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Abstract

The aim of this paper is to extend the previous work on transfer
matrix compression in the case of graph homomorphisms. For
H-homomorphisms of lattice-like graphs we demonstrate how
the automorphisms of H , as well as those of the underlying
lattice, can be used to reduce the size of the relevant transfer
matrices. As applications of this method we give currently best
known bounds for the number of 4- and 5-colourings of the
square grid, and the number of 3- and 4-colourings of the three-
dimensional cubic lattice. Finally, we also discuss approximate
compression of transfer matrices.

1. Introduction

Transfer matrices are a standard tool in various branches of mathematics. In enu-
merative combinatorics they have been used for a long time to solve counting prob-
lems which can be described using graph homomorphisms. In statistical physics
transfer matrices have been a well used tool for the computation of partition func-
tions of various spin models. In ergodic theory transfer matrices are used to de-
scribe the behaviour of a class of dynamical system known as subshifts of finite
type. Recently the many similarities between these uses have been put on a firm
mathematical ground. That the calculation of entropies for Z

d-subshifts of finite
type are equivalent to counting graph homomorphisms from Z

d into some graph
H was demonstrated in [7]. In [6] it was proved that counting weighted graph ho-
momorphisms is equivalent to computation of the partition function for statistical
physics models satisfying a condition known as reflection positivity. The study of
phase transitions in statistical physics models has also begun to be studied in the
language of homomorphisms [3].

A general limitation for all these applications is that transfer matrices tend to
grow fast with the size of the system considered, thus limiting the size of the system
one can work with. A recent development in this area is the use of automorphisms
of the underlying graphs to reduce the size of the matrices. This was done for a
special case in [5] and was developed as a general method in [13]. Our aim here
is first to show how this method, now called transfer matrix compression, in many
cases can be taken even further than earlier applications, and also to discuss how
one can make even greater size reductions if one is ready to settle for bounds of
the computed entropies rather than exact values. For many applications the latter
is sufficient.
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compression of transfer matrices

Let us put things on a firmer ground. A homomorphism φ from a graph G to
a graph H , which may have loops, is a mapping which preserves adjacencies, i.e.
if (x, y) ∈ E(G) then (φ(x), φ(y)) ∈ E(H). The set of all homomorphisms from
G to H is denoted Hom(G, H). We say that H is a weighted graph if there are
two functions αH : V (H) → F and βH : E(H) → F , where F is a ring. Given a
weighted graph H we assign a weight w(φ) to each homomorphism φ from G to H

w(φ) =
∏

x∈V (G)

αH(φ(x))
∏

xy∈E(G)

βH(φ(x), φ(y)). (1)

Let us give a few examples:

Example 1.1.
1. H = Kq, α = β = 1, corresponds to ordinary proper q-colourings.
2. Let H be a K2 with a loop on one vertex, let the edge have weight 1, the loop

weight t and α = 1. For t = 1 the homomorphisms correspond to independent
sets and for general t, we have the so-called hard-core lattice gas model.

3. If H is a Kq with loops on every vertex and the weights are t−1 on the loops, t
on the ordinary edges and 1 on the vertices, we have the q-state Potts model.

4. If we take the previous example with q = 2 and put a weight s on one vertex
of H and s−1 on the other vertex, we have the Ising model with an external
field.

If we have a model where we also want to put colours or ‘spins’ on the edges
of G (for example, when considering matchings, or on both edges and vertices),
we can instead consider the line-graph or total-graph of the underlying graph G
respectively. It is also straightforward to generalise these concepts to hypergraphs
if one wants to consider interaction between larger sets of vertices.

We next define a weighted counter for these homomorphisms

Z(G, H) =
∑

φ∈Hom(G,H)

w(φ).

If all weights on H are just 1 this will be exactly |Hom(G, H)|. In spin models the
weights are often taken to be of the form eK for a parameter K which is interpreted
as a temperature, and then Z(G, H) is called the partition function of the model.
In ergodic theory Z(G, H) is called the pressure of the subshift described by G and
H . In most applications the aim is either to compute Z(G, H) when F is a ring of
polynomials, as in [9], or to determine how fast Z(Gn, H) grows when F = R and
Gn is some sequence of graphs; see, for example, [7, 5].

