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ELEMENTARY EQUIVALENCE FOR FINITELY GENERATED
NILPOTENT GROUPS AND MULTILINEAR MAPS

FRANCIS OGER

We show that two finitely generated finite-by-nilpotent groups are elementarily equiv-
alent if and only if they satisfy the same sentences with two alternations of quantifiers.
For each integer n ^ 2, we prove the same result for the following classes of struc-
tures:

(1) the (n + 2)-tuples (Ai,... ,An+x,f), where A\,,.. , An+i are disjoint finitely
generated Abelian groups and / : A\ x • • • x An —> An+i is a n-linear map;

(2) the triples (A,B,f), where A, B are disjoint finitely generated Abelian groups
and / : An -» B is a n-linear map;

(3) the pairs (A, / ) , where A is a finitely generated Abelian group and / : An —> A
is a n-linear map.

In the proof, we use some properties of commutative rings associated to multilinear
maps.

It is well known that two modules, and in particular two Abelian groups, are elemen-
tarily equivalent if and only if they satisfy the same V3 sentences (see [14, Corollary 2.18,
p.37]). In [13], we showed that two Abelian-by-finite groups are elementarily equivalent
if and only if they satisfy the same 3V3 sentences.

For non Abelian-by-finite groups, the situation is radically different. Burris proved
in [1] that, for each integer n, there exist two groups which satisfy the same sentences
with n alternations of quantifiers without being elementarily equivalent. The groups in
Burris' example are soluble since they are in the variety generated by the symmetric
group on 3 letters 53.

Moreover, we showed in [13] that, for each integer n, there exist two nilpotent groups
which satisfy the same sentences with n alternations of quantifiers and do not satisfy the
same sentences with n + 1 alternations of quantifiers.

In contrast with this result, we prove in the present paper that two finitely generated
finite-by-nilpotent groups are elementarily equivalent if and only if they satisfy the same
3V3 sentences.

On the other hand, the following questions are currently open:
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480 F. Oger [2]

(1) Is there an integer n such that two finitely generated groups which sat-
isfy the same sentences with n alternations of quantifiers are elementarily
equivalent? We do not know the answer even in the case of metabelian
groups.

(2) If two finitely generated nilpotent groups satisfy the same V3 sentences,
are they elementarily equivalent?

In connection with these two questions, it is worth mentioning the results which have
been obtained concerning the properties of polycyclic-by-finite groups which satisfy the
same V3 sentences. By [7, Proposition 2.1, p.470], two such groups G, H necessarily have
the same finite images, and therefore have isomorphic profinite completions. If G and
H are finitely generated Abelian-by-finite groups, it follows that they are elementarily
equivalent, because each of them is an elementary submodel of its profinite completion
according to [9, Theorem 2, p.1041].

In [15], Raphael improved [7, Proposition 2.1] by showing that, if two polycyclic-
by-finite groups G, H satisfy the same V3 sentences, then, for each integer n ^ 1, there
exist a subgroup Gn of G with Gn = H and \G : Gn\ prime to n, and a subgroup Hn

of H with Hn = G and \H : Hn\ prime to n. If G and H are nilpotent, it follows
that they have isoinorphic ^-localisations for each finite set ir of primes (this result was
also proved in [10]). Anyhow, [8, Theorem 2.3 and Theorem 3.1, p.3] gives examples of
finitely generated nilpotent groups of class 2 which have isomorphic ^-localisations for
each finite set -K of primes and which are not elementarily equivalent. In [16, pp.37-40],
Raphael managed to show that, in one of these examples, the groups do not satisfy the
same V3 sentences.

The definitions and results of model theory which are used here, in particular the
notions of formula, sentence and elementary equivalence, are given in [2]. Concerning
groups, we use the notation of [17]. In particular, we write t(M) for the torsion subgroup
of a finite-by nilpotent group M.

For each integer n ^ 2, we consider the (n + 2)-tuples (Ai,... ,An+i,f), where
Ai,... , An+i are disjoint finitely generated Abelian groups and f : A\X- • -xAn -* An+1

is a n-linear map. We also consider the triples (A,B,f), where A, B are disjoint finitely
generated Abelian groups and / : An —> B is a n-linear map, and the pairs (A, / ) , where
A is a finitely generated Abelian group and / : An —> A is a n-linear map.

We use the following notations, which are similar to those of [12]:

For each (n + 2)-tuple (A\,... , An+U f) and for any subsets St C Alt..., Sn C An,

we denote by / ( S i , . . . ,Sn) the subgroup of Ai+i which is generated by the elements
f(xi,... ,xn) for i i e S i , . . . , i B e Sn.

For any (n+2)-tuples A = (Ai,... ,An+\, f) and B = {B\,... ,Bn+i,g), we consider
the direct product A x B - (AixBu... ,An+ixBn+i,h), with /i((a;i,2/i),... ,(xn,yn)) =

(f(xu... ,xn),g(yi,... ,yn)) for any elements xx € Au yxeBu... ,xn € An, yn 6 Bn.
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We define in a similar way the direct product of two triples (A,B,f) and (C,D,g), or
the direct product of two pairs (A, f) and (B, g).

