Moreno-Insertis (1992) has shown that for initial fields of the order 104 G rising 
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tubes fall short of the equipartition value almost immediately after their start from 
the bottom of the convection zone. For a field of 105 G he finds Β < Beq only at 
depths smaller than about 104 km. Some fragmentation at that late stage would 
probably not disrupt the coherence of the forming active region while a certain 
degree of fragmentation seems in fact to be required by the observed characteristics 
of active region and sunspot formation. Initial field strengths of the order of 105 G 
are required in order to avoid sub-equipartition fields early along the rise of an 
erupting flux tube. 

3 . 5 . F L U X S T O R A G E , ADIABATIC L O O P S , AND INSTABILITY C O N D I T I O N S 

The amount of magnetic flux erupting in complexes of activity would fill a large 
part of the underlying convection zone if it is stored with equipartition or even 
smaller field strength (Parker, 1987a). These storage requirements are drastically 
alleviated if the field strength is significantly larger. The magnetic flux which can 
be stored in the latitude interval ±30° within an overshoot layer of thickness d is 
given by 

$mag — 5 · 1024 a Bs dg mx (9) 

where a is the filling factor, B5 = Bj 105 G and d9 = dj 109 cm. Taking the 'fiducial' 
value of 1024 mx for the flux emerging during a solar cycle (Howard 1974), dg 
between about 2 and 5 for the width of the subadiabatic storage region (which is 
somewhat larger than the overshoot region since it extends into the convection zone 
proper, cf. Pidatella L· Stix 1986), and B$ between 1 and 5 for the stored field we 
find a range of filling factors between 0.01 and 0.1, i.e. the flux can easily be stored 
and also a significant degree of intermittency (flux tube structure) is permitted. 

Another point in favor of large field strength at the bottom of the solar convec-
tion zone is provided by the adiabatic flux loop models of van Ballegooijen (1982). 
Such loops are the natural end product of erupting tubes whose footpoints stay 
anchored in a stably stratified overshoot layer. For reasonable field strength in the 
upper layers the resulting loop models show fields between 105 G and 106 G at the 
bottom of the convection zone. 

Finally, if the flux is stored in a subadiabatic overshoot layer in the form of flux 
tubes, it requires a certain minimum field strength to form an erupting loop by non-
axisymmetric (undulatory) instability. For reasonable values of the subadiabaticity, 
this minimum field strength again is of the order of 105 G (Ferriz-Mas & Schüssler 
1993). Tubes with equipartition fields of 104 G are stable in an overshoot region 
and would not erupt at all. 

3 . 6 . C O N S E Q U E N C E S OF STRONG FIELDS 

We have provided a number of arguments which indicate that the field strength 
of toroidal flux tubes at the beginning of their eruption from the bottom of the 
convection zone must be about an order of magnitude larger than the equiparti-
tion value of 104 G. Upper limits may be provided either by stability considera-
tions (Ferriz-Mas & Schüssler 1993), by the poleward slip motion of toroidal flux 
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tubes (Moreno-Insertis et al. 1992, see also this volume), or by the tilt angles of 
active regions which seem to exclude fields of the order of 106 G (D'Silva &Choud-
huri 1993). More detailed considerations are necessary here, however, since a tube 
which becomes unstable within the overshoot layer may lose a significant part of 
its buoyancy during its initial rise within the stably stratified subadiabatic region. 
Therefore, fields well in excess of 105 G prior to eruption could possibly be required 
in order to maintain the dominance of buoyancy. We may note in this context that 
Dziembowski L· Goode (1989) have estimated from oscillation data that a magnetic 
field of the order of 106±1 G might reside near the bottom of the solar convection 
zone. 

How could such large field strength be achieved ? Flux tube stretching by differ-
ential rotation is a possible source (Petrovay 1991, Fisher et al. 1991) although no 
dynamically consistent calculation has been published so far. Super-equipartition 
field strength must not necessarily cause fundamental problems even for the opera-
tion of an αΩ-type dynamo if sufficiently large energy input into differential rotation 
is guaranteed (Durney et al. 1990). In any case, fields of 105 G or even 106 G can-
not be stored in the convection zone proper since there they are extremely buoyant 
and unstable - even the invocation of thermal shadows (Parker 1987b) would not 
help in this case. The only possible storage location seems to be a stably stratified 
overshoot region or even the outer layers of the radiative core. Clearly, the large 
field strength excludes any attempts to treat the dynamo problem in the kinematic 
approximation; a 'dynamic dynamo' on the basis of strong fields is required. 

