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A stable precessing quasi-geostrophic vortex
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The permanent precession of a baroclinic geophysical vortex is reproduced, under
the quasi-geostrophic approximation, using three potential vorticity anomaly modes
in spherical geometry. The potential vorticity modes involve the spherical Bessel
functions of the first kind jl(ρ) and the spherical harmonics Ym

l (θ, ϕ), where l is
the degree, m is the order, and (ρ, θ, ϕ) are the spherical coordinates. The vortex
precession is interpreted as the horizontal and circular advection by a large-amplitude
background flow associated with the spherical mode c0j0(ρ) of the small-amplitude
zonal mode c2,0j2(ρ)Y0

2(θ) tilted by a small-amplitude mode c2,1j2(ρ)Y1
2(θ, ϕ), where

{c0, c2,0, c2,1} are constant potential vorticity modal amplitudes. An approximate
time-dependent, closed-form solution for the potential vorticity anomaly is given. In
this solution the motion of the potential vorticity field is periodic but not rigid. The
vortex precession frequency ω0 depends linearly on the amplitudes c0 and c2,0 of the
modal components of order 0, while the slope of the precessing axis depends on the
ratio between the modal amplitude c2,1 and ω0.

Key words: baroclinic flows, quasi-geostrophic flows

1. Introduction

Geophysical vortices, such as those in the atmosphere and oceans, are observed in
a dynamical state that often departs, if only slightly, from a symmetric flow rotating
around a vertically oriented axis (for example, Boulanger, Meunier & Le Dizès
2007). Hence, a classical set of problems in physical oceanography and dynamical
meteorology deals with the processes of horizontal axisymmetrization and vertical
alignment of baroclinic vortices (for example, Viera 1995; Schecter, Montgomery &
Reasor 2002). In particular, the initial tilt of a geophysical vortex may be due either
to its initial vortex genesis (Canals, Pawlak & MacCready 2009) or to the action of
any external forcing (for example, Tang et al. 2020). Our understanding of the vertical
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alignment of vortices could be substantially improved with a mathematical model able
to describe in a simple way the permanent precession of vortices with distributed
potential vorticity anomaly. This work provides, under the quasi-geostrophic (QG)
approximation, a vortex model with distributed potential vorticity able to sustain,
under inviscid and adiabatic conditions, a permanent precession of its vertical axis.

The basic QG dynamics required to describe the precessing vortex model is
first briefly introduced in § 2, including the fundamental equation expressing the
material conservation of QG potential vorticity anomaly $(x, t) (PVA) by the
horizontal geostrophic flow u(x, t). In the next section § 3 we introduce a PVA
distribution $̃ (x, t0) at the initial time, say, t0 = 0, involving only three modes,
comprising spherical Bessel functions of the first kind jl(ρ), and spherical harmonics
Ym

l (θ, ϕ), where (ρ, θ, ϕ) are the spherical coordinates. The modes used are the
spherical zero-degree mode $̂0j0(ρ), and the second-degree modes $̂2,0j2(ρ)Y0

2(θ)
and $̂2,1j2(ρ)Y1

2(θ, ϕ). It is postulated that this PVA distribution $̃ (x, t0) evolves,
subjected to the QG dynamics, as a stable precessing vortex as long as the modal
amplitudes |$̂2,0| and |$̂2,1| are smaller than the spherical vortex amplitude |$̂0| (that
is, as long as the modes of degree 2 are small perturbations to the spherical mode).
The stable precession is verified using three-dimensional numerical simulations. Then
a closed-form PVA field $̃ (x, t) is obtained in § 4 as an approximate solution to
the unsteady $̃ (x, t). This approximate solution $̃ (x, t) is periodic but not rigid,
and addresses both the precession frequency and precession axis slope of the vortex.
Finally, concluding remarks are given in § 5.

2. Basic QG dynamics

The inviscid adiabatic QG flow is governed by the conservation of QG PVA $(x, t),

dg$

dt
≡
∂$

∂t
+ u · ∇h$ = 0 (2.1)

by the horizontal geostrophic flow u(x, t) ≡ −∇h × (φez), scaled by f−1
0 , where

f0 is the constant background vorticity, or Coriolis parameter, and φ(x, t) is the
geopotential anomaly field. The QG PVA $(x, t) is the sum of the dimensionless
(scaled by f−1

0 ) vertical component of geostrophic vorticity ζ (x, t) = ∇2
hφ and the

dimensionless vertical stratification anomaly S(x, t)=−∂D(x, t)/∂z= ∂2φ/∂ ẑ2, where
D is the vertical displacement of isopycnals. Above ẑ ≡ (N0/f0)z, where N0 is the
constant background Brunt–Väisälä frequency. Henceforth we omit the hat symbol
(ˆ) in ẑ and will always work in the QG space, now simply denoted as (x, y, z). The
QG PVA $ equals, in the vertically stretched QG space (x, y, z), the Laplacian of
φ(x, t),

