A HEREDITARILY INDECOMPOSABLE ASYMPTOTIC ℓ_2 BANACH SPACE

G. ANDROULAKIS and K. BEANLAND*

Department of Mathematics, University of South Carolina, Columbia, SC 29208
e-mail: giorgis@math.sc.edu, beanland@math.sc.edu

(Received 24 February, 2006; revised 24 April, 2006; accepted 2 May, 2006)

Abstract. A hereditarily indecomposable asymptotic ℓ_2 Banach space is constructed. The existence of such a space answers a question of B. Maurey and verifies a conjecture of W. T. Gowers.

2000 Mathematics Subject Classification. 46B20, 46B03.

1. Introduction. A famous open problem in functional analysis is whether there exists a Banach space X such that every (bounded linear) operator on X has the form $\lambda + K$ where λ is a scalar and K denotes a compact operator. This problem is usually called the “scalar-plus-compact” problem [14]. One of the reasons this problem has become so attractive is that by a result of N. Aronszajn and K. T. Smith [7], if a Banach space X is a solution to the scalar-plus-compact problem then every operator on X has a non-trivial invariant subspace and hence X provides a solution to the famous invariant subspace problem.

An important advancement in the construction of spaces with “few” operators was made by W. T. Gowers and B. Maurey [16], [17]. The groundbreaking work [16] provides a construction of a space without any unconditional basic sequence thus solving, in the negative, the long standing unconditional basic sequence problem. The Banach space constructed in [16] is Hereditarily Indecomposable (HI), which means that no (closed) infinite dimensional subspace can be decomposed into a direct sum of two further infinite dimensional subspaces. It is proved in [16] that if X is a complex HI space then every operator on X can be written as $\lambda + S$ where λ is a scalar and S is strictly singular (i.e. the restriction of S on any infinite dimensional subspace of X is not an isomorphism). It is also shown in [16] that the same property remains true for the real HI space constructed in [16]. V. Ferenczi [10] proved that if X is a complex HI space and Y is an infinite dimensional subspace of X then every operator from Y to X can be written as $\lambda_{|Y} + S$ where $\lambda_{|Y} : Y \to X$ is the inclusion map and S is strictly singular. It was proved in [17] that, roughly speaking, given an algebra of operators satisfying certain conditions, there exists a Banach space X such that for every infinite dimensional subspace Y, every operator from Y to X can be written as a strictly singular perturbation of a restriction to Y of some element of the algebra.

The construction of the first HI space prompted researchers to construct HI spaces having additional nice properties. In other words people tried to “marry” the exotic structure of the HI spaces to the nice structure of classical Banach spaces.

*The present paper is part of the Ph.D thesis of the second author which is prepared at the University of South Carolina under the supervision of the first author.
The reasons behind these efforts were twofold. First, by producing more examples of HI spaces having additional well understood properties we can better understand how the HI property effects other behaviors of the space. Second, there is hope that endowing an HI space with additional nice properties could cause the strictly singular and compact operators on the space to coincide giving a solution to the scalar-plus-compact problem.

An open problem that has resisted the attempts of many experts is whether there exists a weak Hilbert HI Banach space. Recall that an infinite dimensional Banach and compact operators on the space to coincide giving a solution to the scalar-plus-compact problem. The reasons behind these efforts were twofold. First, by producing more examples of HI spaces having additional well understood properties we can better understand how the HI property effects other behaviors of the space. Second, there is hope that endowing an HI space with additional nice properties could cause the strictly singular and compact operators on the space to coincide giving a solution to the scalar-plus-compact problem.

In the present paper we construct an HI Banach space which is asymptotic to a Hilbert space. In particular our result strengthens a result of N. Dew [9, 12]. Our approach closely uses the methods and techniques of the paper [12] of I. Gasparis. The norm of our space satisfy for all finite dimensional spaces E such that every finite dimensional space E contains a subspace F such that $\dim F \geq \delta \dim E$, the Banach-Mazur distance between F and $\ell_2^{\dim F}$ is at most equal to C and there is a projection $P : X \to F$ with $\|P\| \leq C$, ($\ell_2^{\dim F}$ denotes the Hilbert space of dimension n). Operator theory on weak Hilbert spaces has been studied in [19, 20].

In particular, the Fredholm alternative has been established for weak Hilbert spaces. Recall that a Banach space X satisfies an upper ℓ_2-estimate for blocks $(i : a_i \neq 0)$ and for any signs $(\epsilon_i)_{i=1}^m \subset \pm 1$ we have

$$\left\| \sum_{i=1}^m \epsilon_i x_i \right\| \leq C \left\| \sum_{i=1}^m x_i \right\| .$$

Maurey [18, pp. 141–142] asked whether there exists an asymptotic ℓ_p HI space for $1 < p < \infty$ and Gowers conjectured the existence of such spaces in [15, p. 112]. Recall that a Banach space X having a Schauder basis (e_i) is called asymptotic ℓ_2 if there exists a constant C such that for any positive integer m, and blocks $(x_i)_{i=1}^m$ of (e_i) with $m \leq x_1$ (i.e. $m \leq \min \text{ supp } x_1$) and for any signs $(\epsilon_i)_{i=1}^m \subset \pm 1$ we have

$$\frac{1}{C} \left(\sum_{i=1}^m \| x_i \|^{2} \right)^{\frac{1}{2}} \leq \left\| \sum_{i=1}^m x_i \right\| \leq C \left(\sum_{i=1}^m \| x_i \|^{2} \right)^{\frac{1}{2}} .$$

In the present paper we construct an HI Banach space which is asymptotic ℓ_2. Our approach closely uses the methods and techniques of the paper [12] of I. Gasparis. The norm of our space X satisfies an upper ℓ_2-estimate for blocks (i.e. there exists a constant C such that for all blocks $(x_i)_{i=1}^m$ of $(e_n)_n$ we have $\| \sum_{i=1}^m x_i \| \leq C \left(\sum_{i=1}^m \| x_i \|^{2} \right)^{\frac{1}{2}}$). In particular our result strengthens a result of N. Dew [9] who constructed an HI space which satisfies an upper ℓ_2-estimate (but not a lower estimate for blocks $(x_i)_{i=1}^m$ with $m \leq x_1$).
S. A. Argyros and I. Deliyanni [2] constructed an HI space which is asymptotic \(\ell_1 \). Recall that a Banach space \(X \) having a Schauder basis \((e_n) \) is called asymptotic \(\ell_1 \) if there exists a positive constant \(C \) such that for every \(m \in \mathbb{N} \) and all blocks \((x_i)_{i=1}^m \) of \((e_n) \) with \(m \leq x_1 \) we have

\[
\left\| \sum_{i=1}^m x_i \right\| \geq C \sum_{i=1}^m \| x_i \|.
\]

Ferenczi [11] constructed a uniformly convex HI space. Argyros and V. Felouzis [3] showed that for every \(p > 1 \) there exists an HI space \(X_p \) such that \(\ell_p \) (or \(c_0 \) when \(p = \infty \)) is isomorphic to a quotient of \(X_p \). In particular the dual space \(X_p^* \) is not an HI space since it contains an isomorph of \(\ell_q \) (for \(1/p + 1/q = 1 \)). Argyros and A. Manoussakis [4], [5] have constructed an HI space whose dual space is saturated with unconditional sequences.

Finally we mention that a Banach space \(Y \) such that every operator on \(Y \) can be written as \(\lambda + S \) with \(S \) strictly singular, has to be indecomposable (i.e. the whole space cannot be decomposable into the direct sum of two infinite dimensional subspaces) but not HI. Indeed, Argyros and A. Manoussakis [4], [5] have constructed such spaces \(Y \) not containing an HI subspace.

Note. After the submission of the current manuscript, the authors became aware of an HI asymptotic \(\ell_p \) Banach spaces (for \(1 < p < \infty \)) constructed independently by Deliyanni and Manoussakis [8]. Their construction and methods are different from ours. In particular the selection of special functionals in the two constructions is different.

2. The construction of the space \(X \).

In this section we construct a Banach space \(X \). We shall prove in Section 3 that \(X \) is asymptotic \(\ell_2 \) and in Section 4 that \(X \) is HI. The construction makes use of the Schreier families \(S_\xi \) (for \(\xi < \omega \)) that are defined in the following way, See [1]. Set \(S_0 = \{\{n\} : n \in \mathbb{N}\} \cup \{\emptyset\} \). After defining \(S_\xi \) for \(\xi < \omega \), set

\[
S_{\xi+1} = \{\bigcup_{i=1}^n F_i : n \in \mathbb{N}, n \leq F_1 < \cdots < F_n, F_i \in S_\xi\}.
\]

(here we assume that the empty set satisfies \(\emptyset < F \) and \(F < \emptyset \) for any set \(F \)). Important properties of the Schreier families are that they are hereditary (i.e if \(F \in S_\xi \) and \(G \subset F \) then \(G \in S_\xi \)), spreading (i.e if \((p_i)_{i=1}^m \in S_\xi \) and \(p_i \leq q_i \) for all \(i \leq n \) then \((q_i)_{i=1}^m \in S_\xi \)), and they have the convolution property (i.e. if \(F_1 < \cdots < F_n \) are each members of \(S_\alpha \) such that \(\{\min F_i : i \leq n\} \) belongs to \(S_\beta \) then \(\bigcup_{i=1}^n F_i \) belongs to \(S_{\alpha+\beta} \)). For \(E \subset \mathbb{N} \) we say \((E_i)_{i=1}^n \) is \(S_\xi \)-admissible if \(E_1 < E_2 < \cdots < E_n \) and \((\min E_i)_{i=1}^n \in S_\xi \).

Let \([\mathbb{N}]^\infty\) denote the collection of infinite sequences of positive integers and for \(M \in [\mathbb{N}] \) let \([M]\) denote the collection of infinite sequences of elements of \(M \). Let \(c_{00} \) denote the vector space of the finitely supported scalar sequences and \((e_n) \) denote the unit vector basis of \(c_{00} \).

Using Schreier families we define repeated hierarchy averages as in [12]. For \(\xi < \omega \) and \(M \in [\mathbb{N}] \), we define a sequence \((\xi_n^M)_{n=1}^\infty\), of elements of \(c_{00} \) whose supports are successive subsets of \(M \), as follows.
For $\xi = 0$, let $[\xi]_m^M = c_{m,\xi}$ for all $n \in \mathbb{N}$, where $M = (m_n)$. Assume that $([\xi]_m^M)_{n=1}^{\infty}$ has been defined for all $M \in [\mathbb{N}]$. Set
\[[\xi + 1]_1^M = \frac{1}{\min M} \sum_{i=1}^{\min M} [\xi]_i^M. \]

Suppose that $[\xi + 1]_1^M < \cdots < [\xi + 1]_n^M$ have been defined. Let
\[M_n = \{ m \in M : m > \max \supp [\xi + 1]_n^M \} \text{ and } k_n = \min M_n. \]
Set
\[[\xi + 1]_{n+1}^M = \frac{1}{k_n} \sum_{i=1}^{k_n} [\xi]_i^M. \]

For $x \in c_{00}$ let $(x(k))_{k \in \mathbb{N}}$ denote the coordinates of x with respect to (e_k) (i.e. $x = \sum_k x(k)e_k$). For $M \in [\mathbb{N}]$, $\xi < \omega$ and $n \in \mathbb{N}$ define $(\xi)_n^M \in c_{00}$ by $(\xi)_n^M(k) = \sqrt{[\xi]_n^M(k)}$ for all $k \in \mathbb{N}$. It is proved in [13] that for every $M \in [\mathbb{N}]$ and $\xi < \omega$, $\sup \{ \sum_{k \in F} [\xi]_1^M(k) : F \in S_{\xi-1} \} < \xi / \min M$. From this it follows that

for every $\xi < \omega$ and $\varepsilon > 0$ there exists $n \in \mathbb{N}$ such that for all $M \in [\mathbb{N}]$ with
\[n \leq \min M \text{ we have that sup} \left\{ \left(\sum_{k \in F} ((\xi)_1^M(k))^{2} \right)^{1/2} : F \in S_{\xi-1} \right\} < \varepsilon. \] (1)

Definition 2.1. Let $(u_n)_n$ be a normalized block basis of $(e_n)_n$, $\varepsilon > 0$ and $1 \leq \xi < \omega$. Set $p_n = \min \supp u_n$ for all $n \in \mathbb{N}$ and $P = (p_n)$.

1. An (ε, ξ) squared average of $(u_n)_n$ is any vector that can be written in the form $\sum_{n=1}^{\infty} (\xi)_1^R(p_n)u_n$, where $R \in [P]$ and $\sup (\sum_{k \in F} ((\xi)_1^R(k))^{2})^{1/2} : F \in S_{\xi-1} < \varepsilon$.
2. A normalized (ε, ξ) squared average of $(u_n)_n$ is any vector u of the form $u = v/\|v\|$ where v is a (ε, ξ) squared average of $(u_n)_n$. In the case where $\|v\| \geq 1/2$, u is called a smoothly normalized (ε, ξ) squared average of $(u_n)_n$.

In order to define the asymptotic ℓ_2 HI space X we fix four sequences $M = (m_i)$, $L = (l_i)$, $F = (f_i)$ and $N = (n_i)$ of positive integers that are defined as follows. Let $M = (m_i)_{i \in \mathbb{N}} \in [\mathbb{N}]$ be such that $m_1 > 246$ and $m_i^2 < m_{i+1}$ for all $i \in \mathbb{N}$. Choose $L = (l_i)_{i \in \mathbb{N}} \in [\mathbb{N}]$ such that and $2^i > m_i$ for all $i \in \mathbb{N}$. Now choose an infinite sequences $N = (n_i)_{i \in \mathbb{N}, j \in 0}$ and $F = (f_i)_{i \in \mathbb{N}}$ such that $n_0 = 0$, $l_j(f_j + 1) < n_j$ for all $j \in \mathbb{N}$, $f_1 = 1$ and for $j \geq 2$,
\[f_j = \max \left\{ \sum_{1 \leq i < j} \rho_i n_i : \rho_i \in \mathbb{N} \cup \{ 0 \}, \prod_{1 \leq i < j} m_i^{\rho_i} < m_j \right\}. \] (2)

We now define appropriate trees.

Definition 2.2. A set T is called an appropriate tree if the following four conditions hold:

1. T is a finite set and each element of T (which is called a node of T) is of the form (t_1, \ldots, t_m) where $n \in \mathbb{N}$, $t_{i-2} \in M \cup \{ 0 \}$ for $1 \leq i \leq n$ (these nodes are called the M-entries of (t_1, \ldots, t_m)), t_{i-1} is a finite subset of \mathbb{N} for $1 \leq i \leq n$, and t_{i-1} is a rational number of absolute value at most equal to 1 for $1 \leq i \leq n$.
We make the convention that the empty tree belongs to an interval of integers then we define the restriction of \(T \) on \(I \). For \(\sigma, \tau \in T \) we also write \(\sigma = \tau \) to denote \(\sigma < \tau \) or \(\sigma = \tau \).

For \(\alpha \in T \) the elements \(\beta \in T \) satisfying \(\beta < \alpha \) (respectively \(\alpha < \beta \)) are called the predecessors (resp. successors) of \(\alpha \). If \((t_1, \ldots, t_{3n}) \in T \) then the length of \((t_1, \ldots, t_{3n}) \) is denoted by \(|(t_1, \ldots, t_{3n})| \) and it is equal to \(3n \). There exists a unique element of \(T \) which has length 3 and it is called the root of \(T \), and it is the minimum element of \(T \) with respect to \(< \). Every element \(\alpha \in T \) except the root of \(T \) has a unique immediate predecessor which is denoted by \(\alpha^- \). If \(\alpha \) is the root of \(T \) set \(\alpha^- = \emptyset \). If \((t_1, \ldots, t_{3n}) \in T \) then \((t_1, \ldots, t_{3i}) \in T \) for all \(1 \leq \ell \leq n \). The nodes of \(T \) without successors are called terminal. If \(\alpha \) is terminal \(\alpha = (t_1, \ldots, t_{3n}) \) then \(t_{3n-2} = 0 \) and \(t_{3i-2} \in M \) for \(1 \leq i < n \). If \(\beta = (t_1, \ldots, t_{3k}) \) is non-terminal then \(t_{3i-2} \in M \) for \(1 \leq i \leq k \). If \(\alpha \in T \) is non-terminal, then the set of nodes \(\beta \in T \) with \(\alpha < \beta \) and \(|\beta| = |\alpha| + 3 \) are called immediate successors of \(\alpha \). Also \(D_\alpha \) denotes the set of immediate successors of \(\alpha \).

