SHORT FORMULATIONS OF BOOLEAN ALGEBRA, USING RING OPERATIONS

LEE BYRNE

Special interest has recently attached to formulations of Boolean algebra in terms of ring operations [7], [1]. These axiomatizations have not been as brief as those reached through other modes of approach. ${ }^{1}$

The present note will show that the number of axioms when ring operations are used may be as small as in any present version that is not metamathematical, ${ }^{2}$ that is, the number of axioms finally employed will be two. ${ }^{3}$

The first step will be to give a set of four postulates of more familiar appearance; these will mark a reduction by about two, as compared with similar versions of earlier date. Then, by employing a device due to Bernstein [2], we shall set up two postulates from which the previous four can be deduced.

Formulation in Four Transformation Axioms
 Axioms

I. $(X+Y)+Z=X+(Y+Z)$.
II. $(X+Y)+X=Y$.
III. $X(W+Y Z)=X W+Y(Z X)$.
IV. $X(X+1)=Y+Y 1$.

Theorems ${ }^{4}$

1. $X+Y=Y+X$.

Proof. $((X+Y)+(X+Y))+(X+Y)$

$$
=((X+Y)+X)+((Y+X)+Y) . \quad \text { From I, I. }
$$

The Theorem follows by II, II, II.

$$
\begin{aligned}
& \text { 2. } \quad(X+X)+Y=Y=Y+(X+X) \\
& \text { Proof. } \quad Y=(X+Y)+X=(Y+X)+X \\
& \\
& \quad=Y+(X+X)=(X+X)+Y . \quad \text { From II, 1, I, } 1 .
\end{aligned}
$$

2a. $X+Y=Z+Z \rightarrow X=Y$.
Proof. $\quad X+Y=Z+Z \rightarrow(X+Y)+Y$

$$
=X+(Y+Y)=X=(Z+Z)+Y=Y . \text { From I, } 2,2
$$

3. $X+X=Y+Y$.

Proof. $\quad X+X=(X+X)+(Y+Y)=Y+Y . \quad$ From 2, 2.

[^0]4. $X(Y+Y)=Z+Z$.

Proof. $\quad X(X X+X X)=X(X X)+X(X X) . \quad$ From III.
The Theorem follows by 3 .
5. $X(Y Z)=Y(Z X)=Z(X Y)$.

Proof. $\quad X(Y Z+Y Z)=W+W=X(Y Z)+Y(Z X) . \quad$ From 4, III.
The Theorem follows by 2 a .
6. $X 1=X$.

Proof. $1(1+1)=X+X 1 . \quad$ From IV.
The Theorem follows by 4, 2a.
6a. $1 X=\mathrm{X}$.
Proof. $1(X 1)=1(X)=X(11)=X 1=X$.
From 6, 5, 6, 6.
7. $X Y=Y X$.

Proof. $X(Y 1)=X Y=Y(1 X)=Y X$.
From 6, 5, 6a.
7a. $\quad X(Y Z)=(X Y) Z$.
Proof. $X(Y Z)=Z(X Y)=(X Y) Z$.
From 5, 7.
8. $X(Y+Z)=X Y+X Z$.

Proof. $\quad X(Y+1 Z)=X Y+1(Z X)=X Y+1(X Z) . \quad$ From III, 7.
The Theorem follows by 6 a.
8a. $\quad(X+Y) Z=X Z+Z Y$.
Proof. $Z(X+Y)=Z X+Z Y$.
From 8.
The Theorem follows by 7 .
9. $X X=X$.

Proof. $\quad X(X+1)=X X+X=Y+Y 1=Y+Y . \quad$ From IV, 8, 6.
The Theorem follows by 2 a .
With the tacit assumptions (Note 3), I, 1, 2, 3, 5a, 7, 8, 8a show the system to be a ring, 9 Boolean, 6, 6a with unit, and accordingly a Boolean algebra [3, pp. 96, 97] and it is known that the axioms used are themselves valid in Boolean algebra. Note that $X+X$ is the zero, and Theorem 3 shows both unicity of zero and also that every element is its own negative. The complement of any X is $X+1$.

