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OPTIMAL STOPPING RULE FOR THE
NO-INFORMATION DURATION PROBLEM
WITH RANDOM HORIZON

MITSUSHI TAMAKI,∗ Aichi University

Abstract

As a version of the secretary problem, Ferguson, Hardwick and Tamaki (1992) considered
an optimal stopping problem called the duration problem. The basic duration problem
is the classical duration problem, in which the objective is to maximize the time of
possession of a relatively best object when a known number of rankable objects appear
in random order. In this paper we generalize this classical problem in two directions
by allowing the number N (of available objects) to be a random variable with a known
upper bound n and also allowing the objects to appear in accordance with Bernoulli trials.
Two models can be considered for our random horizon duration problem according to
whether the planning horizon is N or n. Since the form of the optimal rule is in general
complicated, our main concern is to give to each model a sufficient condition for the
optimal rule to be simple. For N having a uniform, generalized uniform, or curtailed
geometric distribution, the optimal rule is shown to be simple in the so-called secretary
case. The asymptotic results, as n → ∞, will also be given for these priors.

Keywords: Secretary problem; best-choice problem; Bruss’ odds theorem; simple rule;
candidate; relative rank; Bernoulli trial
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1. Introduction

In the classical best-choice problem, a version of the secretary problem studied extensively
in Gilbert and Mosteller (1966), a fixed known number n of rankable objects (1 being the
best and n the worst) appear one at a time in random order with all n! permutations equally
likely. Each time an object appears, we observe only the relative rank of the current object with
respect to its predecessors. We must select one object and find a stopping rule that maximizes
the probability of selecting the best object. The optimal rule passes over the first s∗c (n) − 1
objects and stops with the first relatively best object if any, where

s∗c (n) = min

{
k ≥ 1 :

n∑
j=k+1

1

j − 1
≤ 1

}
. (1.1)

As n → ∞, s∗c (n)/n → e−1 ≈ 0.3679 and the optimal probability of selecting the best overall
also converges to e−1.

As a different version of the secretary problem, Ferguson et al. (1992) considered an optimal
stopping problem called the duration problem. Among other models, the basic duration problem
is the classical duration problem (see Section 2.2 of Ferguson et al. (1992), in which this
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Optimal stopping rule for the no-information duration problem with random horizon 1029

problem is called the finite-horizon duration problem), where we must find a stopping rule that
maximizes the expected duration of holding a relatively best object. Clearly, we select only a
relatively best object, receiving a payoff of 1 plus the number of future observations before a
new relatively best object appears or until the final stage n is reached. The optimal rule passes
over the first t∗c (n)− 1 objects and stops with the first relatively best object if any, where

t∗c (n) = min

{
k ≥ 1 :

n∑
j=k+2

1

j − 1

n∑
i=j

1

i
≤

n∑
i=k+1

1

i

}
. (1.2)

As n → ∞, t∗c (n)/n → e−2 ≈ 0.1353 and the optimal proportional payoff (equal to the
payoff/n) converges to 2e−2 ≈ 0.2707.

The optimal stopping rule in each of the above two classical problems is simple in the sense
that it stops on the first relatively best object appearing after a given stage. Henceforth, such a
rule is referred to as a simple rule. We call s∗c (n) and t∗c (n) threshold values.

In this paper we attempt to generalize the classical duration problem in two directions
by allowing the number of objects to be random and also allowing the objects to appear in
accordance with Bernoulli trials. More specifically, this can be stated as follows, if we call
an object candidate when it is relatively best. Each object observed is immediately judged
either to be a candidate or not. Let Xj , j ≥ 1, be the indicator of the event that the j th object
is a candidate, and suppose that X1, X2, . . . is a sequence of independent Bernoulli random
variables with P{Xj = 1} = aj = 1 − P{Xj = 0}, j ≥ 1. Also, let N be a bounded random
variable representing the number of available objects, i.e. the length of the random horizon.
It is assumed that N is independent of the sequence X1, X2, . . . and has a prior distribution
pk = P{N = k} such that

∑n
k=1 pk = 1 and pn > 0 for a known upper bound n, and that the

payoff is 0 if no object is chosen. This problem, henceforth referred to as the random-horizon
duration problem (RHDP), is completely specified by two sequences {aj }nj=1 and {pk}nk=1, and
involves finding a stopping rule that maximizes the expected duration of holding a candidate
based on the available information X1, X2, . . . , XN .