If \(\alpha \in T \) then the last three entrees of \(\alpha \) will be denoted by \(m_\alpha \), \(I_\alpha \) and \(y_\alpha \) respectively. If \(\alpha \) is the root of \(T \) then \(m_\alpha \) (resp. \(I_\alpha \)) is called the weight of \(T \), denoted by \(w(T) \) (resp. the support of \(T \) denoted by \(\text{supp} \ (T) \)). If \(\alpha \) is a terminal node of \(T \) then \(I_\alpha = \{ p_\alpha \} \) for some \(p_\alpha \in N \). If \(\alpha \) is a non-terminal node of \(T \) then \(I_\alpha = \bigcup \{ I_\beta : \beta \in D_\alpha \} \) and for \(\beta, \delta \in D_\alpha \) with \(\beta \neq \delta \) we have either \(I_\beta < I_\delta \) or \(I_\delta < I_\beta \).

If \(\alpha \in T \) is non-terminal and \(m_\alpha = m_{2j} \) for some \(j \), then \((I_\beta)_{\beta \in D_\alpha} \) is \(S_{n_{2j}^-} \)-admissible and \(\sum_{\beta \in D_\alpha} \gamma_\beta^2 \leq 1 \).

Now set
\[
G = \{ T : T \text{ is an appropriate tree} \}.
\]

We make the convention that the empty tree belongs to \(G \).

If \(T_1, T_2 \in G \) then we write \(T_1 < T_2 \) if \(\text{supp}(T_1) < \text{supp}(T_2) \). If \(T \in G \) and \(I \) is an interval of integers then we define the restriction of \(T \) on \(I \), \(T|_I \), to denote the tree resulting from \(T \) by keeping only those \(\alpha \in T \) for which \(I_\alpha \cap I \neq \emptyset \) and replacing \(I_\alpha \) by \(I_\alpha \cap I \) for all \(\alpha \in T \) such that \(I_\alpha \cap I \neq \emptyset \). It is easy to see that \(T|_I \in G \).

If \(\alpha \in T \) set \(T_\alpha = \{ \beta' : \alpha \leq \beta \} \) (for \(\alpha = (t_1, \ldots, t_{3n}) \) let \(\beta' = (t_{3n+1}, \ldots, t_{3m}) \)). Clearly \(T_\alpha \in G \). For \(T \in G \) and \(\alpha_0 \) the root of \(T \), define \(-T \) by changing \(t_3 \) to \(-t_3 \) in every node \((t_1, t_2, t_3, \ldots)\) of \(T \) and keeping everything else in \(T \) unchanged.

Define an injection
\[
\sigma : \{(T_1, \ldots, T_n) : n \in N, T_i \in G (i \leq n)\} \to \{m_{2j} : j \in N\}
\]
such that \(\sigma(T_1, \ldots, T_n) > w(T_i) \) for all \(1 \leq i \leq n \).

Definition 2.3.

(1) For \(j \in N \), a collection \((T_i)_{i=1}^n \subseteq G \) is called \(S_j \) admissible if \(\text{supp} \ T_\ell \)^n_{\ell=1} \) is \(S_j \)-admissible.

(2) A collection of \(S_{n_{2j}^-} \)-admissible trees \((T_\ell)_{\ell=1}^n \subseteq G \) is called \(S_{n_{2j}^-} \)-dependent if \(w(T_1) = m_{2j} \) for some \(j_1 \geq j + 1 \) and \(\sigma(T_1, \ldots, T_{i-1}) = w(T_i) \) for all \(2 \leq i \leq n \).

(3) Let \(G_0 \subseteq G \). A collection of \(S_{n_{2j}^-} \)-admissible trees \((T_\ell)_{\ell=1}^n \subseteq G \) is said to admit an \(S_{n_{2j}^-} \)-dependent extension in \(G_0 \) if there exist \(k \in N \cup \{0\} \), \(L \in N \) and
\[R_1 < \cdots < R_{k+1} < \cdots < R_{k+n} \in G_0, \quad S_{n_{2j+1}} \text{-dependent where } R_{k+i}|_{[L, \infty)} = T_i \text{ for all } 1 \leq i \leq n. \]

(4) We say that \(G_0 \subset G \) is self dependent if for all \(j \in \mathbb{N}, \ T \in G_0 \) and \(\alpha \in T \) is non terminal such that \(m_\alpha = m_{2j+1} \), the family \(\{T_\beta : \beta \in D_\alpha\} \) admits an \(S_{n_{2j+1}} \)-dependent extension in \(G_0 \).

A set \(G_0 \subset G \) is symmetric if \(-T \in G_0 \) whenever \(T \in G_0 \); \(G_0 \) is closed under restriction to intervals if \(T|_J \in G_0 \) whenever \(T \in G_0 \) and \(J \subset \mathbb{N} \) an interval.

Definition 2.4. Let \(\Gamma \) be the maximal self-dependent, symmetric subset of \(G \) closed under restrictions to intervals such that for every \(T \in \Gamma \) and \(\alpha \in T \), with \(m_\alpha = m_{2j+1} \) for some \(j \in \mathbb{N} \) and \(D_\alpha = \{\beta_1, \ldots, \beta_n\} \) the sequence \((\gamma_\beta)_\alpha^{n} \) is a non-increasing sequence of positive rationals satisfying \(\sum_{i=1}^{n} \gamma_\beta^2 \leq 1 \). (Such a maximal set \(\Gamma \) is obtained by considering the union of all subsets of \(G \) satisfying the properties mentioned in this definition.)

Notation 2.5. Let \(T \in \Gamma \) and \(\alpha \in T \).

1. Define the height of the tree \(o(T) = \max(|\beta| : \beta \in T) \).
2. Let \(m(\alpha) = \Pi_{\beta \prec \alpha} m_\beta \) if \(|\alpha| > 3 \), while \(m(\alpha) = 1 \) if \(|\alpha| = 3 \).
3. If \(m_\alpha = m_i \) for some \(i \in \mathbb{N} \) set \(n_\alpha = n_i \). Also set \(n(\alpha) = \sum_{\beta \prec \alpha} n_\beta \) if \(|\alpha| > 3 \), while \(n(\alpha) = 0 \) if \(|\alpha| = 3 \).
4. Let \(\gamma(\alpha) = \Pi_{\beta \prec \alpha} \gamma_\beta \) if \(|\alpha| > 3 \), while \(\gamma(\alpha) = 1 \) if \(|\alpha| = 3 \).

Let \((e_\alpha^n)_n \) denote the biorthogonal functionals to the unit vector basis of \(c_{00} \). Given \(T \in \Gamma \), set

\[
x^*_T = \sum_{\alpha \in \max T} \frac{\gamma(\alpha) n_\alpha}{m(\alpha)} e^*_\alpha
\]

where \(\max \{x^*_T : T \in \Gamma\} \) is the set of terminal nodes of \(T \) and \(I_\alpha = \{p_\alpha\} \) for \(\alpha \in \max T \).

Let \(\mathcal{N} = \{x^*_T : T \in \Gamma\} \) and define \(X \) to be completion of \(c_{00} \) under the norm \(\|x\| = \sup\{\|x^*(x)\| : x^* \in \mathcal{N}\} \).

Note that for each \(T \in \Gamma \) there is a unique norming functional \(x^*_T \in \mathcal{N} \subset \{x^* : \|x^*\| \leq 1\} \) thus \(w(x^*_T) = w(T) \) and \(\text{supp}(x^*_T) = \text{supp}(T) \). We will often refer to the range of \(x^* \in \mathcal{N} \), \(r(x^*) \), which is the smallest interval containing \(\text{supp}(x^*) \). If \(x^* \in \mathcal{N} \) and \(I \) is an interval of integers, define the restriction of \(x^* \) on \(I \), \(x^*|_I \), by \(x^*|_I(e_i) = x^*(e_i) \) if \(i \in I \) and \(x^*|_I(e_i) = 0 \) if \(i \notin I \). It is then obvious that if \(T \in \Gamma \) and \(I \) is an interval of integers then \(x^*_T|_I = x^*_T|_I \). For \(j \in \mathbb{N} \) and \(T_1, \ldots, T_n \in \Gamma \) we say that \((x^*_T_\ell)_\ell^{n-1} \) is \(S_{n_{2j+1}} \)-dependent (or if it admits an \(S_{n_{2j+1}} \)-dependent extension) if \((T_\ell)_\ell^{n-1} \) is \(S_{n_{2j+1}} \)-dependent (or admits an \(S_{n_{2j+1}} \)-dependent extension). Also, we say that a collection \((x_\ell)_\ell^{n-1} \subset c_{00} \) is \(S_j \)-admissible if \((\text{supp } x_\ell)_\ell^{n-1} \) is \(S_j \)-admissible.

The maximality of \(\Gamma \) implies the following result.

Remark 2.6.

1. \(e^*_\alpha \in \mathcal{N} \) for all \(n \in \mathbb{N} \).
2. For each \(T \in \Gamma \) and \(\alpha \in T \) the tree \(T_\alpha = \{\beta \alpha^- : \beta \in T, \alpha \leq \beta\} \) is in \(\Gamma \).
3. For every \(x^* \in \mathcal{N} \) with \(w(x^*) = m_{2j} \) for some \(j \in \mathbb{N} \) we can write

\[
x^* = \frac{1}{m_{2j}} \sum_{\ell} \gamma_\ell x^*_\ell
\]
for \(\gamma_\ell = \gamma_{\alpha_0} \gamma_{\beta_\ell} \) where \(\alpha_0 \) is the initial node of the corresponding tree, \(\beta_\ell \in D_{\alpha_0} \), \(x^*_\ell = x^*_{\beta_\ell}/(\gamma_{\beta_\ell})_\ell \) are rationals and in \(c_{00} \) with \(\sum_\ell |\gamma_{\beta_\ell}|^2 \leq 1 \) and \(x^*_\ell \in \mathcal{N} \) where \((\text{supp } x^*_\ell)_\ell \) is \(S_{n_2} \)-admissible.

(4) For every \(x^* \in \mathcal{N} \) with \(u(x^*) = m_{2j+1} \) for some \(j \in \mathbb{N} \) we can write

\[
x^* = \frac{1}{m_{2j+1}} \sum_{\ell=1}^t \gamma_\ell x^*_\ell
\]

for \(\gamma_\ell = \gamma_{\alpha_0} \gamma_{\beta_\ell} \) where \(\alpha_0 \) is the initial node of the corresponding tree, \(\beta_\ell \in D_{\alpha_0} \), \(x^*_\ell = x^*_{\beta_\ell}/(\gamma_{\beta_\ell})_\ell \) and \((\gamma_{\beta_\ell})_\ell \) are positive non-increasing rational scalars in \(c_{00} \) with \(\sum_\ell |\gamma_{\beta_\ell}|^2 \leq 1 \). Furthermore there exists \(k \in \mathbb{N} \cup \{0\}, L \in \mathbb{N} \) and \(y^*_1 < \cdots < y^*_{k+1} \leq \cdots \leq y^*_k \) where \((\gamma_\ell)_\ell \) is \(S_{n_{2j+1}} \)-dependent and \(y^*_k \leq |L, \infty| = \gamma^*_k \) for all \(k \leq t \).

Observe that the converses of (3) and (4) also hold. To see this for (3), let \((x^*_\ell)_\ell \) be \(S_{n_2} \) admissible and let scalars \((\gamma_\ell)_\ell \) such that \(\sum_\ell |\gamma_\ell|^2 \leq 1 \) then we have

\[
1/m_{2j} \sum_\ell x^*_\ell \in \mathcal{N}.
\]

3. Preliminary estimates. In this section we make some estimates similar to those in [12] that will be important in the proof that \(X \) is H.I. First we show that \(X \) is asymptotic \(\ell_2 \). Obviously \((e_n)_n \) is a bimonotone unit vector basis for \(X \) since the linear span of \((e_n)_n \) is dense in \(X \) and for finite intervals \(I, J \) of integers with \(I \subset J \) and scalars \((a_n)_n \), we have \(\| \sum_{n \in J} a_n e_n \| \leq \| \sum_{n \in I} a_n e_n \| \) (this follows from the fact that \(\Gamma \) is closed under restrictions to intervals).

We now introduce a short remark.

REMARK 3.1. Let \(i \in \mathbb{N} \) and \(x \in \text{Span}(e_n)_n \). Let \((x^*_j)_j \in \mathcal{N} \) be \(S_{n_i} \)-admissible if \(i \) is even and admit \(S_{n_i} \)-dependent extension if \(i \) is odd, and \((\gamma_j)_j \in c_{00} \) be positive and non-increasing if \(i \) is odd. Define \(J = \{ j : r(x^*_j) \cap r(x) \neq \emptyset \} \) then

\[
\left| \frac{1}{m_i} \sum_{j \in J} \gamma_j x^*_j(x) \right| \leq \left(\sum_{j \in J} |\gamma_j|^2 \right)^{\frac{1}{2}} \| x \|.
\]

Proof. Indeed there exists arbitrarily small \((\eta_j)_j, \eta > 0 \) such that,

\[
\left(\sum_{m \in J} |\gamma_m|^2 \right)^{\frac{1}{2}} + \eta \in \mathcal{Q} \quad \text{and} \quad \gamma_j + \eta_j \in \mathcal{Q}.
\]

For \(j \in J \) let \(\beta_j = (\gamma_j + \eta_j)/\left(\left(\sum_{m \in J} |\gamma_m|^2 \right)^{\frac{1}{2}} + \eta \right) \) \(\in \mathcal{Q} \) such that \(\left(\sum_{j \in J} \beta_j^2 \right)^{\frac{1}{2}} \leq 1 \). If \(i \) is odd then we have that \((\beta_j)_j \) are non-increasing and positive (since \((\gamma_j)_j \) are) and \((x^*_j)_j \in J \)
has a S_m dependent extension (since J is an interval). Thus $1/m_i \sum_{j \in J} \beta_j x_j^* \in N$, hence

$$\left| \frac{1}{m_i} \sum_{j} \gamma_j x_j^*(x) \right| \leq \left(\sum_{j} |\gamma_j|^2 \right)^{\frac{1}{2}} + \eta \left| \frac{1}{m_i} \sum_{j} \beta_j x_j^*(x) \right| \leq \left(\sum_{j} |\gamma_j|^2 \right)^{\frac{1}{2}} + \eta \|x\|$$

Since $\eta > 0$ is arbitrary, the result follows.

The next proposition shows that the norm of X satisfies an upper ℓ_2-estimate for blocks.

Proposition 3.2. If $(x_i)_{i=1}^m$ is a normalized block basis of X then for any sequence of scalars (a_i), the following holds:

$$\left\| \sum_{i=1}^m a_i x_i \right\| \leq \sqrt{3} \left(\sum_{i=1}^m |a_i|^2 \right)^{\frac{1}{2}}.$$

Proof. For the purposes of this proposition define $\Gamma_n = \{ T \in \Gamma : o(T) \leq 3n \}$ and $\mathcal{N}_n = \{ x_{T}^* : T \in \Gamma_n \}$. For $x \in c_0$ define $\|x\|_n = \sup \{ x^*(x) : x^* \in \mathcal{N}_n \}$. Notice that the norm $\| \cdot \|$ of X satisfies $\lim_{n \to \infty} \|x\|_n = \|x\|$. We will use induction on n to verify that $\| \cdot \|_n$ satisfies the statement of the proposition.

For $n = 1$, $\mathcal{N}_n = \{ \gamma e_m^* : \gamma \in \mathbb{Q}, |\gamma| \leq 1, m \in \mathbb{N} \}$, and so the claim is trivial.

