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On the Milnor Fiber
of a Quasi-ordinary Surface Singularity
Chunsheng Ban, Lee J. McEwan and András Némethi

Abstract. We verify a generalization of (3.3) from [Lê73] proving that the homotopy type of the Milnor
fiber of a reduced hypersurface singularity depends only on the embedded topological type of the
singularity. In particular, using [Zariski68, Lipman83, Oh93, Gau88] for irreducible quasi-ordinary
germs, it depends only on the normalized distinguished pairs of the singularity. The main result of the
paper provides an explicit formula for the Euler-characteristic of the Milnor fiber in the surface case.

1 Introduction

We consider the germ of an irreducible quasi-ordinary surface singularity at the ori-
gin in C3, defined by the equation f (x, y, z) = 0. Thus, we suppose that the pro-
jection π : (F, 0) → (C3, 0) on the first two coordinates (x, y) restricted to (F, 0) =
({ f = 0}, 0) is a finite map onto (C2, 0) with (reduced) discriminant (∆, 0) con-
tained in ({xy = 0}, 0). The main goal of this note is the computation of the Euler-
characteristic χ(Fε) of the Milnor fiber Fε of f . We recommend as general references
for hypersurface singularities the books [Milnor68] and [AGV88]. The Milnor fiber
Fε is defined as follows. For any germ f : (Cd+1, 0) → (C, 0), we fix a sufficiently
small closed ball Br in Cd+1 of radius r, then Fε := f−1(ε) ∩ Br (0 < ε � r). For
χ(Fε) we will use the simplified notation χ( f ). Our main result is the following

Theorem Assume that f : (C3, 0) → (C, 0) is an irreducible quasi-ordinary singular-
ity represented in a “normalized” coordinate system (cf. 2.7). Then χ( f ) = χ( f |y=0).
More precisely, the Euler-characteristic of the Milnor fiber of f is exactly the Euler-
characteristic of the Milnor fiber of the plane curve singularity (x, z)→ f (x, 0, z).

The importance of the above theorem can be illuminated by the following qual-
itative results as well. First we recall that the embedded topological type of an irre-
ducible plane curve singularity is completely determined by its Puiseux pairs. More-
over, these pairs determine χ(Fε) as well.

The point is that for any higher dimensional irreducible quasi-ordinary singu-
larity f , one can define the generalization of the Puiseux pairs: they are called the
normalized distinguished tuples of f . (In fact, they are defined via a parametrization
ζ of F, but it turns out that they are independent of ζ and depend only on the analytic
type of (F, 0).) For details, see [Lipman65, Lipman83, Lipman88].

Using Zariski’s result on saturation of local rings, one can prove that these pairs
determine the embedded topological type of f (i.e., the homeomorphism type of
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the pair (F, 0) ⊂ (Cd+1, 0), cf. [Zariski68] and [Lipman88], or [Oh93] for a differ-
ent proof.) Moreover, using Lipman’s results [Lipman88], Gau in [Gau88] proves
that from the embedded topological type one can recover the normalized distin-
guished tuples of f . In addition, a generalization of Theorem 3.3 of [Lê73] (cf. also
[Teissier74], and see (2.4) in our Section 2) says that for any reduced hypersurface
singularity, the homotopy type of the Milnor fiber depends only on the embedded
topological type of the singularity. Therefore, it is natural to ask for explicit formulae
for the homotopical invariants of Fε in terms of the distinguished tuples of f . In the
next section we will present a more precise version of our theorem which provides
χ(Fε) in the surface case in terms of the normalized distinguished pairs (cf. 2.8).

The precise definition of the distinguished pairs will be given in Section 2. Since
the main result is formulated for surface singularities, in order to avoid an unneces-
sary flood of notations, we give the notations in this case only. The general situation
can be found e.g. in [Lipman88].

The proof starts in Section 3, where we generalize A’Campo’s formula for χ(Fε)
[A’Campo75] (in terms of the embedded resolution). In fact, the proof of the main
theorem is based on the following fact: the expression χ( f ) − χ( f |y=0) is “stable”
with respect to all the types of blow ups which appear in the resolution process of f .
In order to verify this, we need the “splitting property” (3.3) (which itself is proved
by our generalized A’Campo-type theorem). The verification of the “stability” is in
Section 4.

We end the introduction with the following remark. Upon inspecting the litera-
ture of quasi-ordinary singularities, one is very surprised to discover that the amount
of results about the smoothing invariants is incredibly small. The point is that al-
though the strong assumption about F (namely, the existence of the projection π with
normal crossing discriminant) provides a nice list of analytic and geometric proper-
ties of F, it is surprisingly difficult to relate these properties to any kind of property
of the level sets Fε (ε 6= 0). The present note is the first in a series of articles in which
the authors plan to analyze the smoothing invariants (like the zeta function of the
monodromy of f , etc.). We remark that, while a central purpose of the definition
of quasi-ordinary singularities is to generalize features of plane curve singularities
to higher dimensions, our main theorem applies only to surfaces (though see note
added at the end of the paper). Also the result has no analog for curves.

2 Quasi-Ordinary Singularities and Their Topological Type

In this section we recall the definition of the normalized distinguished pairs associ-
ated with an irreducible quasi-ordinary singularity (F, 0) ⊂ (C3, 0), and we reformu-
late our theorem in terms of these pairs.

(2.1) By the very definition of irreducible hypersurface quasi-ordinary singulari-
ties, there exists coordinates such that f can be expressed as a pseudo-polynomial in
the third variable z: f (x, y, z) = zm +g1(x, y)zm−1 + · · ·+gm(x, y), where gi are power
series, and the (reduced) discriminant of π : ({ f = 0}, 0) → (C2, 0) induced by
(x, y, z) 7→ (x, y) is contained in ({xy = 0}, 0). Moreover, there exists a parametriza-
tion of F = { f = 0} by a fractional power series ζ = H(x1/n, y1/n), where H(s, t) is
a power series and n is a suitable natural number depending on f . (This means that
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the parametrization (C2, 0)→ (F, 0) is given by x = sn, y = tn, z = H(s, t).)
The conjugates of ζ are obtained by multiplying x1/n and y1/n by n-th-roots of

unity; the number of different conjugates {ζi}i of ζ is precisely the degree m of the
covering π, and

f (x, y, z) =
m∏

i=1

(z − ζi).