2. Polygraphs and transfer matrices

Transfer matrices are most useful for computation within a class of graphs known
as polygraphs. This class was introduced in [1], where the transfer matrices were
used to compute matching polynomials. A polygraph G is defined by a set of disjoint
graphs G1, G2, . . . , Gm and a set of binary relations Υ1, Υ2, . . . , Υm, where Υi ⊂
V (Gi) × V (Gi+1). The vertex set of G is

⋃
i V (Gi) and the edge set is

E(G) =
⋃
i

E(Gi)
⋃
i

Υi.
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If all Gi = G and Υi = Υ for all i = 1, . . . , m we write the corresponding polygraph
as G(G, Υ, m).

Given a polygraph G and a weighted graph H we can compute Z(G, H) using a
sequence of transfer matrices. We define a matrix M(i) for going from Gi to Gi+1

as follows.
Let Φ(Gi) denote the set of restrictions of all homomorphisms in Hom(G, H) to

Gi. We call a member of Φ(Gi) a state on Gi. Now let the rows of M(i) be indexed
by the states on Gi and the columns by the states on Gi+1. We set Mx,y(i) = 0 if
there is no homomorphism φ ∈ Hom(G, H) such that φ|Gi = x and φ|Gi+1 = y. If
there exists such a φ we set Mx,y equal to the contribution to the weight w(φ) of
the edges in Υi and the edges and vertices of Gi+1. We also define an associated
vector η. The position in η corresponding to the row x is set equal to the weight of
the partial homomorphism x.

The partition function is now given by

Z(G, H) = η

(∏
i

M(i)

)
1. (2)

One can also consider cyclic polygraphs where the last relation Υ connects Gm to
G1. In this case the partition function is given by the trace of the transfer matrix
product,

Z(G, H) = Tr

(∏
i

M(i)

)
. (3)

3. Exact compression of transfer matrices

Henceforth we will assume that our polygraphs are on the form G(G, Υ, m). Most
of what follows can be adapted to general polygraphs as well. Let us recall that
given an N ×N matrix M a partition X = {X1, X2, . . . , Xr} of {1, . . . , N} is called
an equitable partition if

∑
l∈Xj

M(i1, j) =
∑

l∈Xj
M(i2, j) when i1, i2 ∈ Xi.

Given a partition X of the states on G, we define the compressed transfer matrix
for Z(G, H) to be

CX (i, j) =
∑
l∈Xj

M(k, l), k ∈ Xi, i, j = 1 . . . r. (4)

The main theorem of [13] can be stated as follows.

Theorem 3.1. If X is an equitable partition of M , then

Cn
X (i, j) =

∑
l∈Xj

Mn(k, l), k ∈ Xi, i, j = 1 . . . r (5)

This has the following corollary.

Corollary 3.2. Let η be the vector of length N whose ith entry is |Xi| w(xi),
where xi ∈ Xi. Then

Z(G, H) = η

(∏
i

M(i)

)
1.
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The main consequence of these results, which has been used in [13, 5, 7], and
[15, 10, 11, 4] is as follows.

Corollary 3.3. If M is a transfer matrix and the partition X consists of orbits on
the set of states on G under the automorphism group Aut(G), then X is equitable.

This corollary lets us make use of automorphisms of G to compress our transfer
matrices and for graphs with reasonably large automorphism group, such as cycles,
the reduction in size can be substantial.

Example 3.4. Let us look at the transfer matrix for Hom(G(P3, Id, n), K3), that
is, 3-colourings of the graph P3 × Pn.

There are twelve states on P3 and the only nontrivial member of Aut(P3) is a
reflection in the midpoint. If we use 1,2,3 to denote colours, we find that there are
nine orbits:

{{121}, {212}, {313}, {131}, {232}, {323}, {123, 321}, {132, 231}, {213, 312}}.
Here we get the following 9 × 9 matrix, instead of a 12 × 12 matrix,

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1 0 0 0 2
0 0 1 0 1 1 0 0 2
1 1 0 0 0 1 2 0 0
1 0 0 0 1 1 2 0 0
1 1 0 1 0 0 0 2 0
0 1 1 1 0 0 0 2 0
0 0 1 1 0 0 0 1 1
0 0 0 0 1 1 1 0 1
1 1 0 0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, η = {1, 1, 1, 1, 1, 1, 2, 2, 2}.