For the inductive step, let $x^* = 1/m_k \sum_j \gamma_j x_j^* \in \mathcal{N}_{n+1}$ (where $(x_j^*) \subset \mathcal{N}_n$ is S_{mk} admissible and $\sum_j |\gamma_j|^2 \leq 1$) and let

$$Q(1) = \{ 1 \leq i \leq m : \text{there is exactly one } j \text{ such that } r(x_j^*) \cap r(x_i) \neq \emptyset \},$$

and $Q(2) = \{ 1, \ldots, m \}\setminus Q(1)$. Now apply the functional x^* to $\sum_{i=1}^m a_i x_i$ to obtain

$$\left| \frac{1}{m_k} \sum_j \gamma_j x_j^* \left(\sum_{i=1}^m a_i x_i \right) \right| \leq \frac{1}{m_k} \sum_j |\gamma_j| x_j^* \left(\sum_{i=1}^m a_i x_i \right) + \frac{1}{m_k} \sum_j |\gamma_j| x_j^* \sum_{i \in Q(1)} a_i x_i \left(\sum_{i=1}^m a_i x_i \right) \left(\sum_{i \in Q(2)} |a_i|^2 \right)^{\frac{1}{2}} \leq \frac{\sqrt{3}}{m_k} \sum_j |\gamma_j| \left(\sum_{i \in Q(1)} |a_i|^2 \right)^{\frac{1}{2}} + \sum_{i \in Q(2)} |a_i| \left| \frac{1}{m_k} \sum_j \gamma_j x_j^*(x_i) \right|.$$

(3)
by applying the induction hypothesis for \(\sum_{i \in Q(1) \cup r(x_i^*) \cap r(x_i) \neq \emptyset} a_i x_i\). The above estimate continues as follows,

\[
\leq \sum_j |y_j| \left(\sum_{i \in Q(1)} a_i^2 \right)^{\frac{1}{2}} + \left(\sum_{i \in Q(2)} a_i^2 \right)^{\frac{1}{2}} \left(\sum_{i \in Q(1), i \neq r(x_i) \neq \emptyset} |y_j|^2 \right)^{\frac{1}{2}}
\]

\[
\leq \left(\sum_j |y_j|^2 \right)^{\frac{1}{2}} \left(\sum_j \sum_{i \in Q(1)} a_i^2 \right)^{\frac{1}{2}} + \left(\sum_{i \in Q(2)} a_i^2 \right)^{\frac{1}{2}} \left(2 \sum_j |y_j|^2 \right)^{\frac{1}{2}} \leq \sqrt{3} \left(\sum_i |a_i|^2 \right)^{\frac{1}{2}},
\]

(4)

where for the first inequality of (4) we used that \(\sqrt{3} < m_1\), Remark 3.1 and applied the Cauchy-Schwarz inequality. For the second inequality of (4) we used the fact that for each \(j\) there are at most two values of \(i \in Q(2)\) such that \(r(x_i^*) \cap r(x_i) \neq \emptyset\). For the third inequality of (4) we used \(\sum_{\ell} |\gamma_{\ell}|^2 \leq 1\). Combine (3) and (4) to finish the inductive step.

Corollary 3.3. Let \((x_i^*)_{i=1}^n\) be a block basis of \(X\) with \(n \leq x_1\). Then for any sequence of scalars \((a_i)_i\), we have

\[
\frac{1}{m_2} \left(\sum_{i=1}^n |a_i|^2 \right)^{\frac{1}{2}} \leq \left\| \sum_{i=1}^n a_i x_i \right\| \leq \sqrt{3} \left(\sum_{i=1}^n |a_i|^2 \right)^{\frac{1}{2}}.
\]

Proof. Let \((x_i^*)_{i=1}^n\) be a normalized block sequence of \((e_n)\) such that \(n \leq x_1\) and scalars \((a_i)_{i=1}^n\). The upper inequality follows from Proposition 3.2. Note that, \((x_i^*)_{i=1}^n\) is \(S_1\) admissible hence \(S_2\) admissible. Find norm one functionals \((x_i^*)_{i=1}^n \in N\) such that \(r(x_i^*) \subseteq r(x_i)\) and \(x_i^*(x_i) = 1\) for all \(i \leq n\). To establish the lower inequality apply the functional

\[
\frac{1}{m_2} \sum_{i=1}^n \left(a_i / \left(\sum_{i=1}^n a_i^2 \right)^{\frac{1}{2}} \right) x_i^*
\]

(by approximation by rationals the norm of the above is at most one) to \(\sum_{i=1}^n a_i x_i\). □

The next lemma is a variation of the decomposition lemma found in [12] and will be used in the proof of Lemma 3.12 and Proposition 4.1

Lemma 3.4. (Decomposition Lemma) Let \(x^* \in N\). Let \(j \in \mathbb{N}\) be such that \(w(x^*) < m_j\). Then there exists an \(S_j\)-admissible collection \((x^*_\alpha)_{\alpha \in L}\) and a sequence of scalars \((\lambda_\alpha)_{\alpha \in L}\) such that \(L = \bigcup_{\alpha=1}^3 L_\alpha\) and:

1. \(x^* = \sum_{\alpha \in L} \lambda_\alpha x^*_\alpha\).
2. \((\sum_{\alpha \in L_1} |\lambda_\alpha|^2)^{\frac{1}{2}} \leq \frac{1}{m_1}\), \((\sum_{\alpha \in L} |\lambda_\alpha|^2)^{\frac{1}{2}} \leq \frac{1}{w(x^*)}\).
3. \(w(x^*_\alpha) \geq m_j\) for \(\alpha \in L_2\).
4. For \(\alpha \in L_3\) there exists \(|\gamma_\alpha| \leq 1\) and \(p_\alpha \in \mathbb{N}\) such that \(x^*_\alpha = \gamma_\alpha e^*_{p_\alpha}\).
Proof. Since $x^* \in \mathcal{N}$ there exists $T \in \Gamma$ such that $x^* = x^*_T$. Define three pairwise disjoint sets L_1, L_2, L_3 of nodes of T such that for every branch B of T (i.e. a maximal subset of T which is totally ordered with respect to \prec) there is a unique $\alpha \in B$ with $\alpha \in \cup_{i=1}^3 L_i$. For every branch B of T choose a node $\alpha \in B$ which is maximal with respect to \prec such that $m_\alpha - m_j^2$ and all M-entries of α^- are less than m_j. If α is non-terminal and $m_\alpha - m_j$ then $\alpha^+ \in L_1$, where α^+ is the unique \prec-immediate successor of α in B. Thus for $\alpha^+ \in L_1$ we have $m_\alpha - m_j \leq m(\alpha^+) - m_j^3$. If α is non-terminal and $m_\alpha \geq m_j$ then $\alpha \in L_2$. If α is terminal then $\alpha \in L_3$. Let $L = \cup_{i=1}^3 L_i$. For $\alpha \in L$ let

$$x^*_\alpha = x^*_T = \frac{m(\alpha)}{\gamma(\alpha)} x^*_T|_\alpha \text{ and } \lambda_\alpha = \frac{\gamma(\alpha)}{m(\alpha)}.$$

Since $m_j^2 \leq m(\alpha)$ for $\alpha \in L_1$ we have

$$\left(\sum_{\alpha \in L_1} |\lambda_\alpha|^2\right)^{\frac{1}{2}} = \left(\sum_{\alpha \in L_1} \left(\frac{\gamma(\alpha)}{m(\alpha)}\right)^2\right)^{\frac{1}{2}} \leq \frac{1}{m_j^2} \left(\sum_{\alpha \in L_1} |\gamma(\alpha)|^2\right)^{\frac{1}{2}} \leq \frac{1}{m_j^2} ,$$

where the last inequality follows from Definition 2.2 (4) and Definition 2.4 (3). If $\alpha \in L_2$ then $w(T_\alpha) \geq m_j$. If $\alpha \in L_3$ then $x^*_T = \gamma_\alpha e_{p_\alpha}$. Finally, since $m(\alpha) \geq w(x^*)$ for all $\alpha \in L$ we have,

$$\left(\sum_{\alpha \in L} |\lambda_\alpha|^2\right)^{\frac{1}{2}} = \left(\sum_{\alpha \in L} \left(\frac{\gamma(\alpha)}{m(\alpha)}\right)^2\right)^{\frac{1}{2}} \leq \frac{1}{w(x^*)} \left(\sum_{\alpha \in L} |\gamma(\alpha)|^2\right)^{\frac{1}{2}} \leq \frac{1}{w(x^*)} .$$

By applying the following Remark 3.5 (which also appears in [12]) to the set $\{I_\alpha : \alpha \in L\}$ we conclude that $(x^*_\alpha)_{\alpha \in L}$ is S_p-admissible where $p = \max\{m(\alpha) : \alpha \in L\} \leq f_j$ by (1). Thus $(x^*_\alpha)_{\alpha \in L}$ is S_{f_j} admissible.

REMARK 3.5. Let $T \in \Gamma$. Let F be a subset of T consisting of pairwise incomparable nodes. Then $\{I_\alpha : \alpha \in F\}$ is S_p-admissible, where $p = \max\{m(\alpha) : \alpha \in F\}$.

Proof. Proceed by induction on $o(T)$. For $o(T) = 3$ the assertion is trivial. Assume the claim for all $T \in \Gamma$ such that $o(T) < 3n$. Let T such that $o(T) = 3n$ and $w(T) = m_j$. If $|F| = 1$ the assertion is trivial, thus assume $|F| > 1$. Let α_0 be the root of T. Thus for all $\beta \in D_{\alpha_0}$ the claim holds for T_β. For each $\beta \in D_{\alpha_0}$ define, $F_\beta = \{\alpha \setminus \alpha_0 : \alpha \in F, \beta \leq \alpha\} \subset T_\beta$. We know that for every $\beta \in D_{\alpha_0}$ we have that $\{I_\alpha : \alpha \in F_\beta\}$ is S_{p_β} admissible where $p_\beta = \max\{n_\beta(\alpha) : \alpha \in F_\beta\}$ and for every $\alpha \in T_\beta$,

$$n_\beta(\alpha) = \sum_{\gamma \in I_\beta} n_\gamma = \sum_{\gamma < \alpha, \gamma \in \alpha_0} n_\gamma - n_\alpha = n(\alpha) - n_i.$$

Thus $\{I_\alpha : \alpha \in F_\beta\}$ is $S_{n(\alpha) - n_i}$ admissible for all $\beta \in D_{\alpha_0}$. Also $\{I_\beta : \beta \in D_{\alpha_0}\}$ is S_{n_1} admissible so we use the convolution property of Schreier families to conclude that $\{I_\alpha : \alpha \in F\}$ is S_p admissible.

Lemma 3.6. Let (u_n) be a normalized block basis of (e_n). Let $j \in 2\mathbb{N}$ and let y be an $(\varepsilon_f, f_j + 1)$ squared average of (u_n) with $\varepsilon < 1/m_j$. Let $(x^*_\varepsilon)_{\varepsilon \in \mathcal{N}}$ be S_{ξ}-admissible, $\xi \leq f_j$
and \((\gamma_\ell)\) in \(c_{00}\). Then,
\[
\left| \sum_\ell \gamma_\ell x_\ell^s(y) \right| \leq 5 \left(\sum_{\ell : r(x_\ell^s) \cap r(u_n) \neq \emptyset} \left| \gamma_\ell \right|^2 \right)^{\frac{1}{2}}.
\]

Proof. Let \(p_n = \min \text{ supp } u_n, \ R \in [(p_n)]\) and \(y = \sum_n (f_j + 1)^R(p_n)u_n\). Define
\[Q(1) = \{ n : \text{ there is exactly one } \ell \text{ such that } r(x_\ell^s) \cap r(u_n) \neq \emptyset \} \]
and
\[Q(2) = \{ n : \text{ there are at least two } \ell \text{'s such that } r(x_\ell^s) \cap r(u_n) \neq \emptyset \} .\]

\[
\left| \left(\sum_\ell \gamma_\ell x_\ell^s \right) \left(\sum_{n \in Q(1)} (f_j + 1)^R(p_n)u_n \right) \right| \leq \sum_\ell \left| \gamma_\ell \right| x_\ell^s \left(\sum_{n \in Q(1)} (f_j + 1)^R(p_n)u_n \right)
\]
\[
\leq \sum_{\ell : r(x_\ell^s) \cap r(u_n) \neq \emptyset} \left| \gamma_\ell \right| \sqrt{3} \left(\sum_{n \in Q(1)} |(f_j + 1)^R(p_n)|^2 \right)^{\frac{1}{2}} \leq \sqrt{3} \left(\sum_{\ell : r(x_\ell^s) \cap r(u_n) \neq \emptyset} \left| \gamma_\ell \right|^2 \right)^{\frac{1}{2}},
\]
where for the second inequality we used Proposition 3.2 and for the third inequality we used the Cauchy-Schwarz inequality. For \(n \in Q(2),\)
\[
\left| \sum_\ell \gamma_\ell x_\ell^s \left(\sum_{n \in Q(2)} (f_j + 1)^R(p_n)u_n \right) \right| \leq \sum_{n \in Q(2)} (f_j + 1)^R(p_n) \left| \frac{1}{m_j} \sum_{\ell : r(x_\ell^s) \cap r(u_n) \neq \emptyset} \gamma_\ell x_\ell^s(u_n) \right| m_j
\]
\[
\leq \sum_{n \in Q(2)} (f_j + 1)^R(p_n) \left| \sum_{\ell : r(x_\ell^s) \cap r(u_n) \neq \emptyset} \left| \gamma_\ell \right|^2 \right| m_j
\]
\[
\leq \left(\sum_{n \in Q(2)} f_j + 1)^R(p_n)^2 \right)^{\frac{1}{2}} \left(\sum_{n \in Q(2)} \sum_{\ell : r(x_\ell^s) \cap r(u_n) \neq \emptyset} \left| \gamma_\ell \right|^2 \right)^{\frac{1}{2}} m_j
\]
\[
\leq 2 \left(\sum_{\ell : r(x_\ell^s) \cap r(y) \neq \emptyset} \left| \gamma_\ell \right|^2 \right)^{\frac{1}{2}},
\]
where for the second inequality we used Remark 3.1 and that \(j\) is even. For the third inequality we used the fact that \((p_n)_{n \in Q(2)} \in 2S_\xi\) (i.e. the union of two sets each which belongs to \(S_\xi\), \(\xi \leq f_j, \ \varepsilon < 1/m_j\) and the fact that for every \(\ell\) there are at most two values of \(n \in Q(2)\) such that \(r(x_\ell^s) \cap r(u_n) \neq \emptyset\). Combining (5) and (6) we obtain the desired result since
\n\[2 \sqrt{2} + \sqrt{3} < 5. \]

Lemma 3.7. Let \((u_n)\) be a normalized block basis of \((e_n)\). Let \(\varepsilon > 0\) and \(j\) be an even integer. Then there exists a smoothly normalized \((\varepsilon, f_j + 1)\) squared average of \((u_n)\).
Proof. Let $P = (p_n)$ such that $p_n = \min \text{supp } u_n$ for all $n \in \mathbb{N}$. By (1) assume without loss of generality that for all $R \in [P]$, $\sup \{\sum_{k \in F}((f_j + 1)\ell(k)^2)^{1/2} : F \in S_{f_j}\} < \varepsilon$. Suppose that the claim is false. For $1 \leq r \leq l_j$ construct normalized block bases $(u'_i)_i$ of (u_n) as follows. Set

\[u'_i = \sum_n (f_j + 1)_i^P(p_n)u_n. \]

It must be the case that $\|u'_i\| < 1/2$ for all $i \in \mathbb{N}$. Now for each $1 < r \leq l_j$, if $(u'^{-1}_r)_n$ has been defined let $p'^{-1}_r = \min \text{supp } u'^{-1}_r$, $P_{r-1} = (p'^{-1}_r)$ and

\[u'_i = \sum_n (f_j + 1)_i^P(p'^{-1}_r)u'^{-1}_r \frac{u'^{-1}_r}{\|u'^{-1}_r\|}. \]

For all r and i, $\|u'_i\| < 1/2$. Write $u'_i = \sum_{n \in F} a_n u_n$ for some finite set $F \subset \mathbb{N}$ and $a_n > 0$ with $(u_n)_{n \in F}$ being $S_{(f_j+1)_i}$-admissible and $(\sum_{n \in F} a^2_n)^{1/2} > 2^{l_j-1}$. For $n \in F$ let $u^*_n \in \mathcal{N}$, $\|u^*_n\| = u^*_n(u_n) = 1$ and supp $u^*_n \subset r(u_n)$. Set

\[x^* = \frac{1}{m_j} \sum_{n \in F} \left(a_n / \left(\sum_{m \in F} a^2_m \right)^{1/2} \right) u^*_n. \]

Since $(f_j + 1)_j < n_j$ and j is even, we have by rational approximation that $\|x^*\| \leq 1$. Thus

\[\frac{1}{2} > \|u'^i_j\| \geq x^*(u'^i_j) = \frac{1}{m_j} \sum_{n \in F} \frac{a_n}{\sum_{m \in F} a^2_m} u^*_n \left(\sum_{n \in F} a_n u_n \right) \geq \frac{2^{l_j-1}}{m_j}, \]

contradicting that $m_j \leq 2^{l_j}$.