Formulation in Two Transformation Axioms
 (using a device of Bernstein[2])

Abbreviations: $P_{1}=((A+B)+C+(A+(B+C))$

$$
P_{2}=C(F+D E)+(C F+D(E C))
$$

$$
P_{3}=G(G+1)+(H+H 1)
$$

$$
0=1+1
$$

Axioms

$$
\text { I'. } X+X=P_{1}+\left(P_{2}+P_{3}\right) . \quad \text { II. } \quad(X+Y)+X=Y
$$

Theorems ${ }^{5}$

3. $X+X=Y+Y=1+1$.

From I'.
2. $(X+X)+Y=Y=Y+(X+X)$.

Proof. $((Y+Y)+Y)+(Y+Y)=Y$
$=(Y+Y)+Y=Y+(Y+Y) . \quad$ From II, II, II.
The Theorem follows by 3 .
2a. $X+Y=Z+Z \rightarrow X=Y$.
Proof. $X+Y=Z+Z \rightarrow(X+Y)+X=(Z+Z)+X$.
The Theorem follows by II, 2.
11. $\quad P_{1}=P_{2}+P_{3}$.

From I' by 2 a .
12. $P_{2}=P_{3}$.

Proof. $\quad((C+C)+C)+(C+(C+C))=P_{2}+P_{3} . \quad$ From 11.
The Theorem follows by 2, 2a.
I. $(X+Y)+Z=X+(Y+Z)$.

From 11 by 12, 2a.
III. $X(W+Y Z)=X W+Y(Z X)$.

Proof. $\quad P_{2}=0(0+1)+(0+01)=01+01$.
From 12, 2.
The Theorem follows by 2 a .
IV. $X(X+1)=Y+Y 1$. From 12 by III 2a.

Thus by means of two valid axioms we have derived the previous four ${ }^{6}$.

References

[1] B. A. Bernstein, Postulates for Boolean algebra involving the operation of complete disjunction, Ann. of Math., vol. 37 (1936), 317-325; with references.
[2] , Postulate sets for Boolean rings, Trans. Amer. Math. Soc., vol. 55 (1944), 393-400; with references.
[3] Garrett Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publ., vol. XXV (1940), chapt. VI.
[4] Lee Byrne, Two brief formulations of Boolean algebra, Bull. Amer. Math Soc., vol. 52 (1946), 269-272, references.
[5] ——, Boolean algebra in terms of inclusion, Amer. J. Math., vol. 70 (1948), 139-143.
[6] S. Hoberman and J. C. C. McKinsey, A set of postulates for Boolean algebra, Bull. Amer. Math. Soc., vol. 43 (1937), 588-592.
[7] M. H. Stone, Subsumption of the theory of Boolean algebras under the theory of rings, Proc. Nat. Acad. Sci., U.S.A., vol. 21 (1935), 103-105.
[8] _-, The theory of representations for Boolean algebras, Trans. Amer. Math. Soc., vol. 40 (1936), 37-111.
${ }^{5}$ Numbered as before, with 11 and 12 as new theorems.
${ }^{6}$ If it is desired to formalize also the tacit assumptions mentioned in Note 3, we may append A. $\quad X \neq X+1$, and the closure postulate B. $(X)(Y)(Z)(E V)(E W) V=X+Y \&$ $W=V Z$), where (X) is "for every X " and ($E Z$) "there exists a Z such that". Then (after obtaining 2) we can deduce as Theorems:

1. $(X)(Y)(E Z)(Z=X+Y)$; from B.
2. $(X)(Y)(E Z)(Z=X Y)$: since $(X)(Y)(E W)(E Z)(W=X+(V+V) \& Z=W Y)$, from B, B, whence Theorem by 2 .

Arizona State College

[^0]: Received November 10, 1949.
 ${ }^{1}$ References to several brief versions are given in [4]; see also [5].
 ${ }^{2} \mathrm{An}$ interesting metamathematical version [6] uses only one transformation postulate.
 ${ }^{3}$ More precisely, there will be two "transformation" axioms, and these will not include the tacit assumptions as to closure with respect to operations or as to a minimal number of elements.
 ${ }^{4} \mathrm{An}$ arrow \rightarrow signifies (material) implication, as in Hilbert and Ackermann.