For each (n + 2)-tuple (A\,... ,An+1,f) and for each i e { 1 , . . . , n } , we write
ker,(/) = {x G Ai | /[At,... ,A^ux,Ai+u... ,An) = 0} . For a triple {A,B,f) or
a pair (A,}), we consider ker(/) = keri(/) n • • • D kern(/).

We interpret the n-linear map with the n-placed functional symbol L. For each of
the n + 1 groups, we introduce a 2-placed functional symbol for the addition, a 1-placed
functional symbol for the minus operation and a constant symbol for the zero element.
The universe of a (n + 2)-tuple (Ai,... , An+\, f) is A\ U . . . U An+\\ consequently, the
functions that we consider are not defined everywhere.

For reasons of convenience, we write the formulas with the symbols +,—,0 for each
of the n + 1 groups. In order to avoid misunderstandings, the name of each vari-
able is followed by the index 1 , . . . , n + 1 according as it concerns the elements of the
first,... , (n + l)-th group.

We adopt similar conventions for triples. Here, the language consists of the n-placed
functional symbol L for the n-linear map and, for each of the two groups, a 2-placed
functional symbol, a 1-placed functional symbol and a constant symbol. The universe of
a triple (A, B, / ) is A U B.

Concerning pairs, we use the language which consists of the n-placed functional
symbol L for the n-linear map and, for the group, the 2-placed functional symbol +, the
1-placed functional symbol — and the constant symbol 0. The universe of a pair (A,f)
is A.

In [12], we proved the following result:

THEOREM 1 . For each integer n ^ 2, for each (n + 2)-tuple A - (Au . . . , An+U / ) ,

and for each integer m JJ 1 such that mt(Ai) = ... = mt(An+i) = 0, there exist a

first-order formula <pm(ui,... ,un+i) and some sequences x\ C A\,... ,xn+i C An+\ such

that:

(1) A satisfies <pm(xu ..., xn+x);

(2) for each (n + 2)-tuple B = (Bu... ,Bn+ug) such that mt(Bx) = ... -

mt(Bn+l) = 0, and for any sequences yx C B\,... ,yn+l C Bn+l, if B

satisfies y m ( F i . ••• ,Vn+i)> then, for each i € { 1 , . . . , n } , B{ is generated by

y{ and ker;(ff).

In [11] and [12], we used this theorem in order to give characterisations of elementary
equivalence for several classes of structures:

COROLLARY 1 .

(1) [11] Two finitely generated finite-by-nilpotent groups G, H are elementarily
equivalent if and only ifZxG and Z x H are isomorphic.
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(2) [12] Two (n + 2)-tuplesA=(Au...,An+uf) and B = (Bu ... , Bn+U g)
are elementarily equivalent if and only if (Z , . . . ,Z ,0 ,0 )x / l and (Z , . . . , Z,
0,0) x B are isomorphic.

(3) [12] Two triples (A,B,f) and {C,D,g) are elementarily equivalent if and

only if (Z, 0,0) x (A, B, f) and (Z, 0,0) x (C, D, g) are isomorphic.

(4) [12] Two pairs (A, / ) and (B,g) are elementarily equivalent if and only if
(Z, 0) x (A, f) and (Z, 0) x (B, g) are isomorphic.

For each class, we proved that elementary equivalence does not imply isomorphism.
In particular, we gave an example of two nonisomorphic finitely generated torsion-free
nilpotent groups of class 3 which are elementarily equivalent, and an example of two
nonisomorphic finitely generated torsion-free Lie rings which are elementarily equivalent.
On the other hand, we showed that, in (2) and (3), elementary equivalence implies
isomorphism if f(Ax,... , An) (respectively f(An)) is torsion-free.

In the present paper, we give a simpler proof of Theorem 1, which yields the following
strengthening:

THEOREM 2 . In Theorem 1, it is possible to choose a formula <pm which is a con-

junction of formulas of the form

($) (W)(C(ui, . . . ,un+uv) V (3w)v(uu ... ,un+uv,w))
with 7] positive and C, V quantifier-free.

Then, we deduce the following result from Theorem 2 and Corollary 1:

COROLLARY 2 . In Corollary 1, the groups G, H of (1), the (n + 2)-tuples A, B of
(2), the triples (A, B, / ) and (C, D, g) of (3), the {A, f) and {B, g) of (4), are elementarily
equivalent if and only if they satisfy the same 3V3 sentences.

The proof of Corollary 2 yields a more precise result:

COROLLARY 3 .

(1) For each finitely generated finite-by-nilpotent group G and for any integers
c,m^ 1, if r c + 1(G) is finite and t(ri(G)/Ti+i(G))m = 1 for 1 ^ i ^ c then there exists
a 3V3 sentence which characterises G among the finitely generated finite-by-nilpotent
groups H such that t(ri(H)/ri+1(H))m = 1 for 1 ^ i ^ c.