Lemma 3.8. Let $(u_n)_n$ be a normalized block basis of $(e_n)_n$ and $j_0 \in \mathbb{N}$. Suppose that $(y_k)_k$ is a block basis of $(u_n)_n$ so that y_k is a smoothly normalized $(\varepsilon_k, f_{2j_0} + 1)$ squared average of $(u_n)_n$ with $\varepsilon_k < 1/m_{2j_k}$ and $j_0 < 2j_1 < 2j_2 < \cdots$. Let $(x^*_m)_m \subset \mathcal{N}$ be S_{ξ} admissible, $\xi < n_{j_0}$ and $(\gamma_m)_m, (\beta_k)_k \in c_0$. Then

\[\left| \sum_m \gamma^*_m x^*_m \left(\sum_k \beta_k y_k \right) \right| \leq 22 \left(\sum_m |\gamma^*_m|^2 \right)^{1/2} \left(\sum_k |\beta_k|^2 \right)^{1/2}. \]

Proof. Define the following two sets,

\[Q(1) = \{k : \text{there is exactly one } m \text{ such that } r(x^*_m) \cap r(y_k) \neq \emptyset\}; \]

\[Q(2) = \{k : \text{there are at least two } m \text{'s such that } r(x^*_m) \cap r(y_k) \neq \emptyset\}. \]
\[
\sum_{m} \gamma_{m} x_{m}^{*} \left(\sum_{\{k \in Q(1) : r(x_{m}^{*}) \cap r(y_{k}) \neq \emptyset\}} \beta_{k} y_{k} \right) + \sum_{m} \gamma_{m} x_{m}^{*} \left(\sum_{\{k \in Q(2)\}} \beta_{k} y_{k} \right)
\]
\[
\leq \sum_{m} |\gamma_{m}| \sqrt{3} \left(\sum_{\{k \in Q(1) : r(x_{m}^{*}) \cap r(y_{k}) \neq \emptyset\}} |\beta_{k}|^{2} \right)^{1/2} + \sum_{k \in Q(2)} |\beta_{k}| \left(\sum_{\{m : r(x_{m}^{*}) \cap r(y_{k}) \neq \emptyset\}} |\gamma_{m}|^{2} \right)^{1/2}
\]
\[
+ 10 \sum_{k \in Q(2)} |\beta_{k}| \left(\sum_{\{m : r(x_{m}^{*}) \cap r(y_{k}) \neq \emptyset\}} |\gamma_{m}|^{2} \right)^{1/2} \leq 2 \left(\sum_{m} |\gamma_{m}|^{2} \right)^{1/2} \left(\sum_{k} |\beta_{k}|^{2} \right)^{1/2}
\]
\[
+ 20 \left(\sum_{m} |\gamma_{m}|^{2} \right)^{1/2} \left(\sum_{k} |\beta_{k}|^{2} \right)^{1/2} \leq 22 \left(\sum_{m} |\gamma_{m}|^{2} \right)^{1/2} \left(\sum_{m} |\gamma_{m}|^{2} \right)^{1/2}.
\]

For the first inequality we used Proposition 3.2. For the second inequality we applied the Cauchy-Schwarz inequality in the first term of the sum and in the second term of the sum we used the fact that \(\xi < n_{j_{0}} < f_{2j_{0}} \) for all \(k \) to apply Lemma 3.6. The "10" in the second part of the second inequality comes from the fact that \(y_{k} \) is smoothly normalized. For the third inequality we used the Cauchy-Schwarz inequality. The "20" after the third inequality comes from the fact that for every \(m \) there are at most two values of \(k \in Q(2) \) such that \(r(x_{m}^{*}) \cap r(y_{k}) \neq \emptyset \).

Lemma 3.9. Let \((u_{n})_{n} \) be a normalized block basis of \((e_{n})_{n} \). Suppose that \((y_{j})_{j} \) is a block basis of \((u_{n})_{n} \) so that \(y_{j} \) is a smoothly normalized \((\varepsilon_{j}, f_{2j} + 1) \) squared average of \((u_{n})_{n} \) with \(\varepsilon_{j} < 1/m_{2j} \). Then there exists a subsequence \((y_{j})_{j \in I} \) of \((y_{j})_{j} \) such that for every \(j_{0} \in \mathbb{N} \), \(j_{1}, j_{2}, \ldots \in I \) with \(j_{0} < 2j_{1} < 2j_{2} < \ldots \), \(x^{*} \in \mathcal{N} \) with \(w(x^{*}) \geq m_{j_{0}} \) and scalars \((\beta_{j})_{j} \in c_{00} \) we have that:

1. If \(w(x^{*}) < m_{2j_{0}} \) then
 \[
 |x^{*} \left(\sum_{k} \beta_{k} y_{jk} \right)| < \frac{5}{m_{e}} \left(\sum_{\{k : r(x^{*}) \cap r(y_{jk}) \neq \emptyset\}} |\beta_{k}|^{2} \right)^{1/2},
 \]
 where \(m_{e} = m_{j_{0}} \) if \(w(x^{*}) = m_{j_{0}} \) and \(m_{e} = m_{j_{0}}^{2} \) if \(w(x^{*}) > m_{j_{0}} \).
2. If \(m_{2j_{0}} \leq w(x^{*}) < m_{2j_{0}+1} \) for some \(s \geq 1 \) then
 \[
 |x^{*} \left(\sum_{k \neq s} \beta_{k} y_{jk} \right)| < \frac{5}{m_{j_{0}}^{s}} \left(\sum_{\{k : r(x^{*}) \cap r(y_{jk}) \neq \emptyset\}} |\beta_{k}|^{2} \right)^{1/2}.
 \]

Proof. Lemma 3.7 assures the existence the block sequence \((y_{j})_{j} \) such that each \(y_{j} \) is a smoothly normalized \((\varepsilon_{j}, f_{2j} + 1) \) squared average of \((u_{n})_{n} \). Let \(T = (t_{n}) \), where \(t_{n} = \text{min supp} u_{n} \). Choose \(I = (j'_{k})_{k} \in [\mathbb{N}] \) such that, \(j'_{k} \) is an arbitrary integer,
\[
\sum_{i \succ k} \varepsilon_{j_i}^2 < \varepsilon_k^2 \quad \text{and} \quad \left(\sum_{i \prec k} \|y_i\|_i^2 \right)^{\frac{1}{2}} \leq \frac{m_{2k}}{m_{2k-1}}.
\]

Let \(j_0 \in \mathbb{N}, j_1, j_2, \ldots \in I\) with \(j_0 < 2j_1 < 2j_2 < \ldots\) and \(x^+ \in \mathcal{N}\) such that \(m_{j_0} \leq w(x^+) = m_i < m_{2j_1}\). By definition \(j_k = v_k / \|v_k\|\), where \(v_k = \sum_n (f_{2k} + 1)^{R_k} (t_n) u_n\) and \(R_k \in ([t_n])\) is chosen as in Definition 2.1. Let \(x^+ = 1/m_1 \sum_{\ell} \gamma_\ell x^+_{\ell}\) for some \(i\) where \(\sum_{\ell} |\gamma_\ell|^2 \leq 1\), \((x^+_{\ell})_i\) is \(S_n\)-admissible and \(i < 2j_1\). Define the following two sets,

\[
Q(1) = \{ n : \text{there is exactly one } \ell \text{ such that } r(x^+_{\ell}) \cap r(u_n) \neq \emptyset \},
\]

\[
Q(2) = \{ n : \text{there are at least two } \ell \text{'s such that } r(x^+_{\ell}) \cap r(u_n) \neq \emptyset \}.
\]

We proceed with the case \(n \in Q(1)\).

\[
\left| \frac{1}{w(x^+)} \sum_{\ell} \gamma_\ell x^+_{\ell} \left(\sum_k \frac{\beta_k}{\|v_k\|} \sum_{\{n \in Q(1) : r(x^+_{\ell}) \cap r(u_n) \neq \emptyset\}} (f_{2k} + 1)^{R_k} (t_n) u_n \right) \right|
\leq \frac{2}{w(x^+)} \sum_{\ell} |\gamma_\ell| \left(\sum_k \frac{\beta_k}{\|v_k\|} \sum_{\{n \in Q(1) : r(x^+_{\ell}) \cap r(u_n) \neq \emptyset\}} (f_{2k} + 1)^{R_k} (t_n) u_n \right)
\leq \frac{2\sqrt{3}}{w(x^+)} \sum_{\ell} |\gamma_\ell| \left(\sum_{\{k : r(x^+_{\ell}) \cap r(u_n) \neq \emptyset\}} \sum_{\{n \in Q(1) : r(x^+_{\ell}) \cap r(u_n) \neq \emptyset\}} |\beta_k|^2 \left((f_{2k} + 1)^{R_k} (t_n) \right)^2 \right)^{\frac{1}{2}}
\leq \frac{4}{w(x^+)} \left(\sum_{\ell} \sum_{\{k : r(x^+_{\ell}) \cap r(u_n) \neq \emptyset\}} |\beta_k|^2 \right)^{\frac{1}{2}} \leq \frac{4}{w(x^+)} \left(\sum_{\ell} \sum_{\{k : r(x^+_{\ell}) \cap r(u_n) \neq \emptyset\}} |\beta_k|^2 \right)^{\frac{1}{2}} \leq \frac{4}{w(x^+)} \sum_{\ell} |\gamma_\ell|^2 \left(\sum_{\{k : r(x^+_{\ell}) \cap r(u_n) \neq \emptyset\}} |\beta_k|^2 \right)^{\frac{1}{2}}
\]

where for the first and second inequalities we used the fact that \(\|v_k\| < 1/2\) and Proposition 3.2. For the third inequality we used that \(2\sqrt{3} \leq 4\) and the Cauchy-Schwarz inequality. Notice if \(w(x^+) > m_{j_0}\) by the choice of \(M\) we have \(4/w(x^+) < 4/m_{j_0}^2\). For \(n \in Q(2)\) we have,

\[
\left| \frac{1}{m_1} \sum_{\ell} \gamma_\ell x^+_{\ell} \sum_k \beta_k \sum_{\{n \in Q(2)\}} (f_{2k} + 1)^{R_k} (t_n) u_n \right|
\leq 2 \sum_{\{k : r(x^+_{\ell}) \cap r(u_n) \neq \emptyset\}} |\beta_k| \sum_{\{n \in Q(2)\}} (f_{2k} + 1)^{R_k} (t_n) \left(\frac{1}{m_1} \sum_{\ell} \gamma_\ell x^+_{\ell}(u_n) \right)
\leq 2 \sum_{\{k : r(x^+_{\ell}) \cap r(u_n) \neq \emptyset\}} |\beta_k| \sum_{\{n \in Q(2)\}} (f_{2k} + 1)^{R_k} (t_n) \left(\sum_{\{\ell : r(x^+_{\ell}) \cap r(u_n) \neq \emptyset\}} |\gamma_\ell|^2 \right)^{\frac{1}{2}}
\leq 2 \sum_{\{k : r(x^+_{\ell}) \cap r(u_n) \neq \emptyset\}} |\beta_k| \left(\sum_{\{n \in Q(2)\}} \left((f_{2k} + 1)^{R_k} (t_n) \right)^2 \right)^{\frac{1}{2}} \left(\sum_{\{n \in Q(2)\}} \sum_{\{\ell : r(x^+_{\ell}) \cap r(u_n) \neq \emptyset\}} |\gamma_\ell|^2 \right)^{\frac{1}{2}}, \quad (9)
\]
where for the first inequality we used that \(\|v_{j_0}\| > 1/2 \), for the second inequality we used Remark 3.1 and for the third inequality we used the Cauchy-Schwarz inequality. Note that \((t_n)_{n \in \mathbb{Q}(2)} \) is \(2S_n \) admissible (i.e. it can be written as a union of two sets each of which is \(S_n \) admissible) and \(n_j \leq f_{2j} \). Also note that for every \(\ell \) there are at most two values of \(n \in \mathbb{Q}(2) \) such that \(r(x_y^\ell) \cap r(u_n) \neq \emptyset \), to continue (9) as follows:

\[
\leq 4 \sum_{|k\in\mathbb{Q}(n)\cap\mathbb{R}(y_{j_k})\neq\emptyset|} |\beta_k| |\varepsilon_{j_k}| \left(\sum_{\ell} |y_{\ell}^k|^2 \right)^{\frac{1}{2}} \leq 4 \left(\sum_{|k\in\mathbb{Q}(n)\cap\mathbb{R}(y_{j_k})\neq\emptyset|} |\beta_k|^2 \right)^{\frac{1}{2}} \left(\sum_{\varepsilon_{j_k}} \varepsilon_{j_k}^2 \right)^{\frac{1}{2}}
\]

\[
\leq 8\varepsilon_{j_k} \left(\sum_{|k\in\mathbb{Q}(n)\cap\mathbb{R}(y_{j_k})\neq\emptyset|} |\beta_k|^2 \right)^{\frac{1}{2}} \leq \frac{4}{m_{2j}} \left(\sum_{|k\in\mathbb{Q}(n)\cap\mathbb{R}(y_{j_k})\neq\emptyset|} |\beta_k|^2 \right)^{\frac{1}{2}}.
\]

(10)

Obviously (8), (9) and (10) finish the proof of part (1). Assume for \(s \geq 1, m_{2j} \leq w(x^s) < m_{2j+1} \). Estimate \(x^s(\sum_{k<s} \beta_k y_{j_k}) \) as in (8), (9) and (10) to obtain the same estimate with \(m_{2j} \) replaced by \(m_{2j+1} \). Estimate \(x^s(\sum_{k<s} \beta_k y_{j_k}) \) as follows:

\[
\frac{1}{w(x^s)} \sum_{\ell} y_{\ell} x_{\ell}^s \sum_{k<s} \beta_k y_{j_k} = \sum_{|k<s\in\mathbb{Q}(n)\cap\mathbb{R}(y_{j_k})\neq\emptyset|} |\beta_k| \left(\frac{1}{w(x^s)} \sum_{\ell} y_{\ell} x_{\ell}^s(y_{j_k}) \right)
\]

\[
\leq \sum_{|k<s\in\mathbb{Q}(n)\cap\mathbb{R}(y_{j_k})\neq\emptyset|} |\beta_k| \left(\frac{1}{w(x^s)} \right) \left(\sum_{\ell} |y_{\ell} x_{\ell}^s(y_{j_k})| \right)
\]

\[
\leq \left(\sum_{|k<s\in\mathbb{Q}(n)\cap\mathbb{R}(y_{j_k})\neq\emptyset|} |\beta_k|^2 \right)^{\frac{1}{2}} \left(\frac{1}{w(x^s)} \right) \left(\sum_{\ell} |y_{\ell}^k|^2 \right)^{\frac{1}{2}}
\]

\[
\leq \left(\sum_{|k<s\in\mathbb{Q}(n)\cap\mathbb{R}(y_{j_k})\neq\emptyset|} |\beta_k|^2 \right)^{\frac{1}{2}} \left(\frac{1}{w(x^s)} \frac{m_{2j}}{m_{2j-1}} \right) \leq \frac{1}{m_{2j-1}} \left(\sum_{|k<s\in\mathbb{Q}(n)\cap\mathbb{R}(y_{j_k})\neq\emptyset|} |\beta_k|^2 \right)^{\frac{1}{2}}
\]

where the third inequality comes from equation (7). This finishes the proof of part (2).

\[\square\]

Remark 3.10. Lemma 3.9 will be used several times as follows: Given a normalized block sequence \((u_n) \) of \((e_i) \), Lemma 3.7 will guarantee the existence of a block sequence \((y_j) \) of \((e_n) \) such that each \(y_j \) is a smoothly normalized \((e_j, f_j + 1) \) squared average of \((u_n) \) and \(e_j < 1/m_{2j} \) for all \(j \in \mathbb{N} \). Choose a subsequence \((y_j)_{j \in \ell} \) of \((y_j) \) to satisfy the conclusion of Lemma 3.9. Let \(j_0 \in \mathbb{N} \) and \(j_1, j_2, \ldots \in I \) with \(j_0 < 2j_1 < 2j_2 < \ldots \). Let \(p_k = \min \text{ supp } (y_{j_k}) \) for all \(k \in \mathbb{N}, R \in \{(p_k)\} \),

\[
y = \sum_k (n_{j_k})^R(p_k)y_{j_k}
\]

be a normalized \((1/m_{2j}, m_{j_0}) \) squared average of \((y_j)_{j \in \ell} \). Then the conclusion of Lemma 3.9 will be valid for “\(\beta_k \) = \((n_{j_k})^R(p_k) \)” and for all \(x^s \in \mathcal{N} \) with \(w(x^s) \geq m_{j_0} \).