The roots ζi are called the branches of f . There is a finite subset {(λi , µi)}s
i=1

of the set of exponents {(λi , µi)}i of the monomials appearing in ζ with non-zero
coefficient, called the distinguished pairs, which play a role similar to Puiseux pairs
for plane curve singularities. Namely, by unique factorization of the discriminant
one has:

ζi − ζ j = xui j/n yvi j/nεi j(x1/n, y1/n) with εi j(0, 0) 6= 0,

and the set of exponents {(ui j/n, vi j/n)}i, j constitute the set of distinguished pairs.
Say that (λ, µ) ≤ (λ ′, µ ′) if λ ≤ λ ′ and µ ≤ µ ′. Then the distinguished pairs are

ordered:
(1) (0, 0) < (λ1, µ1) < (λ2, µ2) < · · · < (λs, µs); and (after permuting x and y if

necessary) we can assume:
(2) (λ1, . . . , λs) > (µ1, . . . , µs) (lexicographically).
Let cλ,µ be the coefficient of the term in ζ having exponent pair (λ, µ). The distin-

guished pairs generate all the other exponent pairs in the following sense:
(3) If cλ,µ 6= 0 then (λ, µ) ∈ Z × Z +

∑
(λi ,µi )≤(λ,µ) Z(λi , µi) (and (λ j , µ j) 6∈

Z× Z +
∑

(λi ,µi )<(λ j ,µ j )
Z(λi , µi)).

The parametrization ζ of F, in general, is not unique. Moreover, different parame-
trizations could produce different sets of distinguished pairs. But if we consider only
the “normalized” parametrizations, then the corresponding pairs are independent
of the choice of parametrization. A parametrization is said to be normalized if in
addition to (1)–(3) we have

(4) If cλ,µ 6= 0, then λ and µ are not both integers. (In the literature this condition
is not usually included, and as we see in Example 4.3 is not really necessary.)

(5) If µ1 = 0 then λ1 > 1.
Given a parametrization

ζ = cxa yb + higher order terms ∈ C{x1/n, y1/n} (c 6= 0)

then if ζ is normalized, it follows from (3) and (4) that (λ1, µ1) = (a, b). If ζ is not
normalized and (λ1, µ1) 6≤ (λ, µ) with cλ,µ 6= 0 then (λ, µ) ∈ Z× Z.

(2.2) If a parametrization is not normalized, then by a change of variables φ:
(x, y, z) → (x ′, y ′, z ′) one can transform ζ into a normalized parametrization ζ ′ =
ζ ◦ φ. Basically, there are two cases to consider.

(a) If cλ,µ 6= 0 with (λ, µ) ∈ Z×Z, then we make a change of variables (x ′, y ′, z ′)
= (x, y, z − cλ,µxλyµ). In this way ζ ′ will have no term with exponent (λ, µ). This
applied repeatedly assures the validity of (4). Moreover, this type of transformation
preserves the distinguished pairs of the parametrization.

(b) If (5) is not satisfied then first one has to make a transformation of type
(x, y, z) → (z, y, x) (and express f as a pseudo-polynomial in z ′ = x), then, if it
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is necessary, one has to perform a finite number of times the transformation de-
scribed in (a). (This sequence of transformations is called “inversion”, for details
see [Lipman65].) In this case the distinguished pairs will be changed (cf. also Lip-
man’s Table presented in paragraph (4.2)). In fact the transformation (x, y, z) →
(z, y, x) (and f rewritten as a pseudo-polynomial in z ′ = x) changes the distin-
guished pairs {(λi , µi)}s

i=1 into the new pairs (the first of which may be integral,
hence non-distinguished): {(

(λi + 1− λ1)/λ1, µi

)} s

i=1
.

If the first new pair (1/λ1, µ1) is in Z× Z, then we eliminate this pair (and any other
previously non-distinguished pair which now becomes integral) by a sequence of
transformations of type (a). All the other pairs will survive as distinguished pairs; for
this notice that (λ2 + 1−λ1)/λ1, µ2) cannot become integral unless (λ2, µ2) depends
integrally on (λ1, µ1), which is forbidden by (3) above.

(2.3) As we already mentioned in the introduction, in any dimension, for any
irreducible hypersurface quasi-ordinary singularity f : (Cd+1, 0) → (C, 0) the infor-
mation codified in the set of normalized distinguished tuples is the same as the infor-
mation codified in the embedded topological type of f , i.e., in the homeomorphism
type of the pair L ⊂ S2d+1, where S2d+1 = ∂Br, and L = f−1(0) ∩ S2d+1 is the link
of f .

On the other hand, we can verify the following general result. For isolated singu-
larities it was proved in [Lê73] (cf. also [Yau89]); the topological invariance of the
Milnor number for isolated singularities was first noticed in [Teissier74].

Proposition 2.4 Denote by f : (Cd+1, 0) → (C, 0) a reduced hypersurface singularity,
and let Fε be its Milnor fiber, and mgeom the geometric monodromy acting on Fε (defined
up to an isotopy). Then:

(a) The homotopy type of (Fε,mgeom ) can be recovered from the embedded topological
type of f .

(b) Fε is connected.
(c) If f is irreducible then π1(Fε) = [G,G], where G = π1(S2d+1 \ L, ∗).