(2) For each (n + 2)-tuple A = (Ai,... , An+l, f) and for each integer m ^ 1, if
mt(Ai) = ... = mt(An+i) — 0, then there exists a 3V3 sentence which characterises A
among the (n + 2)-tuples B = (f?i, . . . , Bn+i,g) such thatmt(Bi) = ... = mt(Bn+l) = 0.
The same result is true for the triples (A, B, f) (respectively the pairs (A, f)) if we
replace the property mt(>li) = ... = mt(An+i) = 0 by mt(A) — mt(B) = 0 (respectively
mt(A) = 0).

In the proof of Theorem 2, we associate a commutative ring to each (n -I- 2)-tuple. In
the proof of Corollaries 2 and 3, we consider, for each finitely generated finite-by-nilpotent
group, some alternating bilinear maps which are defined from the map (x,y) —> \x,y]. In
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[11] and [12], we already used similar arguments, as well as Myasnikov in [4], [5] and [6].

P R O O F O F T H E O R E M 2: For the sake of brevity, we write the proof with n = 2. For

each i S {1,2,3}, we consider a sequence X{ — (z i , i , . . . , Xi,m(i)) which generates At, and

a sequence of variables Ui = (u^i, . . . , Ui,m(o)- The proof of the existence of the formulas

ipm is based on the two following claims:

CLAIM 1. For each integer m ^ 2 such that mt(Ai) = mt(A2) = mt(J43) = 0, there

exists a conjunction of jj formulas Xm("i>"2,U3) such that:

(1) A satisfies Xm(^uX2,x3);

(2) for each quadruple B = (Bi,B2,B3,g) such that mt(Bi) = mt(B2) =

mt(B3) = 0, and for any sequences yl C B\, y2 C B2, y3 C B3, if B
satisfies Xm (2/1 > 2/2,2/3), t n e n there exists an injective homomorphism 6 =

(#1,02,03) : A -¥ B such that, for each i € {1,2,3}, 0j(ij) = yi and

| is prime to m.

CLAIM 2. There exist an integer mo S? 2 and a conjunction of j} formulas ip(v.i,u2) such

that:

(1) A satisfies ip(x\,x2);

(2) for each quadruple B = {BuB2,B3,g) with A C B and B i / ^ i , B2/A2

finite, if S satisfies ^(^1,^2), then, for each i 6 {1,2}, \Bi/(Ai,keTi(g))\

divides mo.

First, we show that, if the two claims are true, then <pm exists for each integer m ^ 2

such that mt(Ai) = mt{A2) = mt(v43) = 0 and m0 divides m (we take <pm — ymam if m0

does not divide m).

We consider the formula ipm(Tii,u2, u3) = xm(ui,U2,u3) Aip(ui,u2), which is satisfied

by i i , i 2 , ^ 3 m A. For each quadruple B = (B\,B2,B3,g) such that mt(Bi) — mt(B2) =

mt(B3) = 0, and for any sequences y1 C Bu y2 C B2, y3 c B3, if B satisfies (pm(yu y2, y3),

then there exists an injective homomorphism 6 = (01,02,03) : A -* B such that, for

each i € {1,2}, 0i(xj) = y{ and |Si/0i(Aj)| is prime to m. For each i € {1,2}, we

have Bi = {Oi(Ai),keri(g)} — (y~i,keii(g)) since \Bi/(6i(Ai),keii(g))\ is prime to m and

divides m.

Then, we prove Claim 1. For each i G {1,2,3}, there exist two integers q(i) ^ r(i)

and some terms piA(ui),... ,pi i r ( i )(ui) such that t(A{) = {p^fc),... ,piq{i){xi)} and

such that Ai is the disjoint union of the subsets Pij(xi) + mAi for 1 ^ j ^ r(i).

For each i € {1,2,3}, there are also some terms CTJ,I(«;),... ,ai,s(i){ui) such that

(ifj ; c r j ^ i i ) , . . . ,<ji ,a(i)(xi)) is a presentation of Aj. For each i £ { l , - - . , m ( l ) } and

each j 6 { l , . . . ,m(2)} , there exists a term Tij(u3) such that f(xiti,x2j) = Tij(z3).
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The conjunction of jj formulas xm(«i,W2i"3) below is satisfied by X\,x2,x3:

azmsiVvi) [mvi = 0 -H- (

V^ttO = 0] A [ ̂ IglJjL^i, , - , U2>J) = rid(u3)].

For each quadruple B = (B\,B2, B3,g) and for any sequences yl c B\, y2 C #2, 2/3 C #3
which satisfy xm in B, there exists a unique homomorphism 0 = (61,62,03) : A —> B such
that 0i(xi) = y~i for each i € {1, 2, 3}. For each i € {1, 2, 3}, 0* induces an isomorphism
from Ai/mAi to Bi/mBi. limt(Bi) = 0, then 0* also induces an isomorphism from t{Ai)
to t(Bi). It follows that 0; is injective and \Bi/9i(Ai)\ is prime to m (the details of the
argument are given in [10, p.66]).