The classical duration problem occurs as a special case of the RHDP if N degenerates to n,
i.e. P{N = n} = 1 and aj = 1/j, 1 ≤ j ≤ n, because the relative ranks R1, R2, . . . , Rn
of n rankable objects presented one by one in random order have the property that the Rj
are independent with P{Rj = i} = 1/j, 1 ≤ i ≤ j , and the only relevant information
about Rj is whether Rj takes the value 1 or not. We are said to be in the secretary case if
aj = 1/j, 1 ≤ j ≤ n.

In Section 2 we formulate the RHDP. This problem can be distinguished as two models,
model 1 and model 2, according to whether the final stage of the planning horizon is N or n.
This distinction is related to the last candidate. That is, it is assumed that if the chosen object is
the last candidate prior toN , we can hold it until stageN in model 1, and until stage n in model 2.
It is easy to see that the optimal rule is always simple for n ≤ 3. However, for n ≥ 4, the form
of the optimal rule heavily depends on {aj }nj=1 and {pk}nk=1, implying that the optimal rule is
not necessarily simple (see Section 2 for an example where N degenerates to n = 4). Hence,
our main concern in this paper is to give a sufficient condition for the optimal rule to be simple.
Model 1 will be considered in Section 3 and model 2 in Section 4. An interesting application
of this condition appears in the secretary case. For N having a uniform, generalized uniform,
or curtailed geometric distribution, the optimal rule is shown to be simple. The asymptotic
results, as n → ∞, will also be obtained for these prior distributions. The RHDP is related
to the problem of choosing the last candidate considered in Bruss (2000). In Section 2, it is
shown that we should stop earlier than in the corresponding Bruss problem.
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It is worth mentioning the similarity between the duration problem and the best-choice
problem. Ferguson et al. (1992) recognized, in the secretary case, the similarity between the
classical duration problem and the best-choice problem with a random number of objects having
a uniform distribution on {1, . . . , n},first studied by Presman and Sonin (1972), and later studied
by Samuels (2004), who gave a good explanation for this similarity. For such a similarity, see
also Pearce et al. (2012) for multiple-choice problems, and Samuels (2004), Gnedin (2004), and
Mazalov and Tamaki (2006) for a informed version of the problems. Gnedin (2005) extended
this similarity to the equivalence between the probability maximization problem of stopping at
the maximum in a random sequence and the associated duration problem of maximizing the
interrecord time. In terms of our framework, Gnedin also showed that the RHDP with a given
distribution ofN (as model 1) is equivalent to the probability maximization problem of choosing
the last candidate but with some other distribution of the horizon (see Remark 3.1). Though
Gnedin (2005) was the first to refer to the RHDP, he was mainly concerned with establishing
and extending the equivalence relation and left untouched the problem of deriving the optimal
rule of the RHDP.

2. The formulation of the RHDP

For the RHDP having the sequences {aj }nj=1 and {pk}nk=1, we write bj = 1−aj , 1 ≤ j ≤ n,

and introduce the notation

Bk,i = bk+1bk+2 · · · bi, 0 ≤ k < i ≤ n,

with Bk,k = 1 for convenience, and

πk = pk + pk+1 + · · · + pn, 1 ≤ k ≤ n,

with π1 = 1 and πn > 0. Furthermore, define

σk = πk + (n− k)pk.

To avoid any unnecessary complication, we assume that 0 < aj < 1 for j ≥ 1 throughout this
paper except for the secretary case.