$ = ζ + S =∇2φ. (2.2)

In terms of the geopotential φ(x, t) the QG PVA conservation (2.1) is

∂

∂t
∇

2φ + (ez ×∇hφ) · ∇h∇
2φ =

∂

∂t
∇

2φ +J {φ,∇2φ} = 0, (2.3)

where J {A, B} ≡ ∂A/∂x∂B/∂y − ∂A/∂y∂B/∂x is the Jacobian operator. Steady-state
solutions to (2.3), with separation of variables in spherical coordinates (ρ, θ, ϕ) and
regular at the origin, are the product of the spherical Bessel functions of the first kind
jl(ρ) with the spherical harmonics Ym

l (θ, ϕ), of degree l and order m, which satisfy
the Helmholtz equation ∇2( jl(ρ)Ym

l (θ, ϕ)) = −jl(ρ)Ym
l (θ, ϕ). These solutions, with

distributed PVA, are used to describe the precessing QG vortex in the next section.
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3. The three modes vertically precessing QG vortex

In this section we describe the precessing QG vortex directly from the initial
QG PVA distribution $̃ (x, t0). The purpose is to show that, for some range of the
modal vortex amplitudes, this initial condition leads to a stable precessing vortex.
Those readers already familiar with the QG PV dynamics will rapidly understand
the vortex precession directly from the geometry of the modal components of the
vortex configuration. The more rigorous mathematical justification of this vortex
configuration is postponed to the next section.

The vortex interior comprises three PVA modes, consisting of simple spherical
Bessel and spherical harmonics modes, defined as

$0(ρ)≡ â0( j0(ρ)− j0(ρ1))Y0
0 = $̂0( j0(ρ)− j0(ρ1)), (3.1)

$2,0(ρ, θ)≡ â2,0j2(ρ)Y0
2(θ)= $̂2,0j2(ρ)(3 cos2 θ − 1), (3.2)

$2,1(ρ, θ, ϕ)≡ â2,1j2(ρ)Y1
2(θ, ϕ)= $̂2,1j2(ρ) sin θ cos θ cos ϕ. (3.3)

The PVA modes are defined here as real-valued functions so that the complex modal
amplitude â2,1 is such that $̂2,1 is a real-valued amplitude. The normalization constants
of the spherical harmonics are absorbed in the modal PVA amplitudes. To use modal
PVA amplitudes independent of the spherical harmonic normalization, constants
{$̂0, $̂2,0, $̂2,1} must be replaced with {(1/2

√
π)$̂0,

1
4

√
(5/π)$̂2,0,−

1
2

√
(15/2π)$̂2,1}.

The precessing vortex is defined as a piecewise PVA function with three
subdomains,

$̃ (ρ, θ, ϕ, t0)≡


$0(ρ)+$2,0(ρ, θ)+$2,1(ρ, θ, ϕ), ρ 6 ρ1

$2,0(ρ, θ)+$2,1(ρ, θ, ϕ), ρ1 <ρ 6 ρ2

0, ρ2 <ρ.

(3.4)

The three subdomains are spherical shells (for brevity referred to here as the inner,
intermediate or transition, and outer domains) defined from the first zeros, ρ1 and ρ2,
of the spherical Bessel functions j1(ρ) and j2(ρ) (that is, j1(ρ1) = 0 and j2(ρ2) = 0).
Because of their frequent use here we record the constants

ρ1 ' 4.493, ρ2 ' 5.763, j0(ρ1)'−0.2172 and j0(ρ2)'−0.08617. (3.5a−d)

Mode $0(ρ), having radial ρ symmetry, is the spherical mode, or unperturbed
vortex. Since $0(ρ) has no particular axis of symmetry (all the radial axes are axes
of symmetry), all the rotations leave the PVA mode invariant, and therefore it is
not a mode susceptible to being tilted. Mode $0(ρ) occupies only the inner vortex,
vanishing at the radius ρ1 where j′0(ρ1)= j1(ρ1)= 0, and therefore $0(ρ1)=$

′

0(ρ1)= 0.
Modes $2,0(ρ, θ) and $2,1(ρ, θ, ϕ) occupy both the inner and intermediate domains,

since they terminate at the radius ρ2 where $2,0(ρ2, θ) = $2,1(ρ2, θ, ϕ) = 0. Mode
$2,0(ρ, θ) (figure 1a) is the zonal vortex mode, symmetric around its vertical axis
(has no azimuthal ϕ dependence), and therefore is susceptible to being tilted. By
itself, mode $2,0(ρ, θ) is centrifugally unstable (for example, Sipp & Jacquin 2000),
since the PVA gradient ∇$2,0 changes sign within its domain. However, the spherical
mode $0(ρ) can stabilize the vortex, at least within its inner domain, as long as the
spherical modal amplitude satisfies |$̂0| � |$̂2,0|.