Now, we observe that f{AuA2) = \ ^2 /(^M,2/2,0 J/2,1. •••>2/2,m(i) 6 ^2 h and we

show that it suffices to prove Claim 2 in a weaker form:

CLAIM 3. If / is nondegenerate and f(Ai, A2) = A$, then there exist an integer m and
a conjunction of tt formulas ^(w^^Jsuch that:

(1) A satisfies ijj (xx, x2);

(2) for each quadruple B = (Bl}B2, B3,g) which satisfies the list of conditions
(*) below:

A C B and Bi/AUB2/A2 finite,
m(l)

B3 = g(Bi,B2) = |J3#(:z:Ml2/2,«) | 1/2,1,-.J/2,m(i) e

X! = 0 for each xx e B! such that g{xx, x2) = 0,

x2 = 0 for each x2 g B2 such that 5(11, X2) = 0,

if B satisfies rp(x~i,x2), then, for each i € {1,2}, \Bi/Ai\ divides m.

In order to prove that Claim 3 implies Claim 2, for each quadruple B = (Bi,B2, B3, g),
we consider the quadruple B' = (B\,Bl,Bm

3,g*), where B[ = Bi/ke^ig), B*2 =
B2/ker2(g), B3 = g(Bi,B2), and g* is the bilinear map from B\ x B\ to B£ which
is induced by g. For each x € Bx U B2, we denote by x* the image of 1 in B*.

According to Claim 3, there exist an integer m and a conjunction of (t formulas
ip*(ui,u2) such that:

(1) A* satisfies ip*(xl,xl);

(2) for each quadruple C = (Ci,C2,C3,h) which satisfies (*) relative to A*, if
C satisfies tl)*{x\,x2'), then, for each i € {1,2}, |Cj/>l,*| divides m.
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We consider the conjunction of ft formulas tp(ui,u2) — i>0{ui,u2) A ipi(ui,th), where
ipo(ui,u2) is the formula

(Vt;1)(L(l;llu2) = 0 -> (Vv2)L(vuv2) = 0)

A{Vv2){L{u1}v2) = 0 -> (VuiJLfa.ua) = 0)

i=l

and ^ ( u i , ^ ) is the conjunction of jj formulas which is obtained from ip*(ui,u2) by
replacing successively:

(a) each atomic subformula t(l?i) = 0 (respectively t(v2) = 0) by L(t(vi), u2) =
0 (respectively L(ui,t(v2)) = 0);

(b) each subformula {3v3)9 (respectively (Vv3)S) by (3v3)(3v2ti..3v2:m(i-)) \v3 —

, - m(l)
,i,U2,t)A0 (respectively (Vv3)(V?;2,i--V?;2,m(i))U'3 = £

J L x = l

The quadruple v4 satisfies ip(xi,x2). For each quadruple S = (B\,B2,B3,g) with
yl C 5 and B\/Ai, B2/A2 finite, if 5 satisfies ip{Ti,x2), then £?* satisfies t/)*(ij,x5). It
follows that, for each i e {1,2}, |B?/i4j| = |Bj/(i4i,keri(5))| divides m.

Finally, we prove Claim 3. For each quadruple B = (Bi, B2, S 3 , g) which satisfies (*),
we consider the set RB which consists of the triples (B\,d2,83) € End(Bi) x End(S2) x
End(S3) with ff(^i(2/i),j/2) = 5(2/1^2(2/2)) = #3(2/3) for any elements yx € Bu y2 e B2

and y3 € B3 such that 5(2/1,2/2) = 2/3- We define a commutative ring structure on RB

by writing 0 + # = (0X + 6\,02 + 6>2,63 + 8'3) and doff = (d^o 6'U92 o 6>'2,6>3 o 6»'3) for
6> = (6>i,6»2,^3).and 6' = {6\,&2,ff3). This follows since any triples 6 = {el,e2,93) and
0' — {6\,8'2,9'3) in RB necessarily satisfy

g(0l
l(8l(xl))lx2) = 9'3(g(e1(xl),x2)) = 6'3(63(g(xux2)))

A and

for i ! € S! and x2 € B2, and therefore 91 o9 = 9 off e RB-

Any triple (#1, ̂ 2, #3) G RB is completely determined by 9\{xi) or 6*2(12). This follows
because if, for instance, 92{x2) = 0, then any element y\ € B\ satisfies g(9\{y\),x2) —

g(yi,92{x2)) = 3(j/i,0) = 0, and therefore 6>i(?/i) = 0.
The group (RB,+) is finitely generated, and the ring RB is Noetherian, since 5 j

and B2 are finitely generated.