Even though we have reduced the side of the matrix by one quarter, we still have a
fairly sparse matrix. The fact that we still have a sparse compressed matrix can on
one hand be viewed a sign that the matrix could be compressed further to a dense
matrix, as we will soon do, but for some cases it could also be taken advantage of
by instead changing to computational techniques optimized for sparse matrices.

From algebraic graph theory [8] we know that if G is any graph and X is a
partition of its vertices into orbits under Aut(G) then the corresponding partition
is equitable. If we choose to interpret the transfer matrix M as the adjacency matrix
of a weighted graph, then what we did in Corollary 3.3 can be interpreted as using
the subgroup of Aut(M) which is induced by Aut(G) to partition M . However,
Aut(M) has an even larger subgroup induced by Aut(G) × Aut(H). Here Aut(H)
is assumed to preserve the weights on H as well as the adjacencies.

Corollary 3.5. Let X be a partition of M given by the orbits of Aut(G)×Aut(H);
then X is equitable.

When the graph H is highly symmetric, such as in the case of proper colourings of
G or the partition function of the Potts model, the extra reduction in size achieved
here can be remarkable.

Example 3.6. If we use the automorphism group of K3 as well in Example 3.4, we
now only find two orbits,

{{121, 212, 313, 131, 232, 323}, {123, 321, 132, 231, 213, 312}},
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and the compressed transfer matrix has side 2:

C =
[

3 2
2 2

]
, v = {6, 6}.

4. Application to the asymptotic number of q-colourings of lattices

The number of proper q-colourings of an n×n square grid, or Pn ×Pn, is known
to grow exponentially as a function of n2. We denote the basis for this exponential
growth by λs(q). This is a quantity which is of interest both in enumerative com-
binatorics and statistical physics. In the latter case, log λs(q) is seen as the ground
state entropy of the much studied antiferromagnetic Potts model on the square
grid; see, for example, [16] for a survey.

For 3-colourings Lieb [12] found the exact asymptotic value of λs(3) =
(

4
3

)3/2 but
for larger q the value of λs(q) is still unknown. More recently the antiferromagnetic
Potts model has been studied, using transfer matrix and compression thereof, both
in a series of papers by Jacobsen, Salas and Sokal [15, 10, 11], as well as in a
collection of papers by Chang and Shrock; see, for example, [4].

As a full-scale example of our methods we now look at the compression of transfer
matrices for q-colourings of the square grid for q = 4, 5, for the cubic grid Pn ×
Pn × Pn for q = 3, 4, and their use in getting bounds for λs(q).

It is known that the maximum eigenvalues θ1(k) and θ2(k) of the transfer matri-
ces for Hom(G(Pk, Id, n), Kq) and Hom(G(Ck, Id, n), Kq) respectively, can be used
to give upper and lower bounds for λs(q); see, for example, [7] for a general treat-
ment. In particular

θ1(k + 1)
θ1(k)

� λs(q) � θ2(2k)1/2k. (6)

So we can bound λs(q) by computing θ1(k) for consecutive k and θ2(k) for even k.
In Table 1 we have given the size of the transfer matrix for Hom(G(Pk, Id, n), K3)

and Hom(G(Ck, Id, n), K3). Here N1 denotes the side of the uncompressed transfer
matrix, N2 the side when the automorphism groups of Pk and Ck respectively were
used, and N3 the size when the automorphism group of K3 was used as well. The
effect of the larger automorphism group of the cycle is easily visible, as is the gain
from including the automorphism group of K4 in the compression step. We can
find N1 exactly by evaluating the chromatic polynomial; see, for example, [14], of
the cycle and the path, giving us N1 = 3k + (−1)k3 and N1 = 43k−1 for the cycle
and paths respectively. For both the path and the cycle, N1 grows with O(3k). A
typical colouring of, for example, the cycle is not invariant under any non-trivial
automorphisms so we expect N2 to be O(3n/|Aut(Ck)|) = O(3k/2k) and N3 to be
almost a factor 4! smaller, and for larger k this is indeed close to what we see in
Table 1.