Mode $2,1(ρ, θ, ϕ) (figure 1b) is, by itself, baroclinically unstable or, better
expressed, is the baroclinic instability, in the sense that it consists of two baroclinic

890 R1-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

13
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.130


A. Viúdez

-5
0

x

z

y

5

5

0

-5

-5
0

5(a)

-5
0

x

z

y

5

5

0

-5

-5
0

5(b) (c)

50
x

z

-5
-5

0
5

5

0

-5

FIGURE 1. Isosurfaces of the PVA modes. Isosurfaces of (a) $2,0(x)=±1, (b) $2,1(x)=
±1 and (c) $2,0(x)+$2,1(x)=±1. Modal amplitudes $̂2,0= $̂2,1= 1. Blue colour means
negative values and orange colour means positive values.

dipoles, one above the other, travelling horizontally in opposite directions along
straight trajectories. These baroclinic dipoles would experience vertical shear since,
for symmetry reasons, the flow velocity vanishes at the mid-depth z= 0. However, the
vortex may be stable due to, again, the addition of the spherical mode $0(ρ), which
adds curvature to the $2,1 dipole trajectories, as occurs with the radial and dipolar
modes in the two-dimensional Chaplygin–Lamb vortex (Chaplygin 1903; Flierl, Stern
& Whitehead 1983; Meleshko & van Heijst 1994), or as happens with the spherical
and dipolar modes, which depend on j0(ρ) and j1(ρ)Y1

1(θ, ϕ) in baroclinic QG dipoles
(Viúdez 2019). If this curvature radius is much smaller than the vortex radius (roughly
if z|$̂2,1|/|$̂0| � zρ2 – that is, if |$̂0| � |$̂2,1|), the inner vortex remains stable and
oscillates due to the presence of the two dipoles of the $2,1 mode.

The specification of the PVA in the intermediate transition domain shell ρ1<ρ <ρ2

is not, however, unique. Several possibilities, different from that in (3.4), seem to be
possible. Extending the mode-0 domain to ρ 6 ρ2 is another option; although in this
case the spherical mode becomes unstable in the intermediate region ρ1<ρ6ρ2, since
the gradient of j0(ρ) changes sign at ρ = ρ1. Another option is to stretch the radial
variable of the spherical Bessel function j0(k0 ρ), with k0≡ρ1/ρ2, and extend the inner
domain to ρ 6 ρ2, so that j0(k0 ρ2)= j0(ρ1). However, in this case the vortex becomes
unsteady in the inner domain ρ6ρ2, since the advective cross-terms of modes {0} and
{2, 1} no longer cancel out (that is, J {φ0, ∇

2φ2,1} + J {φ2,1, ∇
2φ0} = −J {φ0, φ2,1} −

k2
0J {φ2,1, φ0} = (k2

0 − 1)J {φ0, φ2,1}). Thus we have used (3.4) as the least unsteady
among the different possibilities considered (being aware, however, that other solutions
may be possible).

It rests now to prove that for small amplitudes |$̂2,1|, such that the ratio
|$̂2,0/$̂2,1| = |ε0| � 1, the addition of modes $2,0 and $2,1 is approximately
equal to a rotation of $2,0 around an horizontal axis (figure 1c). First we write,
using a convenient mix of spherical, cylindrical (r, ϑ, z), and Cartesian (x, y, z)
coordinates, $2,0 = φ̂2,0j2(ρ)(2z2

− r2)/ρ2 and $2,1 = φ̂2,1j2(ρ)xz/ρ2. Since a
rotation around the y-axis by a small angle |α0| � 1 transforms (x, y, z) →
(x cos α0 − z sin α0, y, z cos α0 + x sin α0)' (x− α0z, y, z+ α0x), the term (2z2

− r2) in
$2,0 above transforms as (2z2

− r2)→ (2z2
− r2
− 4α0xz), and therefore we see, since

ρ remains invariant under a rotation, that $2,0+$2,1 may be approximately regarded
as mode $2,0 rotated by a small angle α0 =−ε0/4.
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FIGURE 2. Isosurfaces of the initial PVA distribution $̃ (x, t0) for modal amplitudes $̂0=

1/4, $̂2,1= 1/8, with (a) $̂2,0=−1/8, isosurfaces $̃ =−0.01 (grey) and $̃ = 0.05 (dark
orange) and (b) $̂2,0 = 1/8, isosurfaces $̃ =−0.015 (grey) and $̃ = 0.04 (dark orange).