Proof The proof is similar to the proof of Theorem 3.3 in [Lê73]. For the conve-
nience of the reader, we give the details as well. Fε is a manifold with boundary
∂Fε = f−1(ε) ∩ S2d+1. Let F0

ε be the open Milnor fiber Fε \ ∂Fε. Then there is a
(Milnor) fibration arg := f /| f | : S2d+1 \ L → S1 with fiber (diffeomorphic to) F0

ε

[Milnor68]. The fibration is completely characterized (up to a homotopy) by the
induced map arg1 : π1(S2d+1 \ L, ∗) → π1(S1) = Z. Indeed, since arg1 is onto (see
below), F0

ε can be homotopically identified with the covering space of S2d+1 \ L as-
sociated with arg1 (or with the subgroup ker(arg1)). Moreover, the corresponding
Galois action is exactly Z, and its generator 1Z can be identified with mgeom .

On the other hand, arg1 can be completely determined from (S2d+1, L). Indeed by
Alexander duality H1(S2d+1 \ L,Z) = H2d−1(L,Z). Consider the irreducible decom-
position f = f1 f2 · · · ft of f . Let Li = f−1

i (0) ∩ S2d−1, then obviously L =
⋃

i Li .
Moreover, H2d−1(Li ,Z) = Z, and by a Mayer-Vietoris argument H2d−1(L,Z) = Zt .
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The isomorphism H1(S2d+1 \ L,Z) = Zt is realized as follows: for any smooth point
p of Li take a local transversal slice of Li in S2d+1 and fix a small oriented circle in it
going around Li in S2d+1. Its homology class is the i-th base element of Zt . This shows

that arg1 is the composed map π1(S2d+1 \ L, ∗) h→ H1(S2d+1 \ L,Z) = Zt s→ Z where
h is the Hurewicz map and s

(
(α1, . . . , αt )

)
=
∑

i αi . This shows that arg1 is onto,
hence F0

ε is connected. If f is irreducible, then arg1 = h, and π1(F0
ε ) = [G,G] by the

long homotopy exact sequence.
(2.5) If we start with f = f m1

1 · · · f mt
t , then in the above proof s

(
(α1, . . . , αt )

)
=∑

i αimi , hence F0
ε has gcd(m1, . . . ,mt ) connected components, and the homotopy

type of F0
ε can be recovered from the type of (S2d+1, L) and the set of integers (m1, . . . ,

mt ) (i.e., from the “multilink” L ⊂ S2d+1) (see also [Dimca92], page 76].)
(2.6) The discussion (2.3) and Proposition 2.4 show that, for any irreducible

quasi-ordinary singularity, there should be an explicit formula for χ(Fε) in terms
of the distinguished pairs of f . The goal of the next part is the presentation of this
formula.

(2.7) Now we return to an irreducible quasi-ordinary surface singularity f :
(C3, 0)→ (C, 0). We assume that it is represented in some coordinate system (x, y, z)
which admits a normalized parametrization ζ .

First assume that Sing F = ∅. Then f has no normalized distinguished pairs, and
f = z. Hence m = degz( f ) = 1. We also define g(x, z) := z, and m̃ = degz(g) = 1.

If Sing F 6= ∅, then denote the normalized distinguished pairs by {(λi , µi)}s
i=1.

In this paragraph we make more precise the connection between the curve singu-
larity f (x, 0, z) and the parametrization ζ .

First assume that µ1 = 0. Then by (5) λ1 > 1, and by (1) all λi are non-zero.
Suppose µ1 = µ2 = · · · = µk = 0, and µk+1 > 0. Then, again by (1) µk+i > 0 for all
i ≥ 1. In this case H(s, t) (cf. 2.1) has a decomposition H(s, t) = K(s) + L(s, t), where
K and L are power series and L(s, 0) = 0. Recall that ζ = H(x1/n, y1/n); then we
define the fractional power series ϕ = K(x1/n) and ψ = L(x1/n, y1/n). Let m̃ be the
number of conjugates {ϕ j}m̃

j=1 of ϕ. We emphasize that even if ζ (respectively ϕ) has
some terms whose exponents are not distinguished pairs, the number of conjugates
m (respectively m̃) of ζ (respectively of ϕ) depends only on the distinguished pairs
{(λi , µi)}s

i=1 (respectively {(λi , 0)}k
i=1). (Indeed, m, respectively m̃, is the number

of different conjugates of the “simplified parametrization” ζ̃ =
∑s

i=1 xλi yµi , respec-

tively of ϕ̃ =
∑k

i=1 xλi .)
Since each conjugate of ζ may be obtained as a conjugate of ϕ plus a conjugate

of ψ, it is clear that m̃ divides m. Let’s consider the curve singularity given by the
conjugates of ϕ:

g(x, z) =
m̃∏

j=1

(z − ϕ j).

If µ1 6= 0, then by definition, ϕ ≡ 0, m̃ = 1 and g(x, z) ≡ z.
With these notations one has: g(x, z) = f (x, 0, z)red , f (x, 0, z) = g(x, z)m/m̃ (and

ϕ is a parametrization of {g = 0}). Moreover, the set {λi}k
i=1 provides exactly the set

of Puiseux pairs of g.
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If µ1 6= 0 then π−1({xy = 0}) is the union of the x and the y-axis of C3. If µ1 = 0,
then π−1({x = 0}) is the y-axis of C3, but π−1({y = 0}) is the curve {g = 0}. The
integer m̃ also has the following interpretation: for a given point (x0, 0) with x0 6= 0,
the fiber π−1(x0, 0) consists of m̃ points (counted without multiplicities).

Now we formulate our main result in terms of the normalized distinguished pairs
of f :

Theorem 2.8 Consider f and g as in (2.7). Then

χ( f ) = χ(g) · m

m̃
; i.e.χ( f ) = χ( f |y=0).

In particular, χ( f ) depends only on the integer m and the subset {(λi , 0)}k
i=1 of the set

of normalized distinguished pairs.
Moreover, in the “symmetric case”, i.e. if either Sing F = ∅, or µ1 6= 0, one has:

f |y=0 = f |x=0 = zm,

hence χ( f ) = m.