Here we can also note an additional property that will hold for larger values of q,
as well as for homomorphisms to other highly symmetrical graphs H . A q-colouring
of a graph G is equivalent to a partition of the vertex set of G into independent
sets together with an assignment of distinct colours to the parts of this partition.
When an element σ ∈ Aut(G) × Aut(H) acts on a colouring, or homomorphism in
general, the part of σ from Aut(G) acts on the parts of the partition by moving
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them on the graph, and the part of σ from Aut(H) acts by changing the labels of
the parts. When q is larger than the order of G, the number of parts in a partition of
V (G) must be smaller than q, and as q increases N1 can only increase by increasing
the number of possible labelings of the parts of the partitions. This means that
while N1 will continue to grow with q, for a fixed G, the value of N3 will not. This
observation has been used in [15], where q-colourings for large values of q were
studied. Using this observation, one can also bypass the step of computing the full
set of colourings corresponding to N1 and instead start out with partitions of the
vertex set of G, but in the current paper we will stay with the basic method of
starting out with all colourings of G.

For small k, the transfer matrices and eigenvalues were computed first with a
Mathematica program and also with a Fortran 90 program. For larger k the
Fortran 90 program was run on a Linux cluster. In Table 2 of Appendix A we
have collected the computed eigenvalues. The higher-precision values for small k
are due to the Mathematica program.

Using these eigenvalues and inequalities (6) we find the following bounds for
λs(4):

2.336056640723116 � λs(4) � 2.33606820555777. (7)

To our knowledge these are currently the best rigorous bounds for λs(4). In [2] the
first terms of a series expansion in 1/(q − 1) for λs(q) was obtained, and using this
series it was estimated that

λs(4) = 2.336056641± 0.000 000 001,

with a heuristic error bound, an estimate which fits in just above our lower bound.
In the same way we computed the corresponding eigenvalues for 5-colourings,

given in Table 3 of Appendix A. The bounds so obtained for λs(5) are

3.2504049231640764 � λs(5) � 3.250407145038276. (8)

For the growth rate λc(q) of the number q-colourings of the cubic lattice Pk ×
Pk ×Pk there are no exact results known. In [2] series estimates were also given for
λc(3) and λc(4), however these estimates were based on much shorter series than

Table 1: Transfer matrix sizes for 4-colourings. The upper three rows are for trans-
ferring a path, and the lower three for a cycle.

n 3 4 5 6 7 8 9 10 11

N1 36 108 324 972 2916 8748 26244 78732 236196

N2 24 54 180 486 1512 4374 13284 39366 118584

N3 2 4 10 25 70 196 574 1681 5002

N1 24 84 240 732 2184 6564 19680 59052 177144

N2 4 21 24 92 156 498 1096 3210 8052

N3 1 3 2 9 10 34 57 169 366
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those for the square grid and were given as

λc(3) = 1.4435± 0.0005;
λc(4) = 2.043± 0.001 .

In order to compute bounds for the cubic lattice we can make use of the ob-
servations that λc(q) is greater than the maximum eigenvalue for Hom(G(Pk ×
C�, Id, n), Kq), since colourings of these graphs can be extended to periodic colour-
ings of Hom(G(Pk ×P� t, Id, n), Kq) for all t. Likewise, λc(q) is less than the maxi-
mum eigenvalue for Hom(G(Pk × P�, Id, n), Kq), since the number of colourings is
submultiplicative.

As before, we can get lower bounds for the maximum eigenvalue of Hom(G(Pk ×
C�, Id, n), Kq) for a fixed 	 by computing the maximum eigenvalues for consecu-
tive k, and for each value of 	 we will get a lower bound for λc(q). Similarly we
can get upper bounds for the maximum eigenvalue of Hom(G(Pk × P�, Id, n), Kq)
by computing the maximum eigenvalue of Hom(G(Ck × P�, Id, n), K3) for even k.
These eigenvalues are in turn bounded from above by the maximum eigenvalue of
Hom(G(Ck × C�, Id, n), K3), for even k and 	.

For λc(3) our best bounds come from the eigenvalues of Hom(G(C6×C6, Id, n), Kq)
and Hom(G(Pk×C4, Id, n), Kq); for λc(4) the bounds were achieved by Hom(G(C4×
C4, Id, n), Kq) and Hom(G(Pk × C4, Id, n), Kq):

1.4460096817417 � λc(3) � 1.4470681274660; (9)
2.0343787307189 � λc(4) � 2.0652128520667. (10)

As we can see, the estimate from [2] for λc(4) is within our bounds but their
estimate for λc(3) is well below the lower bound, even when their heuristic error
estimate is taken into account. As mentioned in [2] this kind of “miss” by the series
estimate could indicate a physically interesting structure in the set of 3-colourings.