Numerical simulations were carried out using a three-dimensional pseudo-spectral
code where the initial QG PVA field $̃ (x, t0), defined by (3.4), was evolved in
a triple-periodic domain to confirm the stability of the vortex and the permanent
precession of its vertical axis. The numerical algorithm uses an explicit leap-frog,
time-stepping method, together with a weak Robert–Asselin time filter to avoid the
decoupling of even and odd time levels (as in Dritschel & Viúdez (2003)). Spatial
fields are computed using the pseudo-spectral method, wherein spatial derivatives are
computed in spectral space, while the advective nonlinear products are computed on
the physical grid, and fast Fourier transforms are used to go from one representation
to the other.

Numerical simulations with a relatively low resolution (1283 and 2563 grid points)
showed that the vortex configuration is stable and displays a precessing PVA field.
Only two particular cases are described here, in which the perturbation amplitudes
|$̂2,0| = |$̂2,1| = |$̂0|/2 are relatively large, in order to shown more clearly the
vortex precession and that, even in these cases, the vortex remains stable. The
initial PVA distributions are shown in figure 2 and their time evolution in movies 1,
2 and 3 (supplementary material available at https://doi.org/10.1017/jfm.2020.130).
The precessing vortex may be conceptually regarded as a family of horizontal,
two-dimensional Chaplygin–Lamb dipoles, parameterized by the depth z, whose
trajectories are horizontal circles of radius proportional to the depth z and centred
along the vertical axis ez. The initial points of these Chaplygin–Lamb dipole
trajectories are located along a straight vertically tilted axis, which corresponds
to the vortex precession axis.

When the modal PVA amplitudes $̂0 and $̂2,0 have different sign (initial PVA in
figure 2(a) and time evolution in movies 1 and 2) this family of Chaplygin–Lamb
dipoles is visualized from the two tilted spherical caps of PVA anomaly, with sign
opposite to that of the vortex core, located above and below the vortex core. In
this particular simulation the precessing vortex experienced np = 11 anticlockwise
precessions in a time period 1t ' 4860, which corresponds to an angular velocity
ω0 = 2πnp/1t' 0.0142.

When the zonal modal PVA amplitudes $̂0 and $̂2,0 have the same sign (initial PVA
in figure 2(b) and time evolution in movie 3) the family of Chaplygin–Lamb dipoles
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is easily inferred from the tilted torus of PVA anomaly, with sign opposite to that of
the vortex core, located around the vortex core at mid-depth z' 0. In this particular
simulation the precessing vortex experienced np = 10 anticlockwise precessions in a
time period 1t ' 4950, which corresponds to an angular velocity ω0 = 2πnp/1t '
0.0127. We note that, in the two cases described above, the PVA distributions of
opposite sign to that of the vortex core, having a geometry similar to two spherical
caps and one tilted torus, though of small amplitude in comparison with that of the
vortex core, are necessary to maintain the vortex precession.

We conclude this section by asserting that the precession of a baroclinic vortex
may be interpreted as the horizontal and circular advection by a large-amplitude
spherical mode $0(ρ) of the small-amplitude vertical mode $2,0(ρ, θ) tilted by a
small-amplitude mode $2,1(ρ, θ, ϕ). The next section provides the mathematical
justification of this assertion.

4. Precessing vortex solutions

4.1. Steady-state solutions

Here we provide the steady-state solutions, in terms of the geopotential function φ(x),
as an intermediate step towards the time-dependent solution φ̃(x, t). Since the modes
jl(ρ)Ym

l (θ, ϕ) are eigenfunctions of the Laplacian operator, the interior (superscript i)
geopotentials are

φi
0(ρ)≡ ĉ0j0(ρ)Y0

0 = φ̂0j0(ρ), (4.1)

φi
2,0(ρ, θ)≡ ĉ2,0j2(ρ)Y0

2(θ)= φ̂2,0j2(ρ)(3 cos2 θ − 1), (4.2)

φi
2,1(ρ, θ, ϕ)≡ ĉ2,1j2(ρ)Y1

2(θ, ϕ)= φ̂2,1j2(ρ) sin θ cos θ cos ϕ, (4.3)

where {φ̂0, φ̂2,0, φ̂2,1} = −{$̂0, $̂2,0, $̂2,1} are real-valued geopotential modal
amplitudes. The steady modal geopotentials are piecewise functions comprising
the interior and exterior solutions, and are given by

φ0(ρ)

φ̂0

=


j0(ρ), ρ 6 ρ1

j0(ρ1)

(
1−

(ρ1 − ρ)
2(2ρ1 + ρ)

6ρ

)
, ρ1 <ρ,

(4.4)

φ2,0(ρ, θ)

φ̂2,0(3 cos2 θ − 1)
=

φ2,1(ρ, θ, ϕ)

φ̂2,1 sin θ cos θ cos ϕ
=


j2(ρ), ρ 6 ρ2

j0(ρ2)

15
ρ5
− ρ5

2

ρ3
, ρ2 <ρ.