Lemma 3.11. Let \((y_j)_{j \in \ell}, j_0 \in \mathbb{N} \) and a normalized \((1/m_{j_0}^2, n_{j_0}) \) squared average \(g \) of \((y_j)_{j \in \ell} \) be chosen as in Remark 3.10. Then for any \(S_k \) admissible family \((x_{y}^\ell)_c \in \mathcal{N}, \)
ξ < n_{j_0} where \(w(x^*_\ell) \geq m_{j_0} \) for all \(\ell \) and \((\gamma_\ell)_{\ell} \in c_{00}, \) we have

\[
\left| \sum_{\ell} \gamma_\ell x^*_\ell(g) \right| < \frac{47}{m_{j_0}} \left(\sum_{\{\ell : w(x^*_\ell) > m_{j_0}, r(x^*_\ell)^c \cap r(y) \neq \emptyset\}} |\gamma_\ell|^2 \right)^{\frac{1}{2}} + 6 \left(\sum_{\{\ell : w(x^*_\ell) = m_{j_0}, r(x^*_\ell)^c \cap r(y) \neq \emptyset\}} |\gamma_\ell|^2 \right)^{\frac{1}{2}}.
\]

(11)

Proof. Let \(g = y/\|y\| \) and note that since \(j_0 \) is even, \(\|y\| \geq 1/m_{j_0} \) where \(y = \sum_k (n_{j_0})^R_k (p_k) y_{j_k} \) for \(p_k = \min \text{supp} y_{j_k} \) for all \(k \in \mathbb{N} \) and \(R \in [(p_k)] \). Thus

\[
\left| \sum_{\ell} \gamma_\ell x^*_\ell(g) \right| \leq m_{j_0} \sum_{\ell} |\gamma_\ell| |x^*_\ell(y)|.
\]

(12)

Let \(B = \{\ell : w(x^*_\ell) > m_{j_0}\} \) and \(E = \{\ell : w(x^*_\ell) = m_{j_0}\} \). Define,

\[
Q(1) = \{k : \text{there is exactly one } \ell \text{ such that } r(x^*_\ell) \cap r(y_{j_k}) \neq \emptyset\},
\]

\[
Q(2) = \{k : \text{there are at least two } \ell \text{'s such that } r(x^*_\ell) \cap r(y_{j_k}) \neq \emptyset\}.
\]

For \(k \) in \(Q(2) \) we have,

\[
m_{j_0} \sum_{\ell} |\gamma_\ell| x^*_\ell \left(\sum_{k \in Q(2)} (n_{j_0})^R_k (p_k) y_{j_k} \right)
\leq m_{j_0} \sum_{k \in Q(2)} (n_{j_0})^R_k (p_k) \left(\sum_{\ell : r(x^*_\ell) \cap r(y_{j_k}) \neq \emptyset} |\gamma_\ell||x^*_\ell(y_{j_k})| \right)
\leq m_{j_0} \sum_{k \in Q(2)} (n_{j_0})^R_k (p_k) \left(\sum_{\ell : r(x^*_\ell) \cap r(y_{j_k}) \neq \emptyset} |\gamma_\ell|^2 \right)^{\frac{1}{2}},
\]

(13)

where for the second inequality we used that \(y_{j_k} \)'s are smoothly normalized, and applied Lemma 3.6 since \((x^*_\ell)_{\ell}\) are \(S_\xi \) admissible with \(\xi < n_{j_0} < f_{2j_0} \) for all \(k \). By applying the Cauchy-Schwarz inequality the estimate (13) continues as follows:

\[
\leq 10 m_{j_0} \left(\sum_{k \in Q(2)} (n_{j_0})^R_k (p_k) \right)^{\frac{1}{2}} \left(\sum_{k \in Q(2)} \sum_{\ell : r(x^*_\ell) \cap r(y_{j_k}) \neq \emptyset} |\gamma_\ell|^2 \right)^{\frac{1}{2}}
\leq 10 m_{j_0} \frac{2}{m_{j_0}^2} \left(\sum_{\ell : r(x^*_\ell) \cap r(y) \neq \emptyset} |\gamma_\ell|^2 \right)^{\frac{1}{2}}
\leq \frac{40}{m_{j_0}} \left(\sum_{\ell \in B, r(x^*_\ell) \cap r(y) \neq \emptyset} |\gamma_\ell|^2 \right)^{\frac{1}{2}} + \left(\sum_{\ell \in E : r(x^*_\ell) \cap r(y) \neq \emptyset} |\gamma_\ell|^2 \right)^{\frac{1}{2}}.
\]

(14)

For the second inequality we used the fact that \((p_k)_{k \in Q(2)}\) is \(2S_\xi \) admissible, \(\xi < n_{j_0} \), and that for every \(\ell \) there are at most two values of \(k \in Q(2) \) such that \(r(x^*_\ell) \cap r(y_{j_k}) \neq \emptyset \).
For each \(\ell \) let \(s_\ell \) be the integer \(s \) such that \(m_{2s} \leq w(x_\ell^*) < m_{2s+1} \) and \(r(x_\ell^*) \cap r(y_{js}) \neq \emptyset \) if such \(s \) exists (obviously, no such \(s \) exists if \(\ell \in E \) i.e. it is defined for certain values of \(\ell \in B \)). For \(k \)’s in \(Q(1) \),

\[
m_{j_0} \sum_{\ell} |\gamma_\ell| \left| x_\ell^* \left(\sum_{k \in Q(1)} (n_{j_0})_1^R (p_k) y_{jk} \right) \right| \\
\leq m_{j_0} \left(\sum_{\ell \in B} |\gamma_\ell| \left| x_\ell^* \left(\sum_{k \in Q(1), k \neq s_\ell} (n_{j_0})_1^R (p_k) y_{jk} \right) \right| + \sum_{\ell \in E} |\gamma_\ell| \left| x_\ell^* \left(\sum_{k \in Q(1), k \neq s_\ell} (n_{j_0})_1^R (p_k) y_{jk} \right) \right| \right) \\
\leq m_{j_0} \left(\sum_{\ell \in B} \frac{s}{m_{j_0}} \left(\sum_{k \in Q(1), k \neq s_\ell} (n_{j_0})_1^R (p_k) y_{jk} \right)^2 \right)^{1/2} + \sum_{\ell \in E} \frac{s}{m_{j_0}} \left(\sum_{k \in Q(1), k \neq s_\ell} (n_{j_0})_1^R (p_k) y_{jk} \right)^2 \right)^{1/2} \\
\leq \frac{s}{m_{j_0}} \left(\sum_{\ell \in B} |\gamma_\ell|^2 \right)^{1/2} + 5 \left(\sum_{\ell \in E} |\gamma_\ell|^2 \right)^{1/2} .
\]

For the second inequality of (16) we applied Lemma 3.9. Notice that the \(s_\ell \) were picked to coincide with part (2) of Lemma 3.9. The final inequality of (16) followed from the Cauchy-Schwarz inequality.

For the second part of the right hand side of (15) notice that the only \(\ell \) that appear are the ones for which \(s_\ell \) is defined. Also recall that if \(s_\ell \) is defined then \(w(x_\ell^*) > m_{j_0} \) hence \(\ell \in B \). Thus the second part of the right hand side of (15) can be estimated as follows:

\[
m_{j_0} \sum_{\ell: s_\ell \text{ is defined}} |\gamma_\ell| \left| x_\ell^* \left((n_{j_0})_1^R (p_{s_\ell}) y_{js} \right) \right| \leq m_{j_0} \sum_{\ell: s_\ell \text{ is defined}} |\gamma_\ell| \left| (n_{j_0})^R (p_{s_\ell}) \right| \\
\leq m_{j_0} \left(\sum_{\ell: s_\ell \text{ is defined}} |\gamma_\ell|^2 \right)^{1/2} \left(\sum_{\ell: s_\ell \text{ is defined}} \left| (n_{j_0})_1^R (p_{s_\ell}) \right|^2 \right)^{1/2} \\
\leq \frac{2}{m_{j_0}} \left(\sum_{\ell: s_\ell \text{ is defined}} |\gamma_\ell|^2 \right)^{1/2} ,
\]

where for the second inequality we applied the Cauchy-Schwarz inequality and for the third inequality we used that \((x_{\ell}^*)_{\xi} \) is \(S_\xi \) admissible for \(\xi < n_{j_0} \), hence
\[(p_s) : s_t \text{ is defined} \in 2S_\ell. \text{ The result follows by combining the estimates (12), (13), (14), (15), (16), and (17).} \]

Lemma 3.12. Let \((y_j)_{j \in I}, f_0 \in 2\mathbb{N}\) and a normalized \((1/m_j^2, n_j)\) squared average \(g\) of \((y_j)_{j \in I}\) chosen as in Remark 3.10. Then for any \(S_{n_i}\) admissible family \((x^*_{\ell})_\ell \subset \mathcal{N}, i < j_0\) and \((y_\ell)_{\ell \in I_{c_00}}\), we have

\[
\left| \sum_{\ell} y_\ell x^*_\ell(g) \right| \leq \frac{123}{m_\ell} \left(\sum_{\{\ell : w(x^*_\ell) \neq \gamma_\ell, r(x^*_\ell) \cap r(g) \neq \emptyset\}} |\gamma_\ell|^2 \right)^{\frac{1}{2}} + 6 \left(\sum_{\{\ell : w(x^*_\ell) = \gamma_\ell, r(x^*_\ell) \cap r(g) \neq \emptyset\}} |\gamma_\ell|^2 \right)^{\frac{1}{2}},
\]

where \(m_\ell = \min_\ell \{w(x^*_\ell), m_{j_0}\}\).

Proof. Let \(g = y/||y||\) and since \(j_0\) is even note that \(||y|| \geq 1/m_{j_0}\) where \(y = \sum_k (n_{j_0})_k^2 (p_k) y_{j_k}\) for \(p_k = \min supp y_{j_k}\) for all \(k \in \mathbb{N}\) and \(R \in \{(p_k)\}\). Let \(S = \{\ell : w(x^*_\ell) < m_{j_0}\}, E = \{\ell : w(x^*_\ell) = m_{j_0}\}\) and \(B = \{\ell : w(x^*_\ell) > m_{j_0}\}\). Using Lemma 3.4 for \(\ell \in S\) we write

\[
x^*_\ell = \sum_{m \in L_\ell} \lambda_{\ell,m} x^*_{\ell,m},
\]

where \(L_\ell = \bigcup_{j=1}^3 L_{\ell,j}\) and the following are satisfied:

\[
\left(\sum_{m \in L_{\ell,1}} |\lambda_{\ell,m}|^2 \right)^{\frac{1}{2}} \leq \frac{1}{m_{j_0}^2}, \left(\sum_{m \in L_\ell} |\lambda_{\ell,m}|^2 \right)^{\frac{1}{2}} \leq \frac{1}{w(x^*_\ell)},
\]

where \(L_{\ell,2} = \bigcup_{j=1}^3 L_{\ell,2}\) and the following are satisfied:

\[
\left| \sum_{\ell} \gamma_\ell x^*_\ell(g) \right| \leq \sum_{\{\ell : \lambda_{\ell,m} x^*_{\ell,m}(g) \}} |\gamma_\ell| \sum_{m \in L_\ell} \lambda_{\ell,m} x^*_{\ell,m}(g) + \sum_{\ell \not\in S} \gamma_\ell x^*_\ell(g)
\]

\[
\leq \sum_{\{\ell : \lambda_{\ell,m} x^*_{\ell,m}(g) \}} |\gamma_\ell| \sum_{m \in L_{\ell,2}} \lambda_{\ell,2} x^*_{\ell,2}(g) + \sum_{\ell \not\in S} \gamma_\ell \sum_{m \in L_{\ell,2}} \lambda_{\ell,2} x^*_{\ell,2}(g)
\]

\[
+ \frac{47}{m_{j_0}} \left(\sum_{\{\ell : \lambda_{\ell,m} x^*_{\ell,m}(g) \}} |\gamma_\ell|^2 \right)^{\frac{1}{2}} + 6 \left(\sum_{\{\ell : \lambda_{\ell,m} x^*_{\ell,m}(g) \}} |\gamma_\ell|^2 \right)^{\frac{1}{2}}.
\]

For the second inequality we applied Lemma 3.11. Now since \((x^*_{\ell,m})_m \) is \(S_{j_0}\) admissible and \((x^*_\ell)_{\ell\in I}\) is \(S_{n_i}\) admissible we can use the convolution property of Schreier families to conclude that \((x^*_{\ell,m})_{\ell \in S, m \in L_\ell}\) is \(S_{j_0+n_i}\) and hence \(S_{2j_0}\) admissible. Thus for
“$\xi = 2f_{j_0} < n_{j_0}$ apply Lemma 3.11 to the second term of the sum to obtain,

\begin{align*}
&\left| \sum_{\{\ell \in S\cap \gamma r(g) \neq \emptyset\}} \gamma_\ell \sum_{m \in L_{\ell,2}} \lambda_{\ell,m} x^*_\ell,m(g) \right| \\
&\quad \leq \frac{47}{m_{j_0}} \left(\sum_{\{\ell \in S\cap \gamma r(g) \neq \emptyset\}} |\gamma_\ell|^2 \sum_{m \in L_{\ell,2}} |\lambda_{\ell,m}|^2 \right)^{1/2} + 6 \left(\sum_{\{\ell \in S\cap \gamma r(g) \neq \emptyset\}} |\gamma_\ell|^2 \sum_{m \in L_{\ell,2}} |\lambda_{\ell,m}|^2 \right)^{1/2} \\
&\quad \leq \frac{47}{m_{j_0}} \left(\sum_{\{\ell \in S\cap \gamma r(g) \neq \emptyset\}} |\gamma_\ell|^2 \left(\frac{1}{w(x^*_\ell)} \right)^2 \right)^{1/2} + 6 \left(\sum_{\{\ell \in S\cap \gamma r(g) \neq \emptyset\}} |\gamma_\ell|^2 \left(\frac{1}{w(x^*_\ell)} \right)^2 \right)^{1/2} \\
&\quad \leq \frac{47}{m_{j_0}} \left(\sum_{\{\ell \in S\cap \gamma r(g) \neq \emptyset\}} |\gamma_\ell|^2 \right)^{1/2} + \frac{6}{\min_{\ell} \{w(x^*_\ell)\}} \left(\sum_{\{\ell \in S\cap \gamma r(g) \neq \emptyset\}} |\gamma_\ell|^2 \right)^{1/2} \\
&\quad \leq \frac{53}{m_e} \left(\sum_{\{\ell \in S\cap \gamma r(g) \neq \emptyset\}} |\gamma_\ell|^2 \right)^{1/2}. \quad (21)
\end{align*}