Denote by k the state, where we have just observed the kth object to be a candidate, 1 ≤
k ≤ n. Let S(k) and C(k) represent the expected payoff earned by stopping with the current
candidate in state k and by continuing observations in an optimal manner, respectively. Then
V (k) = max{S(k), C(k)} represents the optimal expected payoff, provided that we start from
state k. Defining Tk as the time of the first candidate after k if there is one, and as N + 1 (as
n+ 1) if there is none in model 1 (in model 2), we can formally express S(k) as

S(k) = E[Tk − k | N ≥ k]. (2.1)

The following lemma gives the explicit form of S(k).

Lemma 2.1. We have, for 1 ≤ k ≤ n,

S(k) = 1

πk

n∑
i=k

πiBk,i for model 1, (2.2)

S(k) = 1

πk

n∑
i=k

σiBk,i for model 2. (2.3)
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Proof. To clarify the dependence on the model, we write S1(k) or S2(k) for S(k)
corresponding to model 1 and model 2.

Model 1. Possession of the chosen candidate is terminated either by an arrival of a new
candidate or by termination of the random horizon, whichever occurs first. Hence, Tk takes the
value i on the event Ei ∪ Fi , where Ei and Fi are mutually exclusive and defined as

Ei = {Xk+1 = · · · = Xi−1 = 0, Xi = 1, and N ≥ i}
and

Fi = {Xk+1 = · · · = Xi−1 = 0 and N = i − 1},
respectively, for k+ 1 ≤ i ≤ n+ 1 with the interpretation that En+1 = ∅. Thus, we have from
(2.1),

S1(k) =
n+1∑
i=k+1

(i − k)P{Tk = i | N ≥ k}

=
n∑

i=k+1

(i − k)P{Ei | N ≥ k} +
n+1∑
i=k+1

(i − k)P{Fi | N ≥ k}. (2.4)

Since N and the Xj are independent, we have

P{Ei | N ≥ k} = Bk,i−1ai
πi

πk
= (Bk,i−1 − Bk,i)

πi

πk
(2.5)

and

P{Fi | N ≥ k} = Bk,i−1
pi−1

πk
= Bk,i−1

πi−1 − πi

πk
(2.6)

with πn+1 = 0. Substituting (2.5) and (2.6) into (2.4) yields

πkS1(k) =
n∑

i=k+1

(i − k)(Bk,i−1 − Bk,i)πi +
n+1∑
i=k+1

(i − k)Bk,i−1(πi−1 − πi)

=
n∑
i=k

Bk,iπi, (2.7)

which proves (2.2).
Model 2. In contrast to (2.4), for this model, we can write

S2(k) =
n∑

i=k+1

(i − k)P{Ei | N ≥ k} +
n+1∑
i=k+1

(n+ 1 − k)P{Fi | N ≥ k}, (2.8)

because Tk now takes the value n + 1 on Fi for each i, and it takes the value i on Ei as in
model 1 (i.e. the possession of the candidate is terminated only by the arrival of a new candidate).
Comparing (2.4) and (2.8) yields

S2(k) = S1(k)+
n+1∑
i=k+1

(n+ 1 − i)P{Fi | N ≥ k},
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or, equivalently, from (2.6),

πkS2(k) = πkS1(k)+
n∑
i=k
(n− i)Bk,ipi,

which, combined with (2.7), gives (2.3). This completes the proof.

Remark 2.1. It may be more instructive to express the duration in terms of the indicators Xj
and N . Let D(k) (= Tk − k) denote the duration or payoff when we stop in state k. Then,
setting Yj = 1 −Xj , we easily find that, for 1 ≤ k ≤ n,

D(k) = 1 +
N∑

i=k+1

i∏
j=k+1

Yj for model 1,

D(k) = 1 +
N∑

i=k+1

i∏
j=k+1

Yj + (n−N)

N∏
j=k+1

Yj for model 2.

Thus, we can also obtain S(k) as E[D(k) | N ≥ k] by a straightforward calculation.