(4.5)

Finally, the steady geopotential φ(x) is the sum of the three modes,

φ(ρ, θ, ϕ)≡ φ0(ρ)+ φ2,0(ρ, θ)+ φ2,1(ρ, θ, ϕ). (4.6)

The interior and exterior solutions satisfy continuity at the internal radial boundaries
φ0(ρ1) = j0(ρ1) and φ2,0(ρ2, θ) = φ2,1(ρ2, θ, ϕ) = 0, as well as continuity of the first
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and second radial derivatives,

∂φ0

∂ρ
(ρ1)= 0,

∂2φ0

∂ρ2
(ρ1)=−φ̂0j0(ρ1),

1
ρ2

∂φ2,0

∂ρ
(ρ2, θ)=−

1
2
∂2φ2,0

∂ρ2
(ρ2, θ)= φ̂2,0

j0(ρ2)

3
(3 cos2 θ − 1),

1
ρ2

∂φ2,1

∂ρ
(ρ2, θ, ϕ)=−

1
2
∂2φ2,1

∂ρ2
(ρ2, θ, ϕ)= φ̂2,1

j0(ρ2)

3
sin θ cos θ cos φ,


(4.7)

which ensures horizontal velocity, vertical stratification, vorticity and PVA continuity.
For later reference we show, in spherical coordinates, the cylindrical velocity
components of the three modes,

u0(ρ, θ)

φ̂0 sin θ
=−eϕ


j1(ρ), ρ 6 ρ1

j0(ρ1)

3
ρ3
− ρ3

1

ρ2
, ρ1 <ρ,

u2,0(ρ, θ)

φ̂2,0 sin θ
= eϕ


j1(ρ)(3 cos2 θ − 1)−

j2(ρ)

ρ
3(5 cos2 θ − 1), ρ 6 ρ2

j0(ρ2)

15ρ4
[(3(5 cos2 θ − 1))ρ5

2 − 2ρ5
], ρ2 <ρ,

u2,1(ρ, θ, ϕ)

φ̂2,1 cos θ
=



j2(ρ)

2
sin ϕer +

(
sin2 θ j1(ρ)+ (5 cos2 θ − 4)

j2(ρ)

ρ

)
cos ϕeϕ,

ρ 6 ρ2

j0(ρ2)

15ρ4
[(ρ5
− ρ5

2) sin ϕer + (ρ
5
− ρ5

2(5 cos2 θ − 4)) cos ϕeϕ],

ρ2 <ρ.


(4.8)

For later use we also provide the vertical vorticity of the spherical mode,

ζ0(ρ, θ)

φ̂0

=


−2

j1(ρ)

ρ
+ j2(ρ) sin2 θ, ρ 6 ρ1

j0(ρ1)

3

[
(3 cos2 θ − 1)

ρ3
2

ρ3
− 2
]
, ρ1 <ρ,

(4.9)

as well as the exterior vertical vorticity of modes {2, 0} and {2, 1},

ζ e
2,0(ρ, θ)= φ̂2,0j0(ρ2)

15ρ5
2(4 cos (2θ)+ 7 cos(4θ))− 32ρ5

+ 27ρ5
2

120ρ5
,

ζ e
2,1(ρ, θ, ϕ)= φ̂2,1j0(ρ2), ρ

5
2

sin(2θ)(7 cos (2θ)+ 1) cos ϕ
12ρ5

,

 (4.10)

and we note that, since these two modes have zero exterior PVA, their exterior
vertical vorticity equals, with opposite sign, their exterior vertical stratification (that
is, ζ e

2,0(ρ, θ)=−Se
2,0(ρ, θ) and ζ e

2,1(ρ, θ, ϕ)=−Se
2,0(ρ, θ, ϕ)).
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4.2. The far field of the steady solutions
The solutions in the previous subsection in terms of the geopotential φ(x) are steady-
state solutions, but are not completely satisfactory, in the sense that the velocity and
density stratification anomaly fields do not vanish as ρ→∞. For example, from (4.9),
the far-field velocity of the spherical mode,

u0(ρ, θ)∼
$̂0

3
j0(ρ1)ρ sin θeϕ =

$̂0

3
j0(ρ1)r(ρ, θ)eϕ ≡ u∞0 (r), (4.11)

increases as r, and therefore tends to a constant vertical vorticity

ζ∞0 ≡∇× u∞0 =
2
3$̂0j0(ρ1)ez ≡ ζ

∞

0 ez. (4.12)