For the computation of χ(g) in terms of {λi}k
i=1, see e.g. [BK86]. In a normal-

ized coordinate system as in (2.7)–(2.8), we sometimes say that the y-axis is “distin-
guished.”

The proof of (2.8) is given in the next two sections.

3 The First Part of the Proof. General Facts About χ(Fε)

(3.1) We start with the following generalization of A’Campo’s formula [A’Campo75].
Fix the following data:

• an arbitrary analytic germ h : (Cd+1, 0)→ (C, 0).
• a local analytic divisor (V, 0) ⊂ (Cd+1, 0).
• an analytic subset (S, 0) ⊂ (V, 0) ∪ ({h = 0}, 0).

Let Br be a sufficiently small ball in Cd+1 centered at the origin. We write {h = ε} for
the Milnor fiber h−1(ε) ∩ Br (0 < ε� r).

Assume that φ : X → Br is a birational modification such that

(1) φ−1({h = 0} ∪V ) is a normal crossing divisor.
(2) φ is an isomorphism above Br \ S.

Let E be the total transform of {h = 0} ∪V , {Ei}i the irreducible components of E,
and, mEi (h) the vanishing order of h ◦ φ along Ei .

Proposition 3.2 With the above notations, one has:

χ({h = ε} \V ) =
∑

i

mEi (h) · χ
(

Ei

∖⋃
j 6=i

E j

)
.
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The proof is similar to the proof of the classical case [A’Campo75] (see also
[AGV88], Theorem 3.10), and it is left to the reader.

In the next corollary we will use the following notation. If f , g are hypersur-
face singularities (Cd+1, 0) → (C, 0) then f |g=0 : ({g = 0}, 0) → (C, 0) denotes
the restriction of f , and χ( f |g=0) is the Euler-characteristic of its Milnor fiber (i.e.,
χ({ f = ε} ∩ {g = 0} ∩ Br) with 0 < ε� r).

Corollary 3.3 (The Splitting Property) Let f , g : (Cd+1, 0)→ (C, 0) be two germs of
analytic functions. Then

χ( f g) = χ( f ) + χ(g)− χ( f |g=0)− χ(g| f =0).

Proof Fix an embedded resolution φ of the divisor ({ f g = 0}, 0) ⊂ (Cd+1, 0) which
has the property that it is an isomorphism above Cd+1 \ S for some S ⊂ Sing{ f g =
0}. Let E be the total transform of { f g = 0}. By applying (3.2) for h = f and
V = {g = 0}, we obtain χ( f )− χ( f |g=0) =

∑
i mEi ( f ) · χ(Ei \ ∪ j 6=iE j).

One can write a similar identity for χ(g)− χ(g| f =0), and for χ( f g) (with h = f g
and V = ∅). The corollary then follows from mEi ( f g) = mEi ( f ) + mEi (g).

Remarks 3.4 (a) Notice that (3.3) has no analogue for the zeta function associated
with the monodromy action of f .

(b) We want to emphasize the following fact regarding A’Campo-type theorems.
In order to be able to apply the classical formula [A’Campo75], or (3.2), we need to
know the structure and topology of the exceptional divisors in an embedded reso-
lution. But typically what we know is only an algorithm (and even this can be very
involved) which gives the steps of the resolution (i.e., tells what to blow up in the next
step), without giving a global overview of the result of the resolution process. In such
cases it is extremely helpful to have instead a formula for χ(Fε) in terms of a partial
resolution.

Theorem 3.5 ([GLM97]) Let φ : X → Br be an arbitrary birational modification such
that φ is an isomorphism above the complement of { f = 0}. Let S be an analytic
stratification of the total transform of { f = 0} such that along each stratum Ξ of S the
Euler-characteristic of the Milnor fiber of f ◦ φ at x ∈ Ξ does not depend on x ∈ Ξ.
Denote this number by χΞ. Then:

χ( f ) =
∑
Ξ∈S

χΞ · χ(Ξ).

This theorem will be applied in the resolution process of a quasi-ordinary singu-
larity. The computation is in the next section.

We end this section with the following list of Euler-characteristic computations
associated with the different plane sections of { f = 0}.
Lemma 3.6 Let f : (C3, 0) → (C, 0), f (x, y, z) = zm + g1(x, y)zm−1 + · · · be an
irreducible quasi-ordinary singularity, such that the discriminant of the projection π:
(F, 0)→ (C2, 0) is contained in {xy = 0}. Assume that (F, 0) admits a parametrization
z = H(s, t) = csatb+· · · , x = sn, y = tn (c 6= 0) having the form H(s, t) = csatb(unit),
but which is possibly not normalized. Assume that a 6= 0. Then
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(1) χ( f |x=0) = χ( f |x=y=0) = m.
(2) χ(x| f =0) = χ(x| f =y=0) (= m̃ =

(
( f |y=0)red , x

)
0
).

In fact {x = ε}∩{ f = y = 0} is a strong deformation retract of {x = ε}∩{ f = 0}
(3) χ(y| f =0) = χ(y| f =x=0) = χ(y| f =z=0) = 1.

In fact {y = ε} ∩ { f = 0} is contractible and {y = ε} ∩ { f = x = 0} is a strong
deformation retract of {y = ε} ∩ { f = 0}.

(4) If b 6= 0, then χ(z| f =0) = 0; in fact there is a topological covering Fε(H) → {z =
ε} ∩ { f = 0}, where Fε(H) is the Milnor fiber of H. In this case, {z = ε} ∩ { f =
y = 0} = ∅, hence χ(z| f =y=0) = 0 as well.
If b = 0, then χ(z| f =0) = χ(z| f =y=0) =

(
( f |y=0)red , z

)
0
.

In fact {z = ε} ∩ { f = y = 0} is a strong deformation retract of {z = ε} ∩ { f =
0}.