Remark 2.2. Suppose that one is to choose a partner in life and is considered satisfied with
his/her choice so long as the partner chosen stays relatively best. Model 1 depicts a situation in
which the lifetime of the chooser is N and the opportunities to choose are available all through
his/her life, while model 2 depicts a situation in which the lifetime of the chooser is n, but the
opportunities to choose are available only in his/her youth of random length N .

If we decide not to stop in state k (< n) and proceed to the next stage, we can observe the
(k+1)th object with probability πk+1/πk , but observe no object with the remaining probability
1 −πk+1/πk , in which case we come to know that the kth object was the last object, and so we
have failed to choose an object. The (k + 1)th object, if observed, results in a candidate or a
noncandidate with respective probabilities of ak+1 and bk+1. Hence, we have

C(k) = πk+1

πk
[ak+1V (k + 1)+ bk+1C(k + 1)], 1 ≤ k < n, (2.9)

with the obvious boundary condition C(n) = 0.
It is easy to see that repeated use of (2.9) yields

C(k) = 1

πk

n∑
j=k+1

πjBk,j rjV (j) (2.10)

if we let rj = aj /bj , 1 ≤ j ≤ n. Define C̃(k) to be the expected payoff by using a rule of
stopping with the first candidate after leaving state k, if any. Then, from (2.10),

C̃(k) = 1

πk

n∑
j=k+1

πjBk,j rj S(j),

which is written as follows from Lemma 2.1.
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Lemma 2.2. For 1 ≤ k < n,

C̃(k) = 1

πk

n∑
i=k+1

( i∑
j=k+1

rj

)
πiBk,i for model 1, (2.11)

C̃(k) = 1

πk

n∑
i=k+1

( i∑
j=k+1

rj

)
σiBk,i for model 2.

Now let
t (n) = min{j : S(k) ≥ C̃(k) for all j ≤ k ≤ n}. (2.12)

Then backward induction shows that it is optimal to stop in state k ≥ t (n). A problem of interest
is to compare t (n) with the threshold value s∗(n) given below in (2.13). As a generalization
of the classical best-choice problem, Bruss (2000) considered the problem of stopping with
the last candidate in the setting of Bernoulli trials of given length n. The main result can be
described as follows.

Theorem 2.1. (Bruss’ odds theorem.) For the problem of maximizing the probability of
stopping with the last candidate in n Bernoulli trials (i.e. N is degenerate to n), the optimal
rule is simple, i.e. it stops with the first candidate Xk = 1 with k ≥ s∗(n), if any, where

s∗(n) = min

{
k ≥ 1 :

n∑
j=k+1

rj ≤ 1

}
. (2.13)

The classical best-choice problem appears in the secretary case, because the last candidate
is the very best in this case ((2.13) is reduced to s∗c (n) in (1.1)). Ferguson (2008) and Tamaki
(2010), (2011) further generalized Bruss’ odds theorem. The following lemma shows that, in
the RHDP, we stop earlier than in the corresponding Bruss problem.

Lemma 2.3. Let n be fixed. Then, whatever the distribution ofN (≤ n) might be, the first time
the optimal rule will stop with a candidate occurs no later than the s∗(n)th trial, where s∗(n)
is as defined in (2.13). Moreover, the optimal rule stops with the first candidate among trials
s∗(n), s∗(n)+ 1, . . . , n if stopping has not occurred previously.

Proof. It suffices to show that t (n) ≤ s∗(n). From Lemmas 2.1 and 2.2, S(k) ≥ C̃(k) is
equivalent to

πk +
n∑

i=k+1

(
1 −

i∑
j=k+1

rj

)
πiBk,i ≥ 0 for model 1, (2.14)

σk +
n∑

i=k+1

(
1 −

i∑
j=k+1

rj

)
σiBk,i ≥ 0 for model 2,

implying that t (n) ≤ s∗(n) from (2.12) and (2.13), because rj is nonnegative.