Now separate the first term of (20) into two terms. Recall $g = y/\|y\|$, $\|y\| \geq 1/m_{j_0}$, $(x^*_{\ell,m})_{\ell \in S, m \in L_{\ell}}$ is $S_2 f_{j_0}$ admissible, and apply Lemma 3.8 for “$\xi = 2f_{j_0} < n_{j_0}$,

\begin{align*}
\sum_{m} \gamma_m x^*_m &= \sum_{\{\ell \in S\cap \gamma r(g) \neq \emptyset\}} \gamma_\ell \sum_{m \in L_{\ell,1}} \lambda_{\ell,m} x^*_\ell,m \\
and “$\sum_k \beta_k y_k” = y$ to conclude that,

\begin{align*}
&\left| \sum_{\{\ell \in S\cap \gamma r(g) \neq \emptyset\}} \gamma_\ell \sum_{m \in L_{\ell,2}} \lambda_{\ell,m} x^*_\ell,m(g) \right| \\
&\quad \leq \left| \sum_{\{\ell \in S\cap \gamma r(g) \neq \emptyset\}} \gamma_\ell \sum_{m \in L_{\ell,1}} \lambda_{\ell,m} x^*_\ell,m(g) \right| \\
&\quad + m_{j_0} \left| \sum_{\{\ell \in S\cap \gamma r(g) \neq \emptyset\}} \gamma_\ell \sum_{m \in L_{\ell,1}} \lambda_{\ell,m} y_{\ell,m} e^*_{p(\ell,m)} \sum_k (n_{j_0})_{1} R(p_k) y_{j_k} \right| \\
&\quad \leq 22m_{j_0} \left(\sum_{\{\ell \in S\cap \gamma r(g) \neq \emptyset\}} |\gamma_\ell|^2 \sum_{m \in L_{\ell,1}} |\lambda_{\ell,m}|^2 \right)^{1/2} \\
&\quad + m_{j_0} \left| \sum_{\{\ell \in S\cap \gamma r(g) \neq \emptyset\}} \gamma_\ell \sum_{m \in L_{\ell,1}} \lambda_{\ell,m} y_{\ell,m} (n_{j_0})_{1} R(p_{k(\ell,m)}) \right|, \quad (22)
\end{align*}

where for every $\ell \in S$ and $m \in L_{\ell,3}$, $k(\ell, m)$ is the unique integer k (if any) such that $e^*_{p(\ell,m)}(y_{j_k}) \neq 0$. If no such k exists then the corresponding term is absent from the second part of the sum. Now (22) continues by applying (19), the Cauchy-Schwarz inequality.
and the facts $|\gamma_{i,m}| \leq 1$ and $(k(\ell, m))_{\ell \in S, m \in L_{\ell, 3}} \in S_{n_i+\epsilon_j} \subset S_2 f_{j_0}$ where $2f_{j_0} < n_{j_0}$:

\[
\begin{align*}
&\leq \frac{22m_{j_0}}{m_{j_0}^2} \left(\sum_{\{\ell \in S : x_{\ell}^2 \cap \nu(g) \neq \emptyset\}} |\gamma_{\ell, m}|^2 \right)^{\frac{1}{2}} \\
&+ m_{j_0} \sum_{\{\ell \in S : x_{\ell}^2 \cap \nu(g) \neq \emptyset\}} |\gamma_{\ell, m}| \left(\sum_{m \in L_{\ell, 3}} |\nu(m)| \right)^{\frac{1}{2}} \left(\sum_{m \in L_{\ell, 3}} ((n_{j_0})_1^R (p_{k(\ell, m)}))^2 \right)^{\frac{1}{2}} \\
&\leq \frac{22}{m_{j_0}} \left(\sum_{\{\ell \in S : x_{\ell}^2 \cap \nu(g) \neq \emptyset\}} |\gamma_{\ell, m}|^2 \right)^{\frac{1}{2}} + \frac{m_{j_0}}{\min_{\ell} \{w(x_{\ell}^2)\}} \left(\sum_{\{\ell \in S : x_{\ell}^2 \cap \nu(g) \neq \emptyset\}} |\gamma_{\ell, m}|^2 \right)^{\frac{1}{2}} \\
&\times \left(\sum_{\{\ell \in S : x_{\ell}^2 \cap \nu(g) \neq \emptyset\}} \sum_{m \in L_{\ell, 3}} ((n_{j_0})_1^R (p_{k(\ell, m)}))^2 \right)^{\frac{1}{2}} \leq \frac{22}{m_{j_0}} \left(\sum_{\{\ell \in S : x_{\ell}^2 \cap \nu(g) \neq \emptyset\}} |\gamma_{\ell, m}|^2 \right)^{\frac{1}{2}} \\
&+ \frac{1}{m_{j_0} \min_{\ell} \{w(x_{\ell}^2)\}} \left(\sum_{\{\ell \in S : x_{\ell}^2 \cap \nu(g) \neq \emptyset\}} |\gamma_{\ell, m}|^2 \right)^{\frac{1}{2}} \leq \frac{23}{m_{j_0}} \left(\sum_{\{\ell \in S : x_{\ell}^2 \cap \nu(g) \neq \emptyset\}} |\gamma_{\ell, m}|^2 \right)^{\frac{1}{2}}. \tag{23}
\end{align*}
\]

The result follows by combining (20), (21), (22) and (23).

\[\Box\]

Corollary 3.13. Let $(y_j)_{j \in I}, j_0 \in 2\mathbb{N}$ and a normalized $(1/m_{j_0}^2, n_{j_0})$ squared average of $(y_j)_{j \in I}$ chosen as in Remark 3.10. Then for any $x^* \in \mathcal{N}$ such that $|x^*(g)| > 1/2$ we have that $w(x^*) = m_{j_0}$.

Proof. Let $x^* \in \mathcal{N}$. Assume $w(x^*) \neq m_{j_0}$. Apply Lemma 3.12 for $i = 0$, for (recall that $n_0 = 0$) the S_{n_i} admissible family $(x_{\ell}^0)_{\ell \in I}$ being the singleton $\{x^*\}$ and $\gamma_1 = 1$, to obtain that

\[
|x^*(g)| < \frac{123}{m_e} \leq \frac{123}{m_1} < \frac{1}{2},
\]

(24)

where $m_e = \min(m_{j_0}, w(x^*))$, since $m_1 > 246$.

\[\Box\]

4. **X is a hereditarily indecomposable Banach space.** We now show that X is HI. We proceed by fixing $j \in \mathbb{N}$ and by defining vectors $(g_i)_{i=1}^{p_j}$ and $(z_i)_{i=1}^{p_j}$, functionals $(x_{\ell}^i)_{\ell=1}^{p_j} \in \mathcal{N}$, positive integers $(j_i)_{i=1}^{p_j}$ and $R = (t_i) \in \mathbb{N}$ which will be fixed throughout the section and shall be referred to in the results of the section. By using standard arguments we can assume that any two subspaces, in our case with trivial intersection, are spanned by normalized block bases of (e_{n_i}). Let (u_{n_i}) and (v_{n_i}) be two such normalized block bases of (e_{n_i}) and fix $j \in \mathbb{N}$. Set $P = (p_{n_i})$ and $Q = (q_{n_i})$ where $p_n = \min \text{ supp } u_n$ and $q_n = \min \text{ supp } v_n$ for all $n \in \mathbb{N}$. By passing to subsequences of (p_{n_i}) and (q_{n_i}) and relabeling, assume by (1) that if $R \in [P \cup Q]$ then for $\xi < n_{2j+1}$, sup$(\sum_{k \in F} ((n_{2j+1}))_{1}^R (k))^2 : F \in S_{\xi} < 1/m_{2j+1}^2$. By Lemma 3.7 let $(y_i)_{i=1}^{2n-1}$ (resp. $(y_i)_{i=2n}^{2n}$) be a block sequence of (u_{n_i}) (resp. (v_{n_i})) such that y_1 is a smoothly normalized $(1/m_{2j, f_{2j} + 1})$ squared average of (u_{n_i}) (resp. (v_{n_i})). Apply Lemma 3.9 to $(y_i)_{i=1}^{2n-1}$ and $(y_i)_{i=2n}^{2n}$ to obtain $I_1 \in [2\mathbb{N} - 1]$ and $I_2 \in [2\mathbb{N}]$ such that $(y_i)_{i \in I_1}$ and $(y_i)_{i \in I_2}$ satisfy the statement of Lemma 3.9. For $j_1 \in \mathbb{N}, 2f_{j_1} > 2j + 1$ let g_1 be a normalized $(1/m_{2j_1, 2j_1}^2)$ squared average of $(y_j)_{j \in I_1}$. Let $X_{\ell_1}^i$
\[N \] with \(x_i^*(g_i) > 1/2 \) and \(r(x_i^*) \subset (g_i) \). By Corollary 3.13 we have that \(w(x_i^*) = m_{2j_i} \). Let \(m_{2j_2} = \sigma(x_i^*) \). Let \(g_2 \) be a normalized \((1/m_{2j_2}^2, n_{2j_2})\) squared average of \((y_j)_{j \in I_2}\) with \(g_1 < g_2 \). Let \(x_i^2 \in N \) with \(x_i^2(g_2) > 1/2 \) and \(r(x_i^2) \subset (g_2) \). By Corollary 3.13 we have that \(w(x_i^2) = m_{2j_2} \). Let \(m_{2j_2} = \sigma(x_i^2, x_i^2_n) \). Let \(g_3 \) be a normalized \((1/m_{2j_2}^2, n_{2j_2})\) squared average of \((y_j)_{j \in I_2}\) with \(g_1 < g_2 < g_3 \). Let \(x_i^3 \in N \) with \(x_i^3(g_3) > 1/2 \) and \(r(x_i^3) \subset (g_3) \). By Corollary 3.13 we have that \(w(x_i^3) = m_{2j_3} \). Continue similarly to obtain \((g_i)_{i=1}^p \) and \((x_i^p)_{i=1}^p \subset N \) such that:

(a) \(g_i \) is a normalized \((1/m_{2j_i}^2, n_{2j_i})\) squared average of \((y_j)_{j \in I_i}\) for \(i \) odd (resp. \((y_j)_{j \in I_i}\) for \(i \) even).

(b) \(w(x_i^p_i) = m_{2j_i}, r(x_i^p_i) \subset (g_i) \) and \(x_i^p(g_i) > 1/2 \).

(c) \(\sigma(x_i^p, \ldots, x_i^{p-1}) = w(x_i^p) \) for all \(2 \leq i \leq p \).

(d) \(\{g_i : i \leq p\} \) is maximally \(S_{m_{2j+1}} \) admissible.

Let \(z_i = g_i/(x_i^p(g_i)) \). Let \(t_i = \min \supp z_i \) and \(R = (t_i)_i \). The fact that \(X \) is HI will follow from the next proposition.

Proposition 4.1. For all \(x^* \in N \) there exist intervals \(J_1 < \cdots < J_s \subset \{1, \ldots, p\} \) such that,

1. \(\{z_{\min J_m} : m \leq s\} \in S_0 + 3S_{f_{2j+1}} \) (i.e. it can be written as a union of four sets: one is a singleton and three which belong to \(S_{f_{2j+1}} \)).

2. There exists \((b_m)_{m=1}^p \subset \mathbb{R}^+ \) such that

\[
\left| x^* \left(\sum_{i \in J_m} (-1)^i (n_{2j+1})^R(t_i) z_i \right) \right| \leq (n_{2j+1})^R(t_{\min J_m}) b_m \quad \text{and} \quad \left(\sum_m b_m^2 \right)^{1/2} \leq 6. \tag{3}
\]

Before presenting the proof of Proposition 4.1 we show that it implies that \(X \) is HI. First we find a lower estimate for \(\| \sum_{i=1}^p (n_{2j+1})^R(t_i) z_i \| \).

\[
\| \sum_{i} (n_{2j+1})^R(t_i) z_i \| \geq \frac{1}{m_{2j+1}} \sum_k (n_{2j+1})^R(t_k) x_k^* \left(\sum_i (n_{2j+1})^R(t_i) z_i \right) = \frac{1}{m_{2j+1}} \sum_k ((n_{2j+1})^R(t_k))^2 = \frac{1}{m_{2j+1}}.
\]
Now we find an upper estimate for \(\| \sum_{i=1}^{p} (-1)^i (n_{2j+1}) R_i^j(t_i) z_i \| \). Let \(x^* \in \mathcal{N} \) and find \(J_1 < J_2 < \cdots < J_s \) to satisfy Proposition 4.1,

\[
\left| x^* \left(\sum_i (-1)^i (n_{2j+1}) R_i^j(t_i) z_i \right) \right|
\leq \left| x^* \left(\sum_{i \in J_m} (-1)^i (n_{2j+1}) R_i^j(t_i) z_i \right) \right| + \left| x^* \left(\sum_{i \not\in J_m} (-1)^i (n_{2j+1}) R_i^j(t_i) z_i \right) \right|
\leq \sum_{m=1}^{s} \left| x^* \left(\sum_{i \in J_m} (-1)^i (n_{2j+1}) R_i^j(t_i) z_i \right) \right| + \frac{505}{m_{2j+1}^2}
\leq \sum_{m=1}^{s} (n_{2j+1}) R_i^j(t_{\min J_m}) b_m + \frac{505}{m_{2j+1}^2}
\leq \left(\sum_{m=1}^{s} (n_{2j+1}) R_i^j(t_{\min J_m})^2 \right)^{\frac{1}{2}} \left(\sum_{m=1}^{s} b_m^2 \right)^{\frac{1}{2}} + \frac{505}{m_{2j+1}^2}
\leq \left(4 \left(\frac{1}{m_{2j+1}^2} \right) \right)^{\frac{1}{2}} \frac{505}{m_{2j+1}^2} = \frac{517}{m_{2j+1}^2}
\]

where the numbers “4” and “6” after the last inequality are justified by parts (1) and (2) of Proposition 4.1 respectively. Combining the two estimates we have that,

\[
\frac{517}{m_{2j+1}^2} \left| \sum_{i=1}^{p} (n_{2j+1}) R_i^j(t_i) z_i \right| \geq \frac{517}{m_{2j+1}^2} \geq \left| \sum_{i=1}^{p} (-1)^i (n_{2j+1}) R_i^j(t_i) z_i \right|
\]

for any \(j \) and thus \(X \) is HI.

The remainder of the paper will be devoted to proving Proposition 4.1. The following three lemmas will be needed in the proof.