The far-field velocity of the mode {2, 0}, from (4.9),

u2,0(ρ, θ)∼
2
15$̂2,0j0(ρ2)ρ sin θeϕ = 2

15$̂2,0j0(ρ2)r(ρ, θ)eϕ ≡ u∞2,0(r), (4.13)

increases also as r, and also tends to a constant far-field vertical vorticity

ζ∞2,0 ≡∇× u∞2,0 =
4

15$̂2,0j0(ρ2)ez ≡ ζ
∞

2,0ez, (4.14)

while the far-field velocity of mode {2, 1}

u2,1(ρ, θ)∼
$̂2,1

15
j0(ρ2)ρ cos θ(sin ϕer + cos ϕeϕ)=

$̂2,1

15
j0(ρ2)zey ≡ u∞2,1, (z) (4.15)

increases as z and therefore tends to a constant far-field horizontal vorticity

ζ∞2,1 ≡∇× u∞2,1 =−$̂2,1
j0(ρ2)

15
ex ≡ ξ

∞

2,1ex. (4.16)

Since modes {2, 0} and {2, 1} have zero exterior PVA, their far-field vertical vorticity
equals the (negative of the) far-field density stratification, which implies, from (4.10),
that

ζ∞2,0 ≡ lim
ρ→∞

ζ e
2,0(ρ, θ)=−S∞2,0 ≡− lim

ρ→∞
Se

2,0(ρ, θ)=
4
15$̂2,0j0(ρ2), (4.17)

ζ∞2,1 ≡ lim
ρ→∞

ζ e
2,1(ρ, θ, ϕ)=−S∞2,1 ≡− lim

ρ→∞
Se

2,1(ρ, θ, ϕ)= 0, (4.18)

so that mode {2, 0} induces also a constant far-field density stratification S∞2,0.

4.3. Unsteady approximate solutions with vanishing far fields
In order to remove the finite far fields from the steady modal geopotentials, three
background modal geopotentials, φ̄0(ρ), φ̄2,0(ρ, θ) and φ̄2,1(ρ, θ, ϕ), are added to the
full domain of the steady-state solution φ(x). These background modal geopotentials
are, with opposite sign, the leading terms as ρ → ∞ of the steady-state modal
geopotentials given by (4.5): that is,

φ̄0(ρ)

$̂0
=−

j0(ρ1)

6
ρ2, (4.19)
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φ̄2,0(ρ, θ)

$̂2,0(3 cos2 θ − 1)
=

φ̄2,1(ρ, θ, ϕ)

$̂2,1 sin θ cos θ cos ϕ
=

j0(ρ2)

15
ρ2, (4.20)

so that the background geopotential φ̄(x) is the sum of the three contributions,

φ̄(ρ, θ, ϕ)= φ̄0(ρ)+ φ̄2,0(ρ, θ)+ φ̄2,1(ρ, θ, ϕ). (4.21)

Addition of the background geopotential φ̄(x) to the vortex assures vanishing fields at
infinity, but at the expense of making the vortex unsteady, so that we can only define
the initial condition φ̃(x, t0) of the unsteady geopotential φ̃(x, t) as

φ̃(x, t0)= φ(x)+ φ̄(x). (4.22)

Since ∇2φ̄0 =−$̂0j0(ρ1) and ∇2φ̄2,0 =∇
2φ̄2,1 = 0, the PVA of the initial geopotential

condition (4.22) is exactly $̃ (ρ, θ, ϕ, t0), as given by (3.4).
The background flow ū(x) ≡ −∇ × (φ̄(x) ez) is horizontal and is the sum of the

background modal velocity fields

ū0(r)=−u∞0 (r)=−$̂0
j0(ρ1)

3
reϕ,

ū2,0(r)=−u∞2,0(r)=−$̂2,0
2j0(ρ2)

15
reϕ,

ū2,1(z)=−u∞2,1(z)=−$̂2,1
j0(ρ2)

15
zey.