In contrast to the Bruss problem, the optimal rule of the RHDP is not necessarily simple, even
if N is degenerate. Assume that N degenerates to n. The corresponding optimality equation
is, from (2.2) and (2.10),

V (k) = max

{ n∑
j=k

Bk,j ,

n∑
j=k+1

Bk,j rjV (j)

}
, 1 ≤ k < n, (2.15)
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withV (n) = 1 forn ≥ 2. The optimal rule depends on the probability sequence (b2, b3, . . . , bn)

and not on b1. A bit of calculation from (2.15) shows that the optimal rule is always simple for
n = 2, 3 but not for n = 4. In fact, for n = 4, the optimal stopping region, defined as the set
of states for which stopping is optimal, is {1, 3, 4}, if and only if (b2, b3, b4) satisfies the set of
inequalities

b2 >
(1 − 2b3)b4

1 + (1 + b4)b3
, b3 <

1

4
, b4 >

b3

1 − 3b3
.

For this example, we can give (b2, b3, b4) = ( 2
5 ,

1
5 ,

3
5 ). A similar phenomenon is true for

n ≥ 5, and also for random N . So, in the next two sections, we seek, for each model, a
sufficient condition for the optimal rule to be simple for n ≥ 4.

Remark 2.3. The aim of the classical best-choice problem is to choose the very best. If the aim
is generalized to choose an object whose rank belongs to a prescribed set of ranks, the optimal
rule becomes very complicated, and not always simple. See, e.g. Suchwalko and Szajowski
(2002).

3. Model 1

We deal with model 1 in this section. Make the following transformations:

s(k) = B1,kπkS(k), (3.1)

c(k) = B1,kπkC(k), (3.2)

v(k) = B1,kπkV (k) = max{s(k), c(k)}, (3.3)

μ(k) = s(k)− c(k). (3.4)

Then we have, from (2.2) and (2.10),

s(k) = s(k + 1)+ πkB1,k (3.5)

and
c(k) = c(k + 1)+ rk+1v(k + 1), (3.6)

respectively. Subtracting (3.6) from (3.5) on both sides yields

μ(k) = μ(k + 1)+ πkB1,k − rk+1v(k + 1),

or, equivalently,

μ(k) = μ(k + 1)+ rk+1 min{0, μ(k + 1)} + B1,kG(k) (3.7)

with μ(n) = B1,npn, if we define a function

G(k) = πk − rk+1

n∑
i=k+1

πiBk,i , 1 ≤ k < n. (3.8)

Then we have the following result.

Theorem 3.1. A sufficient condition for the optimal rule to be simple is that G(k) changes its
sign from − to + at most once before s∗(n), that is,

once G(k) ≥ 0 for some k, then G(j) ≥ 0 for all k ≤ j < s∗(n). (3.9)
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Proof. We haveμ(k) ≥ 0 for k ≥ s∗(n) from Lemma 2.3. Hence, to establish the optimality
of the threshold rule, it suffices to show thatμ(k) is unimodal for k < s∗(n). We omit the proof
because it is similar to that of Theorem 2.2 of Tamaki (2011) for the probability maximization
problem (see also Petruccelli (1983), who showed that μ(k), defined by (3.7), is unimodal in
the secretary case if G(k) satisfies condition (3.9)).

For later use, it should be noted that G(k) in (3.8) satisfies the recursion

G(k) = ak+1bk+2

ak+2
G(k + 1)+

(
πk − ak+1

ak+2
πk+1

)
(3.10)

for k < n− 1 with G(n− 1) = πn−1 − anπn = pn−1 + bnpn > 0.
If the optimal rule turns out to be simple, the (optimal) threshold value is given as, from

(2.14),

t∗(n) = min

{
k ≥ 1 :

n∑
i=k

πiBk,i ≥
n∑

i=k+1

( i∑
j=k+1

rj

)
πiBk,i

}
. (3.11)

Observe that, from (3.7) and Theorem 3.1, if G(k) ≥ 0 for all k < s∗(n), the optimal rule is
simple with threshold value t∗(n) = 1, that is, it stops with the first candidate.