We write u = (ui,u2) and x = (11,12)- We identify each (9i,92,03) e RB with
(9i(xi),92(x2)). In particular, we identify (IdBl,Idfl2,IdB3) and x. For each pair y —
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(2/1,2/2) w i t h V\ = (s/i.i' - - - >2/i,m(i)) C Bi and y2 = (2/2,1,... ,2/2,m(2)) C B2, we write
y 6 / ?B if there exists a triple (6X, 62,63) 6 RB such that #i(zi) = yx and #2(^2) = 272-

For each sequence of variables v = {vi,v2) with i>i = (ui,i , . . . ,«i,m(i)) and J72 =
(«2,i, • • • . «2,m(2)), and for any variables W1.U2.W1, "2, we denote by iJui = vx and t7w2 = v2

the positive quantifier-free formulas

and

For each i e 1,2, we consider some terms /^(w,-),. . . , / ^ ^ ( W J ) which define a pre-
sentation of >lj on Xi. We also consider some terms

which define a presentation of A3 on /(a;i,i,a;2j)^f|m(f)- For each pair y = (y1,y2) with
Vi = (2/1,1, • • • ,J/i,m(i)) C i4i and y2 = (2/2,1, • • • ,2/2,m(2)) C ^ 2 , we have y € RA if and

only if (x,y) satisfies the positive quantifier-free formula X(u, v) below:

i P2,j(v2) = 0) A f ^l^k^p{3)P3,k{^(vl,u U2,

We denote by fj,(u, v) the formula

1, U2) = / _ / -k(Ul.»> W2,i) A UUi = VX A WU2 =

i=i

Now, let us consider a quadruple B = (Bx,B2,B3,g) which satisfies (*). For each
pair y = (y"i,y2) with yx = (yi,i , . . . ,yi,m(i)) C Bx and y2 = (y2>i,... ,y2,m(2)) C B2,
if y belongs to RB, then (x, y) satisfies n(u, v). Conversely, if (x, y) satisfies /i(u, v),
then we define a triple 8 = {8X,92,63) € RB with 8(x) = y by writing #i(zi) = y^i,

^2(^2) = 2/22 and 63( J2 g{xu,z2M — J2 g(yx,i,z2ti) for any elements zx e Bx and

22,22,1,... ,Z2,m(i) € B2. This follows since any element of g(Bx,B2) can be written as
m(l) "i(l) "»(!)
Yl g(xi,i,z2j), and ^Z 5(xi,t, 22,t) — 0 implies 53 9(Vi,i>z2,i) = 0.
t=i ' i=i ' ' t=i

The formula a(u) = (W) (A(u, U) -> /̂ (UjU)) is equivalent to a conjunction of j)
formulas. It is satisfied by x in ^4. If x satisfies a in 5 , then, for each pair y = (yx,V2)

with yx = (2/1,1, • • • , yi,m(i)) C Bi and y2 = (2/2,1,... , j/2,m(2)) C 5 2 , we have y € i?B if
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and only if (x,y) satisfies A in B. In particular, we have RA C RB- Moreover, RB/RA is
finite since B\/A\ and B2/A2 are finite.

For each sequence ( j T " ^ } ^ ! ^ 0 C RB, we have X ) ^ - 1 ) . . . (yi ' r (0) = 0 if and only if
t = l

(x, (l/*J ')i | i | , ) satisfies, in B, the positive existential formula below, which we shall

denote by £ v1-1 • • • W'T^ = 0:
t=i

t = l

For each i € {1,2}, we have At = Za^i H 1- Z i ; ^ ) , and therefore A{ =
+ /?/tZi,m(0- So, the it formula /3(u) below is satisfied by x in .4:

i)A(u, t /^ ) ) A (w4 =

If x satisfies a A /? in JB, then, for each i € {1,2}, we have Bi = RsXi.i + 1- #BXi,m(o-

Now, we consider an integer t ^ 1 such that (RA,+) is generated by i elements,

and some prime ideals P i , . . . , Ps of .R^ such that Pi • • • Ps = 0. For each i € { 1 , . . . ,5},

there exist some elements If1'1,.-- i^*'' 6 Pi s u c n that P; = Z5T'1 + ••• + Z51' ' . For

each i 6 { 1 , . . . , s} and each j S { 1 , . . . , t}, there exists a sequence of terms 7l^(u) =

(r%m)l£Tk) such that ̂  - Wm)1*??"-
For each i £ { 1 , . . . , s}, as Pi = P^x1'1 + • • • + R^x1'1 is prime, the j) formula TT;(U)

below is satisfied by x in i4:

(U,W1) A \{U,V2) A (3HJ1... 3wl)

A (vlv2 = J2 in*T*-*(u))] }
i$t$(

1 . . . 357*) [( /X\i^(u,wk)) A ( \ffj=l,2vi = J2 ™kTi>k(u))] ) •

We denote by 7(11) the conjunction of the formulas TTJ(U). If x satisfies aA/?A7 in B, then,
for each i e { 1 , . . . , s}, the ideal <2i = ABX1'1 + • • • + RBX1'1 is prime, we have P; c Q,,
and Qi/Pi is finite since RB/RA is finite. Moreover, the equalities xlil(1)...xSil(s) = 0 for
1 $ i ( l ) , . . . , i ( s ) ^ t i m p l y Q l - - - Q t = 0.