(4.23)

The position r̄(X, t) of particles X= (X,Y,Z) moving with the background flow ū(x)=
ū0(r)+ ū2,0(r)+ ū2,1(z) therefore satisfies the equation

∂ r̄
∂t
(X, t) = ū0(r̄(X, t))+ ū2,0(r̄(X, t))+ ū2,1(z̄(X, t))

= ω0ez × r̄(X, t)+ ξ0ez · r̄(X, t)ey

= ω0(r̄(X, t)eϕ + γ0Zey), (4.24)

where, obviously, z̄(X, t)= z= Z = ez · r̄(X, t), since ū(x) is horizontal, and we have
defined the angular velocity ω0, vertical shearing ξ0, and their ratio γ0 as

ω0 ≡−$̂0
j0(ρ1)

3
− $̂2,0

2j0(ρ2)

15
, ξ0 ≡−$̂2,1

j0(ρ2)

15
, γ0 ≡

ξ0

ω0
, (4.25a−c)

assuming, in the definition of the ratio γ0, that ω0 6= 0. The solution to (4.24) is

r̄(X, t)+ γ0Zex = R[ω0t] · (X+ γ0Zex), (4.26)

where R[α] is the two-dimensional rotation tensor that rotates a vector (x, y)
counterclockwise through an angle α. The background motion is therefore a horizontal
rotation of the particles (X, Y, Z) by an angle ω0t around the point (−γ0Z, 0, Z). The
background motion is not a rigid motion in the three-dimensional space, due to the
constant γ0, but it might be thought of as a continuous family, parameterized by the
vertical coordinate z, of changes of reference of horizontal two-dimensional frames
rotating around the points (−γ0Z, 0,Z)= (−γ0, 0, 1)Z, where γ0 defines the tangent of
the axis comprising the centres of rotation at every depth z. More importantly, since
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the streamlines of the horizontal background flow are circles, the background flow has
no diffluence, no bifurcation points, and therefore will not largely distort the modal
distributions, as long as the vertical shear ξ0 remains small or the ratio |γ0|� 1. This
property is characteristic of modes jl(ρ)Y

0,±1
l (θ, ϕ), where the azimuthal wavenumber

is 0 or ±1.
The particles X located at position x at time t are therefore given by R̄(x, t),

R̄(x, t)+ γ0zex = Rı
[ω0t] · (x+ γ0zex), (4.27)

where Rı
[α]=R[−α] is the tensor inverse of R[α]. Explicitly, in Cartesian coordinates,

X̄(x, t)+ γ0z= (x+ γ0z) cos(ω0t)+ y sin(ω0t),
Ȳ(x, t)=−(x+ γ0z) sin(ω0t)+ y cos(ω0t).

}
(4.28)

Given the background flow ū(x, t), we postulate that, for small ratios γ0, an
approximate solution to $̃ (x, t) is the unsteady solution $̌ (x, t), defined as the initial
PVA distribution $̃ (x, t0) materially advected by the background flow – that is,

$̌ (x, t)≡ $̃ (R̄(x, t), t0)' $̃ (x, t). (4.29)

Clearly, since R̄(x, t0)= x and ũ · ∇$̃ (x, t0)= ū · ∇$̃ (x, t0) (appendix A), we have

$̌ (x, t0)= $̃ (x, t0),
∂$̌

∂t
(x, t0)=

∂$̃

∂t
(x, t0). (4.30a,b)

However, higher-order time derivatives at the initial time t0 do not coincide. An
example of the approximate solution $̌ (x, t) is shown in movie 4. The precession
frequency ω0 of the approximate solution $̌ (x, t), given by (4.25), predicts
precession frequencies $0 ' 0.0167 and $0 ' 0.0195 for the modal PVA amplitudes
|$̂2,0| = |$̂2,1| = |$̂0|/2 of the numerical simulations described in the previous
section, which, taking into account the large amplitudes considered, are reasonable
approximations to the numerical values (0.0142 and 0.0127, respectively).

The corresponding geopotential φ̌(x, t), consistent with relation (2.2), must satisfy
∇

2φ̌(x, t)= $̌ (x, t), with vanishing far-field conditions. Inverting ∇2φ̌(x, t)= $̌ (x, t)≡
$̃ (R̄(x, t), t0) is not trivial since the three-dimensional Laplacian ∇2 is not invariant
under the transformation R̄(x, t) for γ0 6= 0, and therefore φ̌(x, t) differs from
φ̌(R̄(x, t), t0) = φ̃(R̄(x, t), t0) at t > t0. On the other hand, the geopotential φ̌(x, t),
symbolically defined as φ̌(x, t)=∇−2$̌ (x, t), is not an exact solution to the dynamical
equation (2.3) at t > t0 because (a) $̌ (x, t) is only an approximation to $̃ (x, t), (b)
φ̃(x, t) is assumed to satisfy the dynamical equation, and (c) the initial conditions
coincide (4.30).