5. Approximate compression

For many applications, the ring F is the real numbers and one typically has only
positive weights. If the aim is to compute only the maximum eigenvalue of M , as
in Example 4, we can go further with our compression than in the previous section.
First we here only need to care about the so-called ‘main part’ of the spectrum of
M , that is, the eigenvalues with eigenvector not orthogonal to 1, and of the main
part we need only to preserve the maximum eigenvalue. We can now make use of
one of the standard theorems of spectral graph theory; see, for example, [8].

Theorem 5.1 (Interlacing of eigenvalues). Let S be an n × m matrix such that
ST S) = I and M a hermitian n × n matrix, and set M ′ = ST MS. Let the eigen-
values of M be λ1 � λ2, . . . , λn and those of M ′ be θ1 � θ2, . . . ,� θm. Then the
eigenvalues of M ′ interlace the eigenvalues of M ; that is,

λj � θj � λn−m+j .

Corollary 5.2. Let M be an m× m hermitian matrix and let X = {X1, X2, . . .}
be a partition of {1, . . . , m}. Define a matrix B where Bi,j is the average row sum
in MXi,Xj . Then the eigenvalues of B interlace those of M .
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Proof. Apply Theorem 5.1 with the matrix S given by Si,j = |Xi|−1/2 if j ∈ Xi

and 0 elsewhere.

For a partition which is not necessarily equitable we thus find the following
corollary.

Corollary 5.3. Let X be a partition of the rows and columns of M ; then the
maximum eigenvalue of C(X ) gives a lower bound on λ1(M).

Given a partition X , we can also define a matrix D, defined as in the previous
corollary but using the maximum row sum rather than the average.

Corollary 5.4. The maximum eigenvalue of D gives an upper bound on λ1(M).

For many choices of weighted graph H it is the case that Z(G, H) is either sub-
or super-additive with respect to the addition of edges and/or vertices to G. In this
situation the corollaries of the interlacing theorem can be used to give us upper and
lower bounds on the asymptotics of the maximum eigenvalues as G becomes larger.
These bounds can then in turn be used in combination with inequalities like (6).

Apart from getting bounds on the eigenvalues of M , one can also use an approx-
imately compressed transfer matrix to speed up iterative algorithms for computing
the exact maximum eigenvalue of M . Many such algorithms, such as the basic
Perron-iteration, start out with a vector v0, and the number of iterations in the al-
gorithms depends on how close v0 is to the eigenvector of the maximum eigenvalue.
Using an approximately compressed transfer matrix, we can quickly find the max-
imum eigenvector of the compressed matrix; next this can vector can be expanded
to a vector v0 by replicating the ith entry in the shorter vector in each of the |Xi|
entries correpsonding to that entry in the uncompressed vector.

In both Corollary 5.3 and Corollary 5.4 the choice of partition X will influence
the value of the eigenvalue bound. How the partition should be chosen in order to
get a good approximation will depend on the underlying graphs and weights, and
it is hard to say anything much more precise than that one should strive to get
blocks MXi,Xj with as closely concentrated row-sums as possible.

Example 5.5. In order to demonstrate the approximate bounds, and the influence
of the choice of partition X , we have computed these bounds for the transfer matrix
for the number of 4-colourings on P12 × Pn and C14 × Pn.

We have used two kinds of partition X .
1. For the first type of partition we viewed each colouring as an integer written

in base 4; for cycles we chose an arbitrary vertex to be the lowest digit. Next
we sorted the colourings as if they were integers.
Given this sorted list of the colourings, we partitioned the list into consecutive
sublists of length k and k − 1, with as few lists of length k − 1 as possible.

2. As our second kind of partition we randomly partitioned the list of colours
into parts of size K.

For these two partitions we next computed an upper bound for the largest eigen-
value of the transfer matrix for C14 and a lower bound for that of P12. For each
graph and partitioning we chose K so as to give compressed matrices with sides
from 0.9 times the original side down to 0.1. For the random ordering, we tried
several random partitions.
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Figure 1: Approximate eigenvalues for C14. Connected points are from the integer
encoding. Clusters of isolated points are random partitions.
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0.998

Figure 2: Approximate eigenvalues for P12. Connected points are from the integer
encoding. Clusters of isolated points are random partitions.