Lemma 4.2. Let \(x^* \in \mathcal{N} \) with \(w(x^*) > m_{2j+1} \). Let \(V \subset \{1, \ldots, p\} \) such that \(w(x^*) \not\in \{m_{2j_i} : i \in V\} \). Then for any scalars \((\alpha_i)_{i \in V} \) we have,

\[
\left| x^* \left(\sum_{i \in V} \alpha_i z_i \right) \right| \leq \frac{496}{m_{2j+1}^2} \left(\sum_{i \in V : \gamma_{\ell} \not\in \mathcal{Y}(z_i) \not\in \emptyset} |\alpha_i|^2 \right)^{\frac{1}{2}}
\]

Proof. Let \(x^* = \frac{1}{w(x^*)} \sum_{\ell} \gamma_{\ell} y^*_\ell \) where \(\sum_{\ell} |\gamma_{\ell}|^2 \leq 1 \) and \((y^*_\ell)_{\ell} \) is appropriately admissible. Define,

\[
Q(1) = \{ i \in V : \text{there is exactly one } \ell \text{ such that } r(y^*_\ell) \cap r(z_i) \not\equiv \emptyset \},
Q(2) = \{ i \in V : \text{there is at least two } \ell \text{’s such that } r(y^*_\ell) \cap r(z_i) \not\equiv \emptyset \}.
\]
For i in $Q(1)$,

$$
x^* \left(\sum_{i \in Q(1)} \alpha_i z_i \right) = \left| \frac{1}{w(x^*)} \sum_{\ell} \gamma_\ell y^*_\ell \left(\sum_{i \in Q(1): (y^*_\ell)^\dagger \cap (z_i) \neq \emptyset} \alpha_i z_i \right) \right|
$$

$$\leq \frac{1}{w(x^*)} \sum_{\ell} |\gamma_\ell| 2\sqrt{3} \left(\sum_{i \in Q(1): (y^*_\ell)^\dagger \cap (z_i) \neq \emptyset} |\alpha_i|^2 \right)^{\frac{1}{2}}
$$

$$\leq \frac{2\sqrt{3}}{w(x^*)} \left(\sum_{i \in V: (y^*_\ell)^\dagger \cap (z_i) \neq \emptyset} |\alpha_i|^2 \right)^{\frac{1}{2}} \leq \frac{4}{m^2_{2j+1}} \left(\sum_{i \in V: (y^*_\ell)^\dagger \cap (z_i) \neq \emptyset} |\alpha_i|^2 \right)^{\frac{1}{2}},$$

(25)

where for the first inequality we used Proposition 3.2 and the fact that $x_i^*(g_i) > 1/2$, for the second inequality we applied the Cauchy-Schwarz inequality and for the last inequality we used the fact that $m^2_{2j+1} \leq w(x^*)$. For the $Q(2)$ case, $w(x^*) \neq m^2_{2j}$, for all $i \in V$ notice that

$$
x^* \left(\sum_{i \in Q(2): (y^*_\ell)^\dagger \cap (z_i) \neq \emptyset} \alpha_i z_i \right)
$$

$$\leq \sum_{i \in Q(2): (y^*_\ell)^\dagger \cap (z_i) \neq \emptyset} |\alpha_i| \left(\left(\sum_{\ell \in V: (y^*_\ell)^\dagger \cap (z_i) \neq \emptyset} |\gamma_\ell|^2 \right)^{\frac{1}{2}} + \eta_i \right) \left| \frac{1}{w(x^*)} \sum_{\ell \in V: (y^*_\ell)^\dagger \cap (z_i) \neq \emptyset} \beta_{i,\ell} y^*_\ell(z_i) \right|
$$

(26)

where $\beta_{i,\ell} = \gamma_\ell / (\sum_{\ell \in V: (y^*_\ell)^\dagger \cap (z_i) \neq \emptyset} |\gamma_\ell|^2 + \eta_i)$ where η_i is arbitrarily small and such that

$$\left(\sum_{\ell \in V: (y^*_\ell)^\dagger \cap (z_i) \neq \emptyset} |\gamma_\ell|^2 \right)^{\frac{1}{2}} + \eta_i \in Q.$$

Now apply Lemma 3.12 for “$g^* = g_i$, “$j_0^* = 2j_i$, “$i^* = 0$, “$\gamma_1^* = 1$ and “$x_1^* = \frac{1}{w(x^*)} \sum_{\ell \in V: (y^*_\ell)^\dagger \cap (z_i) \neq \emptyset} \beta_{i,\ell} y^*_\ell \in N$ to continue (26) as follows:

$$\leq \sum_{i \in Q(2): (y^*_\ell)^\dagger \cap (z_i) \neq \emptyset} |\alpha_i| \left(\left(\sum_{\ell \in V: (y^*_\ell)^\dagger \cap (z_i) \neq \emptyset} |\gamma_\ell|^2 \right)^{\frac{1}{2}} + \eta_i \right) \cdot \frac{2(123)}{\min\{w(x^*), m^2_{2j_i}\}}
$$

$$\leq \frac{2(246)}{m^2_{2j+1}} \left(\sum_{i \in V: (y^*_\ell)^\dagger \cap (z_i) \neq \emptyset} |\alpha_i|^2 \right)^{\frac{1}{2}},$$

(27)

where the last inequality is obtained by applying the Cauchy-Schwarz inequality and the constants η_i were forgotten since they were arbitrarily small and the constant “123”
that appears in the statement of Lemma 3.12 is multiplied by 2 since $z_i = g_i/x_i^\ast (g_i)$, $x_i^\ast (g_i) > 1/2$ and by another factor 2 since for each ℓ there are at most two values of $i \in Q(2)$ such that $r(y_\ell^\ast) \cap r(z_i) \neq \emptyset$. The result follows by combining (25), (26) and (27).

\[\square \]

Lemma 4.3. Let $x^\ast \in N$ with $w(x^\ast) = m_{2j+1}$. Thus $x^\ast = \frac{1}{m_{2j+1}} \sum_\ell y_\ell x_\ell^\ast$, where $\sum_\ell |y_\ell|^2 \leq 1$, $y_\ell^\ast \in N$, and (y_ℓ^\ast) has $S_{m_{2j+1}}$ dependent extension. Let $V \subset \{1 \leq i \leq p : m_{2j_i} \neq w(y_\ell^\ast) \text{ for all } \ell \}$ and $(\alpha_i)_{i \in c_{00}}$. Then

\[
\left| x^\ast \left(\sum_{i \in V} \alpha_i z_i \right) \right| < \frac{2}{m_{2j+1}^2} \left(\sum_{\ell \in V} \left| y_\ell \right| \right)^2 \left(\sum_{i \in c_{00}} |\alpha_i|^2 \right)^{1/2}.
\]

Proof. For $i \in I$ define $Q(1)$ and $Q(2)$ as in Lemma 4.2. For $i \in Q(1)$, use Lemma 4.2 for “x^\ast" = y_ℓ^\ast for each ℓ to obtain,

\[
\left| x^\ast \left(\sum_{i \in Q(1)} \alpha_i z_i \right) \right| = \frac{1}{m_{2j+1}} \left| \sum_\ell y_\ell x_\ell^\ast \left(\sum_{i \in Q(1)} \alpha_i z_i \right) \right| \leq \frac{1}{m_{2j+1}} \sum_\ell |y_\ell| \left(\sum_{i \in Q(1)} |\alpha_i|^2 \right)^{1/2} \frac{496}{m_{2j+1}^2} \leq \frac{1}{m_{2j+1}} \left(\sum_{\ell \in V} |\alpha_i|^2 \right)^{1/2},
\]

(28)

where for the last inequality we used the Cauchy Schwarz inequality and the fact that $m_{2j+1} \geq m_3 \geq m_1^4 \geq 496$. For $i \in Q(2),\$

\[
\left| x^\ast \left(\sum_{i \in Q(2)} \alpha_i z_i \right) \right| = \frac{1}{m_{2j+1}} \sum_\ell y_\ell x_\ell^\ast \left(\sum_{i \in Q(2)} \alpha_i z_i \right) \leq \frac{1}{m_{2j+1}} \sum_{i \in Q(2)} |\alpha_i| \left| \sum_\ell y_\ell^\ast (z_i) \right| \leq \frac{1}{m_{2j+1}} \sum_{i \in Q(2)} |\alpha_i| \left(\sum_{\ell \in V} |y_\ell|^2 \right)^{1/2} \frac{2(123)}{\min_\ell \{w(y_\ell^\ast), m_{2j}\}} \leq \frac{4(123)}{m_{2j+1}^2} \left(\sum_{\ell \in V} |\alpha_i|^2 \right)^{1/2} \leq \frac{1}{m_{2j+1}} \left(\sum_{i \in V} |\alpha_i|^2 \right)^{1/2}. \quad (29)
\]

Recall that (y_ℓ^\ast) is $S_{m_{2j+1}}$ admissible and $2j + 1 < 2j_i$ for all i. Thus the second inequality follows from applying Lemma 3.12 for “x_i^\ast" = y_i^\ast, “i" = $2j + 1$, “j_0" = $2j_i$, “g_i" = g_i and observing that $z_i = g_i/x_i^\ast (g_i)$, $x_i^\ast (g_i) > 1/2$ and $\{w(y_\ell^\ast) : \ell \} \cap \{m_{2j_i} : i \in V \} = \emptyset$. The third inequality follows from applying the Cauchy-Schwarz inequality and observing that for every ℓ there are at most two values of $i \in Q(2)$ such that $r(y_\ell^\ast) \cap r(z_i) \neq \emptyset$.
and \(\min_{i,\ell} \{ w(y_{i,\ell}^+), m_{2j_i} \} \geq m_{2j+1}^2 \). The fourth inequality follows since \(m_{2j+1} \geq m_3 \geq m_1^4 \geq 492 \). The result follows by combining (28) and (29).

\[\square \]

Lemma 4.4. For \(x^* \in \mathcal{N} \), \(w(x^*) = m_{2j+1} \) there exist \(J_1 < J_2 < J_3 \) subsets of \(\{1, \ldots, p\} \) (some of which are possibly empty) such that

1. For \(m \in \{1, 2, 3\} \),
 \[
 \left| x^* \left(\sum_{i \in J_m} (-1)^i (n_{2j+1})^{R_i}(t_i)z_i \right) \right| \leq 2(n_{2j+1})^{R_1}(t_{\min_m}).
 \]

2. \(x^* = \frac{1}{m_{2j+1}} \sum_{\ell=1}^n \gamma_\ell y_{\ell}^* \) with \(\sum_{\ell} |\gamma_\ell|^2 \leq 1 \), \(y_{\ell}^* \in \mathcal{N} \), \((y_{\ell}^*)_{\ell=1} \) has a \(S_{m_{2j+1}} \)-dependent extension and \(\{w(y_{\ell}^*): 1 \leq \ell \leq n\} \cap \{m_{2j_i}: i \in \{1, \ldots, p\}\} \setminus \cup_{m=1}^3 J_m = \emptyset \).

3. Also,
 \[
 \left| x^* \left(\sum_{i \in \{1, \ldots, p\}\setminus \cup_{m=1}^3 J_m} (-1)^i (n_{2j+1})^{R_i}(t_i)z_i \right) \right| \leq \frac{2}{m_{2j+1}^2}.
 \]

Moreover, for any interval \(Q \subset \{1, \ldots, p\} \) there exist \(J_1 < J_2 < J_3 \) subsets of \(Q \) (some of which are possibly empty) such that conditions (1), (2) and (3) are satisfied with the exception that in conditions (2) and (3) the set \(\{1, \ldots, p\}\setminus \cup_{m=1}^3 J_m \) is replaced by \(Q\setminus \cup_{m=1}^3 J_m \).

Proof. Suppose \(x^* \in \mathcal{N} \) with \(w(x^*) = m_{2j+1} \). Then \(x^* = 1/m_{2j+1} \sum_{\ell=1}^n \gamma_\ell y_{\ell}^* \) with \(\sum_{\ell} |\gamma_\ell|^2 \leq 1 \), \(y_{\ell}^* \in \mathcal{N} \) and \((y_{\ell}^*)_{\ell=1} \) has a \(S_{m_{2j+1}} \)-dependent extension. Thus there exists \(d, L \in \mathbb{N} \) and an \(S_{m_{2j+1}} \)-dependent family \((\tilde{y}_{\ell}^*)_{\ell=1}^{d+n-1} \) such that \(\sigma(\tilde{y}_{\ell}^*, \ldots, \tilde{y}_{\ell}^*) = w(\tilde{y}_{\ell}^*) \) for \(1 \leq \ell \leq d + n - 1 \) and \(\tilde{y}_{\ell}^*|_{[L, \infty)} = y_{\ell}^*|_{-(d-1)} \) for \(\ell = d, \ldots, d + n - 1 \).

Recall the definition of \((x_k^*)\) from the beginning of this section. By injectivity of \(\sigma \), the set \(\{k \in \{1, \ldots, p\}: w(x_k^*) \in \{w(\tilde{y}_{\ell}^*): d \leq \ell \leq d+n-1\}\} \) is an interval of integers (possibly empty). Let \(k_0 \) be the largest integer \(k \) such that \(w(x_k^*) \in \{w(\tilde{y}_{\ell}^*): d \leq i \leq d+n-1 \} \) and \(k_0 = 0 \) if no such \(k \) exists.

If \(k_0 = 0 \) (i.e. \(w(x_k^*) \neq w(y_{k}^*) \) for all \(1 \leq \ell \leq n \), \(1 \leq k \leq p \) then let \(J_1 = J_2 = J_3 = \emptyset \) and conditions (1) and (2) are trivial. To verify condition (3) apply Lemma 4.3 for “\(V^* = \{k : 1 \leq k \leq p\} \)” and “\(\alpha_i^* = (-1)^i (n_{2j+1})^{R_i}(t_i) \)”. If \(k_0 = 1 \) (i.e. \(w(x_1^*) = w(y_1^*) \)) for some \(\alpha_i \in \{1, \ldots, n\} \) and \(w(x_1^*) \notin \{w(y_1^*) \} \) then set \(J_1 = \{1\}, J_2 = J_3 = \emptyset \) and since \(\|z_1| = \|g_1/x_1^*|_{(g_1)}\| \leq 2 \) it is easy to check that conditions (1) and (2) hold. To check condition (3) apply Lemma 4.3 for “\(V^* = \{2, 3, \ldots, p\} \)” and “\(\alpha_i^* = (-1)^i (n_{2j+1})^{R_i}(t_i) \)”. If \(k_0 > 1 \) and \(w(x_k^*) = w(\tilde{y}_{\ell}^*) \) then by the injectivity of \(\sigma \), \(w(x_k^*) \notin \{w(y_1^*) : 1 \leq \ell \leq n \} \). Thus set \(J_1 = \{k_0\}, J_2 = J_3 = \emptyset \) and easily verify conditions (1) and (2) as above. To check condition (3) apply Lemma 4.3 for “\(V^* = \{1, \ldots, p\}\setminus \{k_0\} \).
Finally, if \(k_0 > 1 \) and \(w(x^*_0) = w(\tilde{y}^*_0) \) for some \(\ell_0 > d \) by the injectivity of \(\sigma \) it must be the case that \(\ell_0 = k_0 \), \(w(\tilde{y}^*_0) = w(x^*_0) \) for all \(i \leq k_0 \) and \(\tilde{y}^*_i = x^*_i \) for all \(i < k_0 \). Let \(J_1 = \{ d \} \), \(J_2 = (d, k_0) \cap \mathbb{N}, J_3 = \{ k_0 \} \). By the choice of \(J_1, J_2, J_3 \) we have that \(w(x^*_i) \notin \{ w(\tilde{y}^*_i) : 1 \leq \ell \leq n \} k \in \{ 1, \ldots, p \} \cup_{\ell=1}^3 J_m \) so condition (2) holds. If \(J_2 \neq \emptyset \) then \(x^*_i = \tilde{y}^*_i = y^*_i \) for \(i \in J_2 \). Apply Lemma 4.3 for \(V = \{ 1, \ldots, p \} \cup_{\ell=1}^3 J_m \) and

\[
\alpha_i := (-1)^{(m_{2j+1})} (t_i) \text{ to satisfy conditions.}
\]

To verify condition (1) for \(J_1 \) and \(J_3 \), since they are singletons, simply observe that \(|x^*(z_i)| \leq ||z_i|| = |g_i/x^*_i(g_i)| \leq 2 \). To verify conditions (1) for \(J_2 \) (if it is non-empty),

\[
|x^* \left(\sum_{i \in J_2} (-1)^{(n_{2j+1})} R(t_i) z_i \right) | = \frac{1}{m_{2j+1}} \left| \sum_{i \in J_2} y_{i-\ell} \left(\sum_{i \in J_2} (-1)^{(n_{2j+1})} R(t_i) z_i \right) \right|
= \frac{1}{m_{2j+1}} \left| \sum_{i \in J_2} y_{i-\ell} (\sum_{i \in J_2} (-1)^{(n_{2j+1})} R(t_i)) \right|
\leq \frac{|y_{\min J_2-\ell}|}{m_{2j+1}} (n_{2j+1}) R(t_{\min J_2}) \leq (n_{2j+1}) R(t_{\min J_2}),
\]

where the first two equalities follow from the fact that \(x^*_i = y^*_i \) for \(i \in J_2 \); the third equality follows from the fact that \(x^*_i = x^*_i (g_i/x^*_i(g_i)) = 1 \); the first inequality follows from the fact that \((m_{2j+1}) R(t_i))\) is non-increasing and non-negative, \(y_i = \gamma_i \tilde{y}_i \) where \(|\gamma_i| \leq 1 \) and \((\tilde{y}_i) \) are non-increasing non-negative (see Remark 2.6 (4)) and \(J_2 \) is an interval.

The proof of the moreover part is identical to the above with the only exception that the sets \(J_1, J_2, J_3 \) chosen above are replaced by \(Q \cap J_1, Q \cap J_2, Q \cap J_3 \). Notice it was important in the proof of (30) that \(J_2 \) was an interval. This remains true if \(J_2 \) is replaced by \(J_2 \cap Q \) since \(Q \) was assumed to be an interval.