• 4. Flux Tube Dynamo: Beyond Cartoons ? 

The flux tube structure of solar surface fields and its possible extension through-
out the whole convection zone raises the question whether a dynamo mechanism 
could operate on the basis of flux tubes (e.g. Schüssler 1980). An example of a 
flux tube dynamo is the STFW-dynamo ('Stretch-Twist-Fold-Wait') of Vainshtein 
L· Zeldovich (1972, see also Zeldovich et al. 1983) which, however, has not been 
considered in detail so far. Processes reminiscent of STFW have been identified in 
the dynamo simulations of Nordlund et al. (1992). It is presently unclear, however, 
how this kind of mechanism could provide field reversals or a butterfly diagram. 

Given the arguments for very strong fields prior to eruption presented in the 
preceding section it seems improbable that they result from a flux tube dynamo 
mechanism of any kind within the convection zone proper since there is no way to 
store tubes of 105 G or more within a superadiabatically stratified region for times 
of the order of the solar cycle period. Even if that could be achieved, instabilities 
would shred the magnetic structures until eventually the resulting fragments be-
come passively coupled to convection by drag forces (Schüssler, 1984, 1987). While 
such a system of passive fibrils may be described well by conventional kinematic 
mean-field dynamo theory (Parker 1982) it shares, on the other hand, the problems 
of this theory regarding the dynamical properties of emerging active regions. 

In a subadiabatic overshoot region the situation is different. We have already 
seen in Sec. 3.5 that the total flux emerging during one activity cycle fills only a 
small fraction of the available volume of the overshoot layer if the field strength is 
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larger than 105 G. Consequently, flux tube structure of this field cannot be excluded. 
The stable stratification provides the possibility to store such strong fields until 
they eventually become unstable with respect to non-axisymmetric, undulatory 
instabilities and erupt to form active regions. 

Which kind of dynamo mechanism could operate on the basis of an ensemble of 
strong-field flux tubes ? One possibility is to consider a mean-field theory with an 
α-effect based on flux tube physics. It is well known (e.g. Schmitt 1987) that non-
axisymmetric instabilities of toroidal magnetic fields under the influence of rotation 
lead to growing helical waves which provide an α-effect. Similarly, the undulatory 
flux tube instability or the resonant excitation of flux tube eigenmodes leads to a an 
α-effect which, together with differential rotation, could form the basis for dynamo 
of the αΩ type which avoids the problems of the turbulent, kinematic dynamos 
of this type. Together with considerations of fragmentation/coalescence processes 
(e.g. Bogdan 1985, Bogdan L· Lerche 1985) such an approach could provide the 
basis for a flux tube dynamo in an overshoot layer. 

In what follows we shall briefly describe a related, but somewhat different, model 
which may serve as an illustration of how a cartoon-like idea can be given some 
mathematical elaboration. This model has been developed jointly with T. Bogdan 
(High Altitude Observatory, Boulder). Let us start with a cartoon which schemat-
ically presents the basic dynamo process. Assume a toroidal flux tube situated in 
a plane parallel to the solar equator. An undulation develops as consequence of 
non-axisymmetric instability with a downflow along the legs: 

The undulation is twisted out of the plane by the Coriolis force acting on the 
downflow and reconnects, thus forming a closed loop: 

Fig. 2. Loop formation by undulatory instability 

0 
Fig. 3. Twisting by Coriolis force and reconnection 
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Differential rotation now stretches the loop until the "ends" meet again and recon-
nect. This creates a pair of alternately directed flux tubes which are (anti)parallel 
to the initial tube: 

Fig. 4. Stretching by differential rotation 

The closed loop is recovered in this reconnection process and could, in principle, be 
stretched again to form another pair of tubes. The result of this process (which is a 
variation of the now classical Parker mechanism) is the pair production of toroidal 
tubes in the vicinity of a given tube. 

Certainly, this is a highly idealized picture and we do not claim that it represents 
correctly the flux tube dynamics in the solar overshoot region. In fact, the stretching 
by differential rotation is treated in a purely kinematical way which surely is not 
justified for large field strength. Let us take the model just as an illustration for 
the kind of mechanisms which might provide the basis of a flux tube dynamo. 

Our mathematical treatment of the flux tube dynamo process is a local, spatially 
one-dimensional, statistical model for straight, parallel flux tubes. We define a local 
'tube density' N{x,t) as the sum of the densities for tubes of positive (N+) and 
negative (N~) polarity, viz. 