In Figures 1 and 2 we have plotted the approximate eigenvalue divided by the
correct eigenvalue. We find that the lower bounds tend to be more accurate than
the upper bounds. In both cases the integer encoding partition gives a noticeably
better approximation than the random partitions. However, for the lower bound
even the random partitions can be used to compress the matrix down to one tenth
of its original side and still get a bound which is just one percent less than the
correct value.
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Appendix A. Colouring eigenvalues for the square grid

Table 2: Maximum eigenvalues for 4-colourings of the square grid

k Pk Ck

3 16.34846922834953429459185 11

4 38.18874899819785577572648 31.69693845669906858918370

5 89.20972864650976523895547 67.01514803843835560759098

6 208.3980964253975720633538 165.6008220944556672481883

7 486.8291555413566000543864 375.4804004152886797996016

8 1137.260058429224259797968 892.2418753486577354212783

9 2656.703606588566986303095 2064.554606528212648447034

10 6206.209878666071640432711 4849.504943339923099642784

11 14498.05763470071954268293 11293.10916510243643781710

12 33868.2836924334 26429.64958444568607749808

13 79118.2289428612 61675.61597454731

14 184824.664073982 144167.2612085567

15 431760.883879445 336660.4085235824

16 786626.0015010700

Table 3: Maximum eigenvalues for 5-colourings of the square grid

n Pn Cn

2 13

3 42.254746265138 32

4 137.34484848076 114.16796064692

5 446.42629917197 359.90932515034

6 1451.0662111085 1182.6934618883

7 4716.5527439510 3829.1466667249

8 15330.706253905 12464.383871815

9 49831.003080926 40492.334305935

10 161970.93773951 131643.39169572

11 526471.13343803 427861.13442804

12 1390763.1270219
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Appendix B. Colouring eigenvalues for the cubic lattice

Table 4: Maximum eigenvalues for 3-colourings of G × P2

n G = Pn G = Cn

3 13.8072589673052 3
4 30.1109468160278 26.6214214843774
5 65.8601729387350 24.6080079665097
6 144.283083091960 123.199451464237
7 316.392676802175 148.219336059660
8 694.239161184508 582.950876259572
9 1523.97594483322 806.285660630712

10 3346.41981099416 2782.03759223168
11 7349.89922843146 4196.30975248900

Table 5: Maximum eigenvalues for 3-colourings of G × P3

n G = Pn G = Cn

3 42.9509955498558 4.56155281280883
4 134.633390548866 114.548378741056
4 423.398960388624 103.444398290072
5 1333.80481197401 1091.43690942498
6 4206.08745616625 1449.29878537714
7 10674.0945361673

Table 6: Maximum eigenvalues for 3-colourings of G × P4

n G = Pn G = Cn

4 607.5008342289296 496.9033949197111
5 2751.292994653581 437.9397858090114
6 12483.36568754961 9768.207310946096

Table 7: Maximum eigenvalues for 3-colourings of G × P5

n G = Pn G = Cn

5 17953.38896417563 1859.891162040439‘
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Table 8: Maximum eigenvalues for 3-colourings of G × C3

n G = Pn G = Cn

2 3
3 4.56155281280883 2
4 6.97196076839709 6.37228132326901
5 10.6828851212084 6
6 16.3920411989578 14.5064314940480
7 25.1740785316175 15.7833418763922
8 38.6831608665319 33.6767869577220
9 59.4651079147947 39.6505660120334

10 91.4379622705829 78.8188645918277
11 140.631735559805 97.5298788390751
12 216.327079158290 185.239857806635
13 332.808012753772 237.182998032027

Table 9: Maximum eigenvalues for 3-colourings of G × C4

n G = Pn G = Cn

2 26.62142148437744
3 114.5483787410569
4 496.9033949197111 420.477039628259
5 2163.237391033718 378.843114768611
6 9435.406059898469 7704.08921920854
7 11291.7201866529
8 144633.687249454

Table 10: Maximum eigenvalues for 3-colourings of G × C5

n G = Pn G = Cn

2 24.6080079665097
3 103.444398290072
4 437.939785809011
5 1859.89116204043 408.155175807023
6 7912.06577168573 6610.84386549256

Table 11: Maximum eigenvalues for 3-colourings of G × C6

n G = Pn G = Cn

6 599243.330687515
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