For each i 6 { 1 , . . . , s} such that RA/PI is finite, there exist some sequences of terms
aiA{u),... ,CT*'<!(')(U) such that RA is the union of the subsets CT*J'(I) + P*. The jj formula
Si(u) below is satisfied by x in A:

o(3I2J1... 3SD*) (w = &•*&)
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If x satisfies a A 0 A 7 A S, in B, then we have RB = RA + Qi-

We denote by S the conjunction of the formulas <5; for RA/PI finite, and we write
ip = a A /? A 7 A (5. This formula is satisfied by x in A. We consider the quadruples
B = (Bl,B2,B3,g) which satisfy (*) and such that x satisfies il> in B. It suffices to show
that, concerning such quadruples, there exists a bound for |JBI/ .4I | and \B2/A2\ which
only depends on A.

For each it {1,2}, we have At — RAX^ H 1- RA^M')
 a n ^ B* ~ RBX^I H 1-

ReXi,m(i)\ it follows |Bj/i4i| ^ IRB/RAI™^- Consequently, it suffices to give a bound for
\RB/RA\ which only depends on A. This bound is given by the following:

LEMMA. Let R be a commutative ring with a finitely generated additive group. Let
P\,...,Pk be prime ideals of R with P\...Pk = 0. Then, there exists an integer m such
that, for every commutative ring S with R C S and \S/R\ finite, we have \S/R\ ^ rn if
the following conditions are satisfied for 1 ^ i ^ k:

(1) SPi is a prime ideal of S;

(2) R/Pi finite implies S = R + SPi.

P R O O F : For each i € { 1 , . . . , k}, we write Qt - SP{, Ri = R/Pi and Si = S/Qi. We
first show that there is a bound for |S/(/? + Q()| which only depends on R. If Ri is finite,
we have 5 = R + Qt by (2). So, we can suppose R, infinite. Then, 5; is also infinite since
Qi/Pi is finite like S/R. It follows that the finitely generated Abelian groups (Ri, +)
and (Si,+) are torsion-free, since Ri and Si are commutative integral domains. By [3,
Proposition 3, p.163 and Proposition 5, p.165] Ki = {a/n \ a € Ri and n € N*} and
Li — {a/n \ a e Si and n € N ' } are algebraic extensions of finite degree of Q, and Ri
(respectively Si) is a subgroup of finite index in the integer ring Ri of Ki (respectively
Si of Li).

We have Qi D R = Pj since Qi/Pi is finite and R/Pi is torsion-free. So, the inclusion
R C S induces an injective homomorphism 9t : R+ —• Si which extends to an isomorphism
9i:R~i-> Si. As Si is contained in 0i(R\), we have \S/{R + Qi)\ = |Si/0i(.Ri)| ^ \R\/Ri\.

We have \S/R\ = U \(Qi • • Qi-i + R)/{Qi • • Qi + R)\ with Qx • -Q^ = S for

i = l and <3i • • • Qi = 0 for i = k. For each i e { 1 , . . . , k}, we have

••Qi +

• Qi-i)/(Qi• • • Qi-i n(Q,---Qi + R))

Now, let < be an integer such that (R, +) is generated by t elements. Then, for each

i € {1, • • • ,k}, there are some elements x^i,..., x^t such that Pi = Zx^i + ... -I- Zi;: t .

For each i s { 1 , . . . , A;} each element of Qi • • • Q{_i can be written as

V-
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with &,•(!),...j(i_i) € S for j(l),...,j(i - 1) € {1, ...,*} (for i = 1, we write y = b e S).
For any integers j(l), ...,j(i - 1) € {1,...,*}> the element 6j(i),.-j^-U^ijCi)'' - ^ - l j ^ - i )
necessarily belongs to (Qi • --Q0 + (-ftn(Qi •••Qi-i)) if fy(i),...j(i-i) belongs to R + Qi,
since iij(i) • • -a^-ij-ji-i) belongs to i?fl(Qi • • -Q,-i). So, for each i € { 1 , . . . , A;}, we have

D
P R O O F OF COROLLARY 2 AND COROLLARY 3: First, we prove Corollaries 2 and

3 for the triples (A,B,f) and (C,D,g) of (3). The proof is essentially the same for the
(n + 2)-tuples A B of (2), or the pairs (A, f) and (B, g) of (4).

It suffices to show that, for each triple {A, B,f), and for each integer m ^ 2 such
that mt(/t) = mt(jB) = 0, there exists a 3V3 sentence $ which is satisfied by (A,B,j),
and such that the conclusion of [12, Proposition 2.2] is true for any triple (C, D, g) which
satisfies $ with mt(C) = mt(D) = 0. We consider two finite sequences w and x which
generate A and B, and two sequences of variables u, v such that HDv — 0, |u| = |xZ7| and
|U| = |x|.

For each i e { l , . . . , n } , an element iu € J4 belongs to kerj(/) if and only if (w,w)
satisfies the quantifier-free formula ai(u,u) below:

..,Un) = 0.

Consequently, w satisfies the universal formula P{{u) below:

(Vu!.. .Vvn)(ai(vi,u) -> £,(«!, . . . , « „ ) = 0).