5. Concluding remarks

In this work we have provided a simple mathematical model, based on three
potential vorticity anomaly modes in spherical geometry, which explains, under
the quasi-geostrophic approximation, the permanent precession of geophysical
vortices. The precession of this new coherent vortex structure is interpreted as
the horizontal and circular advection by the background flow associated with the
spherical mode $̂0j0(ρ) of the mode $̂2,0j2(ρ)Y0

2(ρ, θ) vertically tilted by the mode
$̂2,1j2(ρ)Y1

2(ρ, θ, ϕ). Unlike what happens in the case of the quasi-geostrophic
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spherical dipole, which is a periodic rigid motion composed of mode-0 j0(ρ) and
modes j1(ρ)Y

0,±1
1 (θ, ϕ), the potential vorticity anomaly in the precessing vortex

experiences a periodic motion that is not rigid, and therefore is not steady in any
reference frame.

We may therefore associate with the spherical QG vortex, whose potential
vorticity anomaly is given only by the mode-0 $̂0j0(ρ), an intrinsic frequency
ω0 = −$̂0j0(ρ1)/3. This intrinsic frequency only shows up when the vortex is
perturbed in some specific ways. Perturbations of degree 1 correspond to the
uniformly translating QG vortex dipole. If the vortex is perturbed with the zonal
mode {1, 0} (that is, adding $̂1,0j1(ρ)Y0

1(θ)), the vertical structure of the vortex
changes but the symmetry around the vertical axis is preserved and the intrinsic
frequency remains hidden. However, if the perturbation is the non-zonal mode {1, 1}
(that is, $̂1,±1j1(ρ)Y±1

1 (θ, ϕ)), the intrinsic frequency is detectable since the vortex
dipole acquires a circular trajectory of signed radius $̂1,±1/$̂0 and frequency ω0. In
the precessing vortex model presented here the vortex also has an intrinsic frequency,
given in this case by the zonal modes ω0 = −$̂0j0(ρ1)/3 − 2$̂2,0j0(ρ2)/15. If the
vortex is perturbed with the non-zonal mode {2, 1} (that is, $̂2,±1j2(ρ)Y±1

2 (θ, ϕ)),
the intrinsic vortex frequency becomes detectable in the periodic precession of the
vortex vertical axis, which tilts with slope γ0 = (−$̂2,1j0(ρ2)/15)/ω0. In both cases,
the dipole vortex and the precessing vortex, the vortices have an intrinsic frequency
which shows up when the vortex is perturbed in a non-zonal azimuthal way.

The existence of the permanent tilting modes described here are relevant to our
understanding of vertical alignment of geophysical vortices. We may think of any
small-amplitude, but otherwise arbitrary PVA distribution as decomposed by a sum
of PVA modes $̂l,mjl(ρ)Ym

l (θ, ϕ). Many of these excited modes are evanescent in
the sense that their PVA distributions evolve into highly sheared structures, mainly
by spiralling around the vortex centre due to the advection by the large-amplitude
vortex spherical mode, so that their radial wavenumber increases indefinitely and are
ultimately dumped by diffusive processes. The dumping of these modes causes the
initial, but only partial, vertical alignment of the vortex. However, the tilting modes
described here remain in the vortex and become responsible for the residual and
permanent vortex precession.

It seems possible that potential vorticity spherical modal perturbations of higher
degree, jl(ρ)Y

0,±1
l (θ, ϕ) for degrees l > 3, may also give rise to stable precessing

vortical structures, since these solutions share some of the characteristics of the
perturbations of degree l= 2 analysed here (that is, j2(ρ)Y

0,±1
2 (θ, ϕ)). The stability of

these solutions is currently under investigation.
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Appendix A. Advection at the initial time t0 = 0

Since the advection involving the eigenfunctions jl(ρ)Ym
l (θ, ϕ) of the Laplacian

operator vanish, and the PVA of the background flow is constant, the PVA advection
at the initial time t0 = 0 involves only the advection by the background flow. Taking
into account that ū0 and ū2,0 are azimuthal flows and that the gradients of $0(ρ)

and $2,0(ρ, θ) have no azimuthal dependence, the only non-vanishing advective terms
in the vortex interior ρ 6 ρ1 are the three advective terms, ū0 · ∇$2,1 + ū2,1 · ∇$0,
ū2,1 · ∇$2,1 and ū2,1 · ∇$2,0 + ū2,0 · ∇$2,1. The sum of these three terms results in

ǔ · ∇$̌ (ρ, θ, ϕ, t0)=−
$̂2,1

15
sin θ cos θ sin ϕ {$̂0[j0(ρ2)ρj1(ρ)− 5j0(ρ1)j2(ρ)]

+ j0(ρ2)[5j2(ρ)− ρj1(ρ)][$̂2,1 sin θ cos θ cos ϕ + $̂2,0(3 cos2 θ − 1)]}, (A 1)

where the three advective terms may be identified in (A 1) as those including the
corresponding factors $̂0$̂2,1, $̂ 2

2,1 and $̂2,0$̂2,1.
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