(5) If b 6= 0, then χ( f |z=0) = 0; and { f = ε} ∩ {z = y = 0} = ∅, hence
χ( f |z=y=0) = 0 as well.
If b = 0, then χ( f |z=0) = χ( f |z=y=0) = ( f , z, y)0.
In fact { f = ε} ∩ {z = y = 0} is a strong deformation retract of { f = ε} ∩ {z =
0}.

(In the above, in all cases ε 6= 0 and all spaces are considered in the ball Br; and ( , )0

denotes the intersection multiplicity.)

Proof For (1), notice that f |x=0 = f |x=y=0 = zm because of the condition a 6= 0.
For (2), observe that the Milnor fiber of x| f =0 is just the inverse image under the
projection π of the disk ∆ = {(ε, y)}. Since π is a topological covering over the set
{xy 6= 0} and the punctured disk ∆∗ = ∆ \ (0, 0) lies in this region, π−1(∆∗) must
be a union of disjoint punctured disks Ei . The closure of each of these punctured
disks must be a disk, whence π−1(∆) is a finite union of disks, any two of which
intersect at most at a single point of the (finite) set π−1(ε, 0). Clearly each point in
π−1(ε, 0) belongs to at least one Ei . Thus each point of π−1(ε, 0) is the center of a
non-empty collection of disks which intersect only at that point, which shows that
π−1(ε, 0) is a strong deformation retract of π−1(∆). The cardinality of π−1(ε, 0) is
precisely the z degree of ( f |y=0)red . Part (3) of the lemma is the same as part (2)
except that ( f |x=0)red has degree one, i.e. ( f |x=0)red = z. For part (4) and b 6= 0,
the set {z = ε} ∩ { f = 0} must lie above {xy 6= 0}, i.e. on the portion of (F, 0) for
which the parametrization (x, y, z) = (sn, tn, z) is a covering space. But the pull-back
is Fε(H), which has the form {csatb(unit) = ε}, a collection of disjoint punctured
disks; hence χ

(
Fε(H)

)
= 0. On the other hand if b = 0, the situation and the

argument are the same as in part (3) with the roles of x and z reversed. Finally, for
part (5), { f = ε} ∩ {z = 0} is given by {cxa yb(unit) = ε}, and this has Euler
characteristic zero if b 6= 0. If b = 0 then it is clear that the Euler characteristic is
unchanged when y is restricted.

The splitting property (3.3), part (3) of Lemma 3.6, and the main theorem have
the following consequence.

Corollary 3.7 Assume that f : (C3, 0) → (C, 0) is an irreducible quasi-ordinary sin-
gularity, and the y axis is distinguished (cf. 2.8). Then χ(y f ) = 0.
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Remark The main Theorem 2.8 is actually equivalent to the statement χ(y f ) = 0.
This shows that in some sense it may be more natural to consider the object y f rather
than just f .

4 The Second Part of the Proof. The Resolution of f

We will apply the following fundamental facts:

Fact 4.1 Every surface (F, 0) ⊂ (Br, 0) (or F ⊂ C3) has an embedded resolution
obtained by blowing up smooth centers within the singular locus, i.e we may assume
that we have a finite sequence

(∗)

Mn
rn−−−−→ · · · −−−−→ M2

r2−−−−→ M1
r1−−−−→ C3

∪ ∪ ∪ ∪

Fn
rn−−−−→ · · · −−−−→ F2

r2−−−−→ F1
r1−−−−→ F0 = F

such that ri blows up a smooth center in Fi−1, Fn is smooth, and Fn has normal
crossing with the exceptional divisors of r1 ◦ · · · ◦ rn. Moreover we may assume that
the center of each blow up is a point or an equimultiple curve.

There are many proofs of this fact, see e.g. [Hironaka64, Abhyankar98, BM91,
Villamayor89].

In addition we have the following result of Lipman [Lipman65].

Fact 4.2 If an irreducible quasi-ordinary surface F is blown up at a point or a smooth
equimultiple curve inside the singular locus, then the strict transform F ′ of F is again
quasi-ordinary. (Note that this is not the case for quasi-ordinary varieties of higher
dimension.)

Lipman also provides rules of transformation by which the (possibly not normal-
ized) distinguished pairs of F ′ may be read from those of F. We summarize those
rules in Table 1.

In the resolution of a surface quasi-ordinary singularity, in (∗) each morphism ri is
either a quadratic transformation (blow up of a point) or a monoidal transformation
(blow up of a smooth equimultiple line, locally a disc) with center inside Sing(Fi−1).

It is proved in [BMc00] that there exists a resolution process (∗) which depends
only on the normalized distinguished pairs of (the original) F, but at each step i the
type of modification ri required depends on the history of the process (i.e., on the
steps ri−1, ri−2, . . . , r1). We will not use this complicated algorithm.

Instead, we will examine the effect of each possible type of transformation on the
local equation for Fi−1. For convenience, we drop the subscript i − 1 and we write
f for the local equation of Fi−1. The blow up of Fi−1 (in the case of a blow up of a
point) is covered by charts Ux, U y , Uz (defined by the local equations x, y, and z); we
denote the strict transform of f in each chart by fx, fy and fz.