The formula ai(u,i/) also defines ker^y) in C for each triple (C,D,g) and for each se-
quence y C C which satisfies /3t.

For each triple (C, D, g) and for each i € {0,..., n}, we write Ni(g) — f] keij(g); we
man

have ^0(5) = C and Afn(5) = ker(^). For each i G { 1 , . . . , n} , we consider the restriction
fi : A'~l x Ni-i(f) x An~{ -> B of the n-linear map / : yln -> 5 . According to Theorem
2, there exist a V3 formula Vi("l> • • • . "J,+i) a»d some sequences w\,... , u^_, C J4, W\ C
JVi_i(/), lu j + 1 , . . . ,uTn C A, «rn+1 C 5 such that:

(1) ( A . . . , A ^ i - i ( / ) , A - . - , i4,B,/j) satisfies ^ ( l u l , . . . ,vPn+1);

(2) for each (n + 2)-tuple ( £ i , . . . ,En+u h) such that mt(Ex) = ... = mt{En+l)

— 0, and for any sequences ylt... , yn+1, if ( ^ i , . . . , En+i,h) satisfies
*l>i(Vu • • • . J7n+i). t h e n Ei i s generated by y{ and ker^/i).

For each i 6 { 1 , . . . , n}, there exists some sequences of terms T\ (u) , . . . ,rj, (u), r},+ 1 (w)
such that uTj = ^ ( i u ) , . . . ,u^ = Tt

n(w),Wn+l = T},+ 1(X). We consider the V3 formula
ip(u, v) — /3l A • • • A /?„ A <£j A • • • A <pn where, for each i 6 {1, . -. , n}, ^ ( u , v) is obtained
from ipi(u[, • • • iUj,+i) by replacing successively:
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- each variable in v\,... ,MJ,+1 by the corresponding term in u or U;
- each subformula (3t/*)0, where Vi is a variable which represents an element of the i-th
group, by (3vi)(ai{vi,u) A ... A ai-x{vuu) A 6)\
- each subformula (Vi/j)0, where Vi is a variable which represents an element of the i-th
group, by (Vui)[(ai(vi,il) A ... A a>i-i(vi,u)) -> 0].

The triple (̂ 4, B, f) satisfies f(w, x). For each finitely generated triple (C, D, g) such
that mt(C) = mt(D) = 0, and for any sequences y C C and z C D, if (C, D,g) satisfies
ip(y,~z), then C is generated by y and ker(p) since, for each i € { 1 , . . . , n}, Ni_i(g) is
generated by rj(y) and Ni(g).

Then, we define £(«, v) as in the proof of [12, Proposition 2.2], with m instead of r
and s, and we consider the 3V3 sentence $ = (3u)(3?7)E.

Now, we prove Corollaries 2 and 3 for finitely generated finite-by-nilpotent groups.
It suffices to show that, for each finitely generated finite-by-nilpotent group G and for
any integers c,m > 1, if Fc+i(G) is finite and t ( r i (G) / r i + 1 (G)) m = 1 for 1 ^ i ^ c,
then G satisfies a 3V3 sentence $ such that the conclusion of [11, Proposition 1]
is true for any finitely generated finite-by-nilpotent group H which satisfies $ with

We see from the proof of [11, Lemma 1.1] that, for each integer i ^ 1, there exist
a V3 sentence 0* which is true in G and an existential formula 7; which defines I\(if) in
H for any group H which satisfies 0*. We consider the groups A± = r i (G)/r \+ i (G) and
the quadruples Mt = (Au A{, Ai+i,gi), where & is the bilinear map induced by the map
(x,y) -> [x,y].

According to Theorem 2, for each i £ { 1 , . . . , c — 1}, there exist some disjoint
sequences of variables ul}i, u2j, u3>i, some sequences x\ { C A x , x2i C A t , x*3i C A i + X , and
a conjunction of Jt formulas ip*(uij, U2,i,u3ti) such that :

(1) Mi satisfies 'Pi(x*ii,x^i,x3i);

(2) For each quadruple JV = (NuN2,N3,h) such that t(Ar
1)m = t(N2)

m =
t{N3)

m = 1, and for any sequences y1 C Ni: y2 C N2, y3 c N3, if Â
satisfies fi{y 1,^,^3), then Â i = (yj,keri(/i)) and N2 = (y2,ker2(/i)).

For each i £ { 1 , . . . ,c — 1}, we consider the V3 formula ip.C^i.ii^^,^^) in the
language of groups which is obtained from tpl(u\,i,v,2,i,u3j) by doing successively the
substitutions below:

(a) Replace each atomic subformula Ti(vii) = 1, r2(ui2) = 1 or T3(uJ3)
I ! L{TIJ{WI), T2^{W2)) = 1 by the corresponding positive existential iox-

mula 12{T\{W\)), 7i+](T2(w2)) or 7i+2fr3(iO3) f] [ri,i(^i), T2ti(w2)] J.

This step only creates existential quantifiers inside the positive existential
part of each | subformula of <p,*.