Proof of Proposition 4.1 Suppose \(w(x^s) > m_{2j+1} \), apply Lemma 4.2 for \(\alpha_i := (-1)^{(m_{2j+1})} R(t_i) \). The conclusion of Proposition 4.1 is satisfied with \(s = 1 \) and \(J_1 = \{ q \} \) if \(w(x^s) = m_{2j_0} \) or \(J_1 = \emptyset \) if \(w(x^s) \notin \{ m_{2j} : 1 \leq i \leq p \} \).

If \(w(x^s) = m_{2j+1} \) the proposition follows directly from Lemma 4.4 with \(b_1 = b_2 = b_3 = 2 \).

Assume \(w(x^s) < m_{2j+1} \). Write \(x^s = \sum_{\ell \in L} \lambda_\ell y_\ell^s \) where \((y_\ell^s, \lambda_\ell) \) and \(L = L_1 \cup L_2 \cup L_3 \) satisfy the conclusions of Lemma 3.4 for \(j = 2j + 1 \). Let \(L_2 = L_2' \cup L_2'' \) where \(L_2' = \{ \ell \in L_2 : w(y_\ell^s) = m_{2j+1} \} \) and \(L_2'' = \{ \ell \in L_2 : w(y_\ell^s) > m_{2j+1} \} \). Define,

\[
Q(1) = \{ 1 \leq i \leq p : \text{there is exactly one } \ell \in L \text{ with } r(\gamma_\ell^s) \cap r(z_i) \neq \emptyset \},
\]

\[
Q(2) = \{ 1 \leq i \leq p : \text{there are at least two } \ell \in L \text{ with } r(\gamma_\ell^s) \cap r(z_i) \neq \emptyset \}.
\]
For i in $Q(2)$,

$$
\left| \sum_{\ell \in L} \lambda_\ell y_\ell^i \right| \left| \sum_{i \in Q(2)} (-1)^i (n_{2j+1})_1^R (t_i) z_i \right| \leq 2 \sum_{i \in Q(2)} (n_{2j+1})_1^R (t_i) \left| \sum_{\ell \in L} \lambda_\ell y_\ell^i (z_i) \right|
$$

$$
\leq 2 \sum_{i \in Q(2)} (n_{2j+1})_1^R (t_i) \left| \sum_{\ell \in L} \lambda_\ell y_\ell^i (g_i) \right|
$$

$$
\leq 2(7) \sum_{i \in Q(2)} (n_{2j+1})_1^R (t_i) \left(\sum_{\ell \in L} |\lambda_\ell|^2 \right)^{\frac{1}{2}}
$$

$$
\leq 14 \left(\sum_{i \in Q(2)} (n_{2j+1})_1^R (t_i) \right)^{\frac{1}{2}} \left(\sum_{i \in Q(2)} \sum_{\ell \in L, r(y_i) \cap r(z_i) \neq \emptyset} |\lambda_\ell|^2 \right)^{\frac{1}{2}}
$$

$$
\leq 14 \frac{2}{m_{2j+1}^2} \frac{2}{w(x^*)} \leq \frac{1}{m_{2j+1}^2},
$$

(31)

where for the second inequality we used the definition of z_i. For the third inequality we applied Lemma 3.12 for $g_0 = 2j$ and $g = g_i$ for each i using the fact that $(y_i^\ell)_\ell$ is S_{2j+1} admissible, $f_{2j+1} < n_{2j+1}$ and $2j + 1 < 2j$ and noticing that the right hand side of (18) is at most equal to $7(\sum_{\ell \in L} |\lambda_\ell|^2) \leq 123/m_\ell \leq 1$. For the fourth inequality we used the Cauchy-Schwarz inequality. For the fifth inequality we used that $(t_i)_{i \in Q(2)}$ is $2S_{2j+1}$ admissible, condition (2) of Lemma 3.4, and the fact that for every $\ell \in L$ there are at most two values of $i \in Q(2)$ such that $r(y_i^\ell) \cap r(z_i) \neq \emptyset$. Now for ℓ in L_1 and i in $Q(1)$,

$$
\left| \sum_{\ell \in L_1} \lambda_\ell y_\ell^i \right| \left| \sum_{i \in Q(1)} (-1)^i (n_{2j+1})_1^R (t_i) z_i \right|
$$

$$
\leq 2 \left| \sum_{\ell \in L_1} \lambda_\ell y_\ell^i \right| \left| \sum_{i \in Q(1)} (-1)^i (n_{2j+1})_1^R (t_i) g_i \right|
$$

$$
\leq 2\sqrt{3} \sum_{\ell \in L_1} |\lambda_\ell| \left(\sum_{i \in Q(1)} \sum_{\ell \in L} (n_{2j+1})_1^R (t_i)^2 \right)^{\frac{1}{2}} \leq \frac{4}{m_{2j+1}^2},
$$

(32)

where Proposition 3.2 was used in the second inequality and for the last inequality we used the Cauchy-Schwarz inequality and condition (2) of Lemma 3.4. For $\ell \in L_3$ there
is at most one value of i (call it $i(\ell)$) such that $r(y^*_\ell) \cap r(z_i) \neq \emptyset$. Thus

$$\left| \sum_{\ell \in L_3} \lambda_{\ell} y^*_\ell \right| \left(\sum_{i \in Q(1): r(y^*_\ell) \cap r(z_i) \neq \emptyset} (-1)^i (n_{2j+1})_1 R(t_i) z_i \right) \leq \sum_{\ell \in L_3} |\lambda_{\ell}| \left(n_{2j+1} \right)_1 R(t_{i(\ell)}) \leq \frac{2}{m_{2j+1}}, \quad (33)$$

where for the first inequality we used that $|y^*_\ell(z_i)| \leq \|z_i\| \leq 2$ and for the second inequality we applied the Cauchy-Schwarz inequality and used that $(t_{i(\ell)})_{\ell \in L}$ is S_{2j+1} admissible and $f_{2j+1} < n_{2j+1}$. For $\ell'' \in L''_2$, set $J_{\ell''} = \emptyset$ if $w(y^*_{\ell''}) \notin \{m_{2j_i}: 1 \leq i \leq p\}$ and $J_{\ell''} = \{q\}$ if $w(y^*_{\ell''}) = m_{2j_q}$ for some $q \in \{1, \ldots, p\}$ and $r(y^*_{\ell''}) \cap r(z_q) \neq \emptyset$. Notice that for $\ell'' \in L''_2$ if $J_{\ell''} = \{q\} \neq \emptyset$ then we have,

$$\left| x^* \left(\sum_{i \in J_{\ell''}} (-1)^i (n_{2j+1})_1 R(t_i) z_i \right) \right| \leq \left(n_{2j+1} \right)_1 R(t_q) |x^*(z_q)| = \left(n_{2j+1} \right)_1 R(t_q) \lambda_{\ell''} y^*_{\ell''}(z_q)| \leq \left(n_{2j+1} \right)_1 R(t_q) \lambda_{\ell''} |z_q| \leq \left(n_{2j+1} \right)_1 R(t_q) \lambda_{\ell''} 2 \quad \text{(since } \|z_q\| \leq 2). \quad (34)$$

For $\ell' \in L'_2$ apply the moreover part of Lemma 4.4 for “x^*”= y^*_ℓ and “Q”= $Q'_{\ell'} = \{i \in Q(1): r(z_i) \cap r(y^*_\ell) \neq \emptyset\}$ to obtain intervals $J_{\ell',1} < J_{\ell',2} < J_{\ell',3} \subset Q'_{\ell'}$ (possibly empty) such that

$$\left| y^*_{\ell'} \left(\sum_{i \in J_{\ell',m}} (-1)^i (n_{2j+1})_1 R(t_i) z_i \right) \right| \leq 2 \left(n_{2j+1} \right)_1 R(t_{\min J_{\ell',m}}), \quad m \in \{1, 2, 3\} \quad (35)$$

and

$$y^*_{\ell'} = \frac{1}{m_{2j+1}} \sum_k y^*_{\ell',k} \quad \text{with} \quad \sum_k y^2_{\ell',k} \leq 1, \quad y^*_{\ell',k} \in \mathcal{N}, \quad (y^*_{\ell',k})_k \text{ admits a } S_{n_{2j+1}} \text{ dependent extension and } \{w(y^*_{\ell',k}): k \} \cap \{m_{2j_i}: i \in Q'_{\ell'} \cup \bigcup_{m=1}^3 J_{\ell',m}\} = \emptyset. \quad (36)$$

Thus for $\ell' \in L'_2$ and $m \in \{1, 2, 3\}$ apply the fact $J_{\ell',m} \subset Q'_{\ell'} := \{i \in Q(1): r(z_i) \cap r(y^*_\ell) \neq \emptyset\}$ and (35) to obtain

$$\left| x^* \left(\sum_{i \in J_{\ell',m}} (-1)^i (n_{2j+1})_1 R(t_i) z_i \right) \right| \leq |\lambda_{\ell'}| \left| y^*_{\ell'} \left(\sum_{i \in J_{\ell',m}} (-1)^i (n_{2j+1})_1 R(t_i) z_i \right) \right| \leq \left(n_{2j+1} \right)_1 R(t_{\min J_{\ell',m}}) |\lambda_{\ell'}| 2. \quad (37)$$

Thus for $\ell'' \in L''_2$ if $J_{\ell''} \neq \emptyset$, set $b_{\ell''} = 2|\lambda_{\ell''}|$ and for $\ell' \in L'_2$ and $m \in \{1, 2, 3\}$ if $J_{\ell',m} \neq \emptyset$ set $b_{\ell',m} = 2|\lambda_{\ell'}|$. Hence,

$$\sum_{\{\ell'' \in L''_2: J_{\ell''} \neq \emptyset\}} b^2_{\ell''} + \sum_{\{\ell' \in L'_2, m \in \{1, 2, 3\}: J_{\ell',m} \neq \emptyset\}} b^2_{\ell',m} \leq \sum_{\{\ell' \in L'_2: J_{\ell'} \neq \emptyset\}} 4|\lambda_{\ell'}|^2 \leq \sum_{\ell \in L} 4|\lambda_{\ell'}|^2 \leq 4 \sum_{\ell \in L} |\lambda_{\ell'}|^2 \leq \frac{4}{w(x^*)^2} \leq 1, \quad (38)$$
where the third inequality was obtained from condition (2) of Lemma 3.4. Index the b_v (for $\ell'' \in L''_2$ with $J_{\ell''} \neq \emptyset$) and $b_{\ell',m}$ (for $\ell' \in L'_2$ and $m \in \{1, 2, 3\}$ with $J_{\ell', m} \neq \emptyset$) as $(b_m)_{m=1}^{\infty}$ the non-empty $J_{\ell''}$ ($\ell'' \in L''_2$) and $J_{\ell', m}$ ($\ell' \in L'_2, m \in \{1, 2, 3\}$) as $(J_m)_{m=1}^{\infty}$ and we can see that (34), (37) and (38) imply that condition (2) of Proposition 4.1 is satisfied.

Condition (1) of Proposition 4.1 follows from the facts that $(y_{\ell''}^s)_{\ell'' \in L}$ is $S_{j_{2,1}}$ admissible, for every $\ell'' \in L''_2$ for which $J_{\ell''} = \{q\} \neq \emptyset$ we have $r(z_q) \cap r(y_{\ell''}^s) \neq \emptyset$ and for every $\ell' \in L'_2$ and $m \in \{1, 2, 3\}$ such that $J_{\ell', m} \neq \emptyset$ we have $J_{\ell', m} \subset \{k \in Q(1) : r(z_k) \cap r(y_{\ell'}^s) \neq \emptyset\}$ (for $m = 1, 2, 3$). The next Lemma 4.5 implies that

$$\left| \left(\sum_{\ell \in L_2} \lambda_{\ell''} y_{\ell''}^s \right) \left(\sum_{i \in J_m} (1)^{(n_{2,j+1})} R_i(t_i) (z_i) \right) \right| \leq \frac{498}{m_{2,j+1}}. \quad (39)$$

Indeed apply Lemma 4.5 for “$E'' = L''_2$, “$B = L''_2$”, “$V'' = Q(1)$ \cup_{m=1}^{\infty} J_m”, “$\alpha_{i''}'' = (1)^{(n_{2,j+1})} R_i(t_i)$”. Note that condition (1) of Lemma 4.5 is satisfied by (36). Condition (2) of Lemma 4.5 is satisfied by the definitions of L''_2 and $J_{\ell''}$ for $\ell'' \in L''_2$. Condition (3) of Lemma 4.5 is satisfied since $V \subset Q(1)$. Thus equations (31), (32), (33) and (39) imply condition (3) and finish the proof of Proposition 4.1.

Lemma 4.5. Let E and B be two finite index sets, $V \subset \{1, \ldots, p\}$, $(y_{\ell''}^s)_{\ell'' \in E \cup B} \subset N$, $(\lambda_{\ell''})_{\ell'' \in E \cup B}$ be scalars with $\sum_{\ell'' \in E \cup B} \lambda_{\ell''}^2 \leq 1$ and $(\alpha_i)_{i \in V}$ be scalars with $\sum_{i \in V} \alpha_i^2 \leq 1$ such that

1. For every $\ell \in E$, $y_{\ell''}^s$ can be written as

$$y_{\ell''}^s = \frac{1}{m_{2,j+1}} \sum_{s=1}^{r_{\ell''}} y_{\ell'',s} y_{\ell'',s}^s$$

with $y_{\ell'',s} \in N$, $(y_{\ell'',s})_{s=1}^{r_{\ell''}}$ admitting a $S_{n_{2,j+1}}$-dependent extension and $\{w(y_{\ell'',s}) : 1 \leq s \leq r_{\ell''} \cap \{m_{2,j} : i \in V\} = \emptyset\}$.

2. For every $\ell \in B$, $w(y_{\ell''}^s) > m_{2,j+1}$ and $w(y_{\ell''}^s) \notin \{m_{2,j} : i \in V\}$.

3. For every $k \in V$ there is a unique $\ell \in E \cup B$ such that $r(y_{\ell''}^s) \cap r(z_i) \neq \emptyset$.

Then,

$$\left| \left(\sum_{\ell'' \in E \cup B} \lambda_{\ell''} y_{\ell''}^s \right) \left(\sum_{i \in V} \alpha_i z_i \right) \right| \leq \frac{498}{m_{2,j+1}}.$$

Proof. Let E, B, $(\lambda_{\ell''})_{\ell'' \in E \cup B}$, $(y_{\ell''}^s)_{\ell'' \in E \cup B}$ and V be given as in the hypothesis. Using the triangle inequality we separate into the cases $\ell \in B$ and $\ell \in E$. For ℓ’s in B,

$$\left| \left(\sum_{\ell'' \in B} \lambda_{\ell''} y_{\ell''}^s \right) \left(\sum_{\{i \in V : r(y_{\ell''}^s) \cap r(z_i) \neq \emptyset\}} \alpha_i z_i \right) \right| \leq \sum_{\ell'' \in B} |\lambda_{\ell''}| \frac{496}{m_{2,j+1}} \left(\sum_{\{i \in V : r(y_{\ell''}^s) \cap r(z_i) \neq \emptyset\}} \alpha_i^2 \right)^{\frac{1}{2}} \leq \frac{496}{m_{2,j+1}}.$$
Cauchy-Schwarz inequality. For ℓ in E,

$$\left|\left(\sum_{\ell \in E} \lambda_\ell y^*_\ell \right) \left(\sum_{i \in V: \gamma(y^*_\ell) \cap \gamma(z)_i \neq \emptyset} \alpha_i z_i \right)\right| \leq \sum_{\ell \in E} |\lambda_\ell| \frac{2}{m_{2j+1}^2} \left(\sum_{i \in V: \gamma(y^*_\ell) \cap \gamma(z)_i \neq \emptyset} \alpha_i^2 \right)^\frac{1}{2} \leq \frac{2}{m_{2j+1}^2}.$$

where the first inequality follows by applying Lemma 4.3 for each i with “$x^* = y^*_i$”, noting that its hypothesis is satisfied by our assumption (1), and for the second inequality we used the Cauchy-Schwarz inequality. \qed

REFERENCES