We will assume that f is written in some coordinate system (x, y, z) in which f
admits a normalized parametrization. By the above notation, fx, fy and fz are the
germs of the strict transform of f considered at the points [1 : 0 : 0], [0 : 1 : 0]
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Transformation Pairs of resulting branch

Inversion λi +1−λ1
λ1

, µi

Monoidal Transformation
Center (x, z) λi − 1, µi

Center (y, z) λi , µi − 1
Quadratic Transformation
“Transversal Case” (λ1 + µ1 ≥ 1)

Direction (1 : 0 : 0) λi + µi − 1, µi

Direction (0 : 1 : 0) λi , λi + µi − 1
“Non-Transversal Case” (λ1 + µ1 < 1)

Direction (1 : 0 : 0) λi + (1+µi )(1−λ1)
µ1

− 2, 1+µi

µ1
− 1

Direction (0 : 1 : 0) µi + (1+λi )(1−µ1)
λ1

− 2, 1+λi
λ1
− 1

Direction (0 : 0 : 1) λi (1−µ1)+µiλ1

1−λ1−µ1
, λiµ1+µi (1−λ1)

1−λ1−µ1

Table 1

and [0 : 0 : 1] respectively. In order to avoid burdensome notation, we will continue
to denote by (x, y, z) the new local coordinates: e.g. at the point [1 : 0 : 0] these
are obviously equal to (x, xy, xz) in terms of the coordinates of f . We call this new
coordinate system at the point [1 : 0 : 0] the “natural coordinate system” of fx. For fy

and fz the discussion is similar. If we blow up an axis, then we use similar notations.
We notice that if ζ = cxλ1 yµ1 + · · · is a normalized parametrization of f , and we

blow up a center, then the leading term of a (possibly not normalized) parametriza-
tion of the strict transform of f in the “natural coordinate system” can be read from
the above table by taking i = 1 (i.e. the leading term is exactly the first pair provided
by the table). In the non-transversal case, x and y-directions, a permutation of the
variables is needed to normalize the new parametrization (see Table 2 below).

Then we will apply Theorem 3.5 for the modification ri . In particular there are
only two components of the 2-dimensional stratum. One of them is Eo = E \ {strict
transform of { f = 0}}, where E is the exceptional divisor created at this step ri . The
contribution on the left hand side of the formula (3.5) is χ(Eo)m0( f ), where m0( f )
is the multiplicity of f along E. (In general m0( f ) 6= m; where m is the degree of f .)

The other component is supported by the strict transform St of f , but (as we
will now show) χ(St \E) (=χ(F \ Center)) = 0 hence it gives no contribution. The
center is either the origin or the w-axis (w = x or y); if it’s the origin, let w be the
smooth component of the pre-image of the discriminant (which must exist). De-
compose F \ Center as the disjoint union of A = (F \ Center) ∩ {w 6= 0} and B =
(F \ Center) ∩ {w = 0}. Then A is a fiber bundle over a punctured disk (namely
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the punctured local w-axis), hence χ(A) = 0. Similarly, B is a punctured local curve,
hence χ(B) = 0 as well.

One can verify that in all cases (see the list of cases below) the one dimensional
strata are either punctured discs D∗’s or C∗’s, hence their Euler characteristics vanish.
Therefore, the theorem reads as

χ( f ) = m0( f )χ(Eo) + a sum corresponding to the zero-dimensional strata.

At each point of the zero-dimensional strata the local equation is the total transform
of f . We split these local equations using the splitting property (cf. 3.3). Then, for any
f expressed in a normalized coordinate system, we define D( f ) := χ( f )− χ( f |y=0)
and we verify that D( f ) is stable, i.e.

(S) D( f ) =
∑

dim Ξ=0

D( fΞ).

We emphasize that the expression D( fΞ) must also be computed in the normalized
coordinate system for the germ fΞ and that the corresponding local coordinate “y” is
distinguished in the sense of (2.8).

On the other hand, D( fΞ) can often be computed in the natural local coordinate
system.

Examples 4.3 (a) Given the germ ζ = cλxλ + · · · , not normalized, we claim that
D( f ) = χ( f ) − χ( f |y=0). Indeed, it is easy to check that the normalization trans-
formations preserve the germ { f |y=0}, i.e. { f |y=0} = { f |y ′=0} where (x ′, y ′, z ′) are
the normalized coordinates.

(b) If f can be normalized by a sequence of transformations of type 2.2(a) alone,
i.e. (x ′, y ′, z ′) = (x, y, z − ca,bxa yb)), where at each stage ζ = ca,bxa ybu(x, y) and
u(x, y) is a unit, then again D( f ) can be computed in the non-normalized coordi-
nates (x, y, z). As in (a), the germs { f |y=0} and { f |y ′=0} are equal if ab 6= 0, and
isomorphic otherwise.

Finally, notice that if f is smooth, then D( f ) = χ( f ) − χ( f |y=0) = 1 − 1 = 0,
hence (S) by induction will imply that D( f ) = 0 for the original singularity F = F0.
The stability formula (S) will be verified for all the possible transformations.

Now we verify the stability (S). Hence we start with a quasi-ordinary singular-
ity f represented in a coordinate system (x, y, z) with a normalized parametrization
(satisfying 2.1(1)–(5)) ζ = cxλ1 yµ1 + · · · , where λ1 ≥ µ1 ≥ 0.

Case I. Blowing Up an Axis

First assume that the center C is the y-axis.
Since (by our assumption, cf. 4.1) the center C is an equi-multiple curve, we must

have λ1 ≥ 1.
We distinguish three cases:

(A) µ1 = 0;
(B) µ1 6= 0, λ1 > 1;
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(C) µ1 6= 0, λ1 = 1.

(A) Since µ1 = 0 we have λ1 > 1 by the normalization property 2.1(5). The blow
up of C is constructed by gluing two charts Ux and U y together. The strict transform
St of f is contained in Ux (this follows from λ1 > 1). Then E ≈ D × P1, where D is
the disc given by the new y-axis (i.e. D ≈ C), and the strict transform St intersects
E along D. Since λ1 > 1, m0( f ) = m. There is only one zero-dimensional strata
(namely the origin of D); the strict transform of f will be denoted by fx. Then:

χ( f ) = mχ(Eo) + χ(xm fx).

Here Eo = E \ St ≈ D × C, hence χ(Eo) = 1. We write a similar formula for f |y=0:

set Ẽ := E ∩ {y = 0} ≈ P1 and Ẽ0 = Ẽ \ St ≈ C. Then:

χ( f |y=0) = mχ(Ẽ0) + χ(xm fx|y=0).