(b) Substitute the existential quantifiers as follows: (3wi)6(wi, w) remains as it
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is, but (Eto2)0(to2, to) and (3w3)9(w3,w) respectively become (3w2){yi(w2)A
9(w2,w)) and (3u»3)(7j+1(iO3)A0(io3,to)). This step only creates existential
quantifiers.

(c) Substitute the universal quantifiers as follows: (Viui)0(ioi,uJ) remains as it
is, but (Vio2)0(w2,uJ) and (¥11/3)0(103,10) respectively become (Vio2)('7i(iu2)
—>• 9(w2,w)) and (Vu;3)(7i+1(i03) —y 0(u)3,w)). This step only creates uni-
versal quantifiers, since the existential quantifiers are introduced in 7i(w2)
and Ji+i(w3), which appear in a negative form.

The group G satisfies ¥>i(xi,i, x2,:, x~3,t) for any representatives 5?i,i,~x2,u x3ti of x\ t, xlt,

x*3i in G, I\(G), Fi+1(G). For each finitely generated finite-by-nilpotent group H and for

any sequences yu y2, y3, if if satisfies 0iA...A9i+2Aipi(y1,y2, j/3), and if t(Tj(H)/rj+1(H))m

= 1 for j = l,i,i+ 1, then we have H = fa, iyeH\ [y,Ti(H)] C Ti+2(H)\) and

?i{H) = (V2, {V G Tt{H) I [H,y] C Ti+2(H)}). It follows Ti+l(H) = ([y^y^T^H)).

Now, we consider a finite sequence x which generates G, a sequence of variables u

with |u| = \x\, and:

(1) some terms Pi(w), ...,pp{u) such that (x;pi(x), ...,pp(x)') is a presentation
of G on x, and the formula px(u) = 1 A ... A pp(u) = 1;

(2) the integer q — |rc+i(C7)|, some terms <J\{u), ...,a9(u) such that Fc+i(G) =
{(7i(x), ...,aq(x)}, and the formula

A

(3) for 1 ̂  i < c — 1, some sequences of terms ^iii(u),^2i(u),^3i(u) such that
?i,i(^).^2,i(^).^3,i(s) a r e representatives of Tu,T2ti,T3ji in G, T^G), Ti+1(G),
and the formula <^(u) which is obtained from <Pj(ui,i,u2,j,U3,i) by replacing
wiIi,U2,t.U3,t with |M(u), |2 , i(s).?3,t(");

(4) some terms Ti(u), ...,TT(U) such that ri(x),...,Tr(x) are representatives in
G of the elements of G/(Gm, F2(G)), and the formula

(Vv){3w1){3w2) [72(102) A (

(5) the sentence 9 = 6\ f\... A 0c+ii

(6) a prime number 7r which does not divide m; for 1 ̂  i ^ c, the integer s(i)
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such that ri(G)/(ri(G)'r"l,ri+1(G))| = s(i), and the sentence

(3«i...3wfW){74(t>i) A ... A74(wf(0) A (V^)[7i(tj) -¥ (3tui)(3w2)[7i(t«i)

A

The conjunction y?(u) of the formulas in (1), (2), (3), (4) is V3, and the conjunction
tp of the sentences in (5), (6) is 3V3. The 3V3 sentence $ = ip A (3u)y is satisfied by x
in G.

Now, let us consider a finitely generated finite-by-nilpotent group H which satisfies
<J>, with t(rj(7f)/ri+i(i7))m = 1 for 1 ^ i ^ c, and a sequence y C H which satisfies y>.

According to (5), 7 i defines r\(i/) in if for 1 ̂  i ^ c+ 1. For 1 ̂  i ^ c, the finitely
generated Abelian groups Aj = rj(G)/Fi+1(G) and Bt = ri(/f)/ri+i(if) are isomorphic
since they satisfy |Ai/.4?m| = \Bi/B?m\ by (6), and t(Ai)m = t(B;)m = 1.

According to (1), the map x —¥ y extends to a homomorphism f : G -* H. By (2),
/ induces an isomorphism from Fc+i(G) to Tc+i(H). For 2 ^ i ^ c, we infer from (3)
and the properties of y ^ that Ti{H) - ([fi,i_i(j7),C2,i-iG7)]>ri+i(#)); consequently, /
induces a surjective homomorphism, and therefore an isomorphism, from Ai to B{. It
follows that / induces an isomorphism from F2(G) to Y^itT)-

By (4), / induces an isomorphism from Ax/Af = G/(Gm,F2(G)) to Bi/B? =
H/(Hm,F2(H)). As Ai and Bx are isomorphic, and t ^ ) " 1 = t(B!)m = 1, it follows
that / induces an injective homomorphism f : A\ -* B\ with \Bi/f(A\)\ prime to m
(see [10, p.66]). In particular, / induces an isomorphism from t(Ai) = A(G)/F2(G) to
t(B0 = A(H)/F2(H).

Consequently, / satisfies the conclusion of [11, Proposition 1]: / is an injective
homomorphism from G to H with /(A(G)) = A(H) and \H/f(G)\ prime to m.
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