N(x,t) = N+(xyt) + ΛΤ («,*). (10) 

The coordinate x, perpendicular to the tube orientation, would correspond to lat-
itude in a spherical model while the tubes would then become toroidal. The local 
net flux is given by 

D(x,t) = ΛΓ+(*,0 - N~(xft). (11) 

with \D\ < TV. In this simple model we assume that all tubes are identical, except 
for their polarity. We now consider the following processes which determine N(x,t) 
and D(x,t): 

1. The flux tube locations fluctuate through random processes (e.g., turbulence) 
which are described by a diffusion term with effective diffusivity η. 

2. Flux tubes of different polarity at the same (statistical) location annihilate with 
a rate σΝ+Ν~ where σ represents an efficiency parameter. 

3. The dynamo process described above creates pairs of tubes, which appear sym-
metrically to an existing tube in a distance ± Δ and with a production rate c. 
Since the process of loop formation, stretching, and reconnection takes some 
time, a time delay r is introduced. 
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By considering these processes we obtain the following pair of equations for N + 

and N~: 

8N+ d2N+ = ~ σ Ν + Ν ~ + + (12) 

Β Ν" d2N~ 
" ό Γ " " 7 7 ^ " = ~ σ Ν + Ν ~ + c N - ( x - & , t - 6 ) + eN+(x + A , t - 6 ) . (13) 

We now assume that Δ is small compared to the system dimension L (solar radius) 
and that τ is small compared to the cycle length (or small compared to the diffusion 
time L2/η) so that we may expand and write 

8N+ fiN+ f)2 

N+i*±A,t-S) * ^ A S — , (14) 

and similar for N~. Adding and subtracting the resulting equations for N+ and 
N~ leads to the following system of equations for Ν and D: 

(1 + 2 ε ε ) ? £ -η%5· = - D2) + 2cN , (15) 

dD d2D n AdD n scd2D 

Note that the equation for the net flux D is linear and decoupled from the other 
equation. In the simplest case of an infinite interval the solution is given by 

D = Dexp(iu)t + ikx), (17) 

where ω is the (complex) growth rate, k the (real) spatial wave number, and 
D — const. If we insert (17) into (16) we find for the real and imaginary parts 
of ω: 

_ 2eA k(6nk2 + 1) 
(2eAk)2 +1 ' (18) 

r,k2-( 2eAk)26 
K ' (2eAk¥ + l { ' 

Consequently, we obtain an oscillatory dynamo with propagating dynamo waves. 
The dynamo is excited if 

(2eA)26 , x 1 — > 1. 20) η 

In the marginal case [9(w) = 0] we find for the oscillation frequency 
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*(ω) = - 1 / 2 = " t o « ) " 1 7 2 . ( 2 1 ) 

where τ·«* = 1/(ηΡ) represents the diffusion time over one wavelength. Hence, the 
oscillation period is of the order of the harmonic mean of the time scales of diffu-
sion and tube pair production. As we see from (20) non-vanishing spatial (Δ) and 
temporal (r) delays for the production of tube pairs are crucial for the excitation 
of the dynamo. As in all dynamo models, the excitation must exceed a certain level 
which depends on the value of the diffusivity. 

We may determine the required values for η and for e, the rate of pair production, 
in the solar case by inserting reasonable numbers for the other parameters. We take 
a value of 8 · 1010 cm for the wavelength of the dynamo wave and assume a loop 
formation/stretching timescale of 108 s (about 3 years). By requiring that the period 
should match the solar cycle period of 22 years we obtain from (21) a value for the 
diffusivity: 77 = 1.3 · 1012 cm2-s""1. This value is compatible with weak turbulence 
(velocities of a few m/s) in a layer of a few times 109 cm thickness. If we take 
δ = 2-109 cm (width of the overshoot layer) we obtain from the excitation condition 
(20) that e > 3 · 10~8 s"1 which means that the required rate of pair production for 
a given tube is of the order of once in 400 days. This is not a prohibitive number 
and we might consider it possible that a dynamo of this kind operates in the solar 
overshoot layer. 

The approach presented here can be extended in various ways. On the one hand, 
nonlinearities like flux loss by buoyancy can be easily introduced in order to limit 
the growth of the net flux to a finite value. On the other hand, one can consider a 
distribution of flux tube sizes and include fragmentation and coalescence processes. 
In any case, a dynamical treatment of the flux tube stretching by differential rota-
tion and the twisting by the Coriolis force must be incorporated in order to fulfill 
the claim for a 'dynamic dynamo'. 
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