Now, by the splitting property (3.3) (and from the fact that for any germ h one has
χ(hm) = mχ(h)):

χ(xm fx) = m + χ( fx)−mχ(x| fx=0)− χ( fx|x=0).

There is a similar relation for χ(xm fx|y=0). Subtracting them one has:

D( f ) = χ( fx)− χ( fx|y=0)−m[χ(x| fx=0)− χ(x| fx=y=0)](4.4)

− [χ( fx|x=0)− χ( fx|x=y=0)].

We emphasize that in general at this step it can happen that fx, expressed in the new
variables (x, y, z) is not normalized. Moreover, we have to identify the distinguished
axis for fx as well. In order to do this, we will find the parametrization of fx. From
Table (4.2) we see that if ζ = cxλ1 + · · · is the (normalized) parametrization of f then
ζx = cxλ1−1 + · · · is the parametrization of fx in the new natural local coordinates.
If λ1 − 1 > 1 then ζx is already normalized (and the y axis is distinguished), thus
D( fx) = χ( fx)− χ( fx|y=0). On the other hand if λ1 − 1 < 1, we apply Example 4.3
to conclude again D( fx) = χ( fx) − χ( fx|y=0). Moreover, Lemma 3.6 works as well,
because a = λ1− 1 6= 0 and ζx = x−1ζ guarantees that the first term of ζx divides all
the others.

In particular, χ(x| fx=0) = χ(x| fx=y=0) (by 3.6(2)), and χ( fx|x=0) = χ( fx|x=y=0)
(by 3.6(1)).

Hence (4.4) gives D( f ) = D( fx).
(B) If µ1 6= 0 but λ1 > 1, the above argument works with a small modification. In

this case ζx = cxλ1−1 yµ1 + · · · , which is already normalized up to a permutation of x
and y. On the other hand, this is the “symmetric case” (cf. 2.8), hence either the x- or
the y-axis is distinguished. Moreover, in (3.6) we can freely permute the x and y axes.
In particular χ(x| fx=0) = χ(x| fx=y=0), and χ( fx|y=0) = χ( fx|x=0) = χ( fx|x=y=0).
Hence (4.4) can be reduced to

D( f ) = χ( fx)− χ( fx|y=0)− χ( fx|x=0) + χ( fx|x=y=0).
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where the last three Euler characteristics are equal. Since either x or y is distinguished,
D( f ) = χ( fx)− χ( fx|w=0) = D( fx) (where w is x or y).

(C) Assume that µ1 6= 0 and λ1 = 1. Then E ≈ D × P1 as above, but E ∩ St is
a curve singularity containing the center O of D (and whose intersection with Ẽ =
{O} × P1 is exactly O). By additivity χ(E \ St) = χ(D∗ × P1 \ St) + χ(Ẽ \ St). But
χ(D∗×P1\St) = 0 because the first projection D∗×P1\St → D∗ is a topological fiber
bundle over D∗. Since Ẽ \ St ≈ C one obtains that χ(Eo) = χ(Ẽo) = 1. Moreover,
the argument (A) works again as far as (4.4).

In this case ζ = cx1 yµ1 + · · · , therefore ζx = cyµ1 + · · · . After permuting x
and y, we apply the same argument as in (A) (for the case λ1 − 1 < 1). Therefore
D( fx) = χ( fx)− χ( fx|x=0).

Moreover, (permuting the x axis and the y axis in (3.6)) we obtain: χ(x| fx ) =
χ(x| fx=y=0) (3.6(3)), and χ( fx|y=0) = χ( fx|x=y=0) (3.6(1)). Therefore D( f ) = D( fx)
again.

Finally, suppose we blow up the x axis instead of the y axis. Since the center must be
equimultiple, µ1 ≥ 1. If µ1 > 1 then ζy = cxλ1 yµ1−1+· · · is already normalized. This
is also the symmetric case (cf. 2.8) so we have χ( f |y=0) = χ( f |x=0) and χ( fy |y=0) =
χ( fy |x=0). Therefore D( f ) = χ( f ) − χ( f |x=0). We repeat argument (A) as far as
(4.4), treating x as the distinguished variable; no normalization is required and the
last two expressions vanish by (3.6) exactly as before. Thus D( f ) = D( fy).

If µ1 = 1 then λ1 > 1 (since (λ1, µ1) 6∈ Z × Z) and once again ζy = cxλ1 + · · ·
is already normalized. Here we (as usual) take y as the distinguished axis for fy . We
repeat the argument of case (A) (with no normalization) but use the argument of (C)
to show that χ(Eo) = χ(Ẽo) = 1.

Case II. Blowing Up a Point

Again there are a few cases to consider, depending on the “size” of (λ1, µ1), the first
characteristic pair. If λ1 + µ1 ≥ 1 (the “transverse case” in Lipman’s language), then
the strict transform lives in only two of the three special directions. If λ1 + µ1 < 1
then the strict transform lives in all three special directions. These possibilities are
then multiplied by the condition that ϕ (cf. 2.7) and/or ϕx, ϕy , ϕz are identically zero
or not (i.e. if µ1( f ) and/or µ1( fx), etc. vanish or not)). We summarize all the cases
along with the forms of the parametrizations ζ∗ of f and the strict transforms fx, fy ,
fz in Table 2. To obtain the first characteristic pair of each ζ∗ we use the table from
paragraph (4.2); each ζ∗ is expressed in the natural local coordinates. For simplicity
we drop the subscripts and coefficients, e.g. (λ, µ) = (λ1, µ1).

Cases (A)–(B)–(C) (λ1 + µ1 ≥ 1)

Obviously E = P2. In cases (A)–(B), E ∩ St = E ∩ {strict transform of {z = 0}}, i.e.
Eo ≈ P2 \ C1 ≈ C2. Therefore χ(Eo) = 1. In case (C), Eo = P2 \ {zm = xλm yµm}
(recall λ + µ = 1). We verify that in this case χ(Eo) = 1 as well. Indeed, letting
h(x, y, z) be the homogeneous polynomial zm − xλm yµm we have χ(P2 \ {h = 0}) =
χ(P2)−χ({h = 0}). Since h is a projective curve of degree m, its Euler characteristic
is −m(m − 3) +

∑
µi , where µi are the Milnor numbers of h at each of its singular
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(A) λ + µ > 1, ζ = xλ + · · · , ζx = xλ−1 + · · · , ζy = xλyλ−1 + · · · ,
µ = 0.

(B) λ + µ > 1, ζ = xλyµ + · · · , ζx = xλ+µ−1 yµ + · · · , ζy = xλyλ+µ−1 + · · · ,
λµ 6= 0.

(C) λ + µ = 1, ζ = xλyµ + · · · , ζx = yµ + · · · , ζy = xλ + · · · ,
λµ 6= 0

(D) λ + µ < 1, ζ = xλyµ + · · · , ζx = x1−λ−µ/µz1/µ + · · · , ζy = y1−λ−µ/λz1/λ + · · · ,
λµ 6= 0, ζz = xλ/1−λ−µyµ/1−λ−µ + · · · .

Table 2

points. It is easy to check (using λµ 6= 0) that
∑
µi = (m − 1)(m − 2). Thus

χ(Eo) = 3 + m(m− 3)− (m− 1)(m− 2) = 1.
Since in all cases (A)–(C) λ1 + µ1 ≥ 1 we see that m0( f ) = m. Therefore

χ( f ) = m + χ(xm fx) + χ(ym fy).

On the other hand, Ẽo = Eo ∩ {y = 0} ≈ C1 in all these cases, hence χ( f |y=0) =
m + χ(xm fx|y=0). Using the splitting property for χ, one gets:

D( f ) = m−mχ(x| fx=0)−m · χ(y| fy=0) + m · χ(x| fx=y=0)

+ χ( fx)− χ( fx|x=0) + χ( fy)− χ( fy |y=0)− χ( fx|y=0) + χ( fx|x=y=0).

We claim that D( fy) = χ( fy) − χ( fy |y=0) in all three cases. In case (A), fy is
already normalized, so this is true by definition. In case (B), fy is only normalized up
to a permutation of x and y, but χ( fy |y=0) = χ( fy |x=0) since this is the “symmetric
case” (cf. 2.8). Finally, in case (C), Example 4.3 gives D( fy) = χ( fy) − χ( fy |y=0) as
well. Moreover, in all three cases χ(y| fy=0) = 1 by Lemma 3.6(3). Now for each case
we collect several identities.

(A) Applying (4.3) and (3.6) directly gives the following:

D( fx) = χ( fx)− χ( fx|y=0), χ( fx|x=0) = χ( fx|x=y=0), χ(x| fx=0) = χ(x| fx=y=0).

(C) Similarly, applying (4.3) and (3.6) with the roles of x and y reversed, we have:

D( fx) = χ( fx)− χ( fx|x=0), χ( fx|y=0) = χ( fx|x=y=0), χ(x| fx=0) = χ(x| fx=y=0).

(B) Since ζx is normalized up to a permutation of x and y, we obtain the identities
of (A) or (C), depending on which of x or y is distinguished for fx.

Applying these to the expression for D( f ), in all three cases D( f ) = D( fx)+D( fy).
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Case (D) (λ1 + µ1 < 1)

Note that since f is assumed to be normalized, λ1µ1 6= 0. As before, E = P2, but
E0 = P2 \ {strict transform of xy = 0} ≈ C × C∗. Therefore χ(Eo) = 0. The
multiplicity m0( f ) of f now is not m, but ν = (λ1 + µ1)m. Therefore:

χ( f ) = χ(xν fx) + χ(yν fy) + χ(zν fz).

Moreover, the exceptional curve of the induced resolution of f |y=0 is P1 with two
special points situated on it. Hence:

χ( f |y=0) = χ(xν fx|y=0) + χ(zν fz|y=0).

The contribution of fx to D( f ) is:

χ( fx)− νχ(x| fx=0)− χ( fx|x=0)− χ( fx|y=0) + νχ(x| fx=y=0) + χ( fx|x=y=0).

By Table 2, the parametrization of fx is ζx = x1−λ1−µ1/µ1 z1/µ1 + · · · . To normalize
we need only make the permutations z → x, x → y, y → z and transformations of
type 2.2(a). Making the substitutions and applying 3.6(3), (5) and Example 4.3(b),
the total fx contribution to D( f ) is exactly D( fx).

The contribution of fy to D( f ) is

χ(yν fy) = ν + χ( fy)− νχ(y| fy=0)− χ( fy |y=0).

Again by Table 2, we see that fy is normalized by permuting x and z and making
transformations 2.2(a). In particular the set {y = 0} is invariant under this change.
Then by 3.6(3) and 4.3(b) we have χ(y| fy ) = 1 and D( fy) = χ( fy) − χ( fy |y=0), i.e.
the contribution of fy to D( f ) is exactly D( fy). Finally, the contribution of fz to D( f )
is

χ( fz)− νχ(z| fz=0)− χ( fz|z=0)− χ( fz|y=0) + νχ(z| fz=y=0) + χ( fz|z=y=0).

By Table 2, fz is normalized by transformations 2.2(a) alone. Then D( fz) = χ( fz)−
χ( fz|y=0) by 4.3(b), and the remaining contributions cancel out by 3.6(4) and (5).
Combining these calculations, we have shown that D( f ) = D( fx) + D( fy) + D( fz).

This ends the proof of the main theorem.

Note Added on August 1, 2001 Using different techniques (based on the thesis of
P. González Pérez) the authors have since been able to extend the results of this paper
to calculate the analogous formula for the zeta function. The new result holds in all
dimensions and for reducible quasi-ordinary singularities as well.
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