The expected payoff under the simple rule with threshold value t is calculated as

�(n, t) = πt−1C̃(t − 1) =
n∑
i=t

( i∑
j=t

rj

)
πiBt−1,i (3.12)

from (2.11), because our payoff is C̃(t − 1) by pretending we are leaving state t − 1 if the
Bernoulli trials continue up to time t−1; otherwise, our payoff is 0. Moreover, the proportional
payoff is defined as �(n, t) = �(n, t)/n, to make the solution more easily comparable to
other problems. The optimal payoff and the optimal proportional payoff are then denoted by
�∗(n) = �(n, t∗(n)) and �∗(n) = �(n, t∗(n)), respectively.

Corollary 3.1. Let N be degenerate. Then if S(k) = ∑n
i=k Bk,i is unimodal in the sense that,

for some finite integer K , S(k) ≤ S(k + 1) for k < K and S(k) ≥ S(k + 1) for k ≥ K , the
optimal rule is simple.

Proof. Since N is degenerate, we have, from (2.2) and (3.8), S(k) = ∑n
i=k Bk,i and

G(k) = 1 − rk+1

n∑
i=k+1

Bk,i = S(k)− S(k + 1).

Condition (3.9) now implies that S(k) should be unimodal. This completes the proof.

Corollary 3.1 can be seen as a direct consequence of Lemma 2.1 of Ferguson et al. (1992),
because

∑n
j=k+1 Bk,j rjV (j) (= C(k)) in (2.15) is shown to be nonincreasing in k. For the

purposes of most applications to the secretary case, the following corollary is useful.

Corollary 3.2. Let, for 1 ≤ k < n− 1,

H(k) = (k + 1)πk − (k + 2)πk+1 = (k + 1)pk − πk+1.

Then, in the secretary case, a sufficient condition for the optimal rule to be simple is thatH(k)
changes its sign from − to + at most once.
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Proof. In the secretary case, (3.10) is reduced to

G(k)−G(k + 1) = 1

k + 1
H(k).

Thus, condition (3.9) is assured, because G(k) is unimodal (with G(n − 1) > 0), if H(k)
satisfies the stated condition.

Corollary 3.2 is applicable to the following distributions. In the first three examples, H(k)
is nondecreasing in k.

Example 3.1. (N degenerates to n.) Here pn = 1 and pk = 0, 1 ≤ k < n. We have H(k) ≡
−1. This is the classical duration problem mentioned in Section 1. Since rj = 1/(j − 1),
(3.11) is reduced to t∗c (n) in (1.2). The asymptotic results t∗c (n)/n → e−2 and �∗(n) → 2e−2

as n → ∞ are easily obtained from (3.11) and (3.12).

Example 3.2. (Uniform.) Here pk = 1/n, 1 ≤ k ≤ n. We have H(k) = (2k + 1 − n)/n.

Example 3.3. (Generalized uniform.) Here

pk =
⎧⎨
⎩

0 if 1 ≤ k < T,
1

n− T + 1
if T ≤ k ≤ n,

for a given parameter T = 1, 2, . . . , n. We have

H(k) =
⎧⎨
⎩

−1 if k < T,
2k + 1 − n

n− T + 1
if k ≥ T .

The cases T = n and T = 1 correspond to Example 3.1 and Example 3.2, respectively. Hence,
this example serves as a unification of the first two examples.

Example 3.4. (Curtailed geometric.) Here pk = (1 − q)qk−1/(1 − qn), 1 ≤ k ≤ n, for a
given parameter 0 < q < 1. A bit of calculation gives

H(k) = qk−1

1 − qn
K(k),

where
K(k) = (1 − q)(k + 1)− q(1 − qn−k).

Since K(k) is increasing in k, H(k) changes its sign from − to + at most once.

The asymptotics in Examples 3.2, 3.3, and 3.4 as n → ∞ will be examined in Section 3.1
in detail. Besides the secretary case, a problem of interest may include the case of the constant
occurrence probability of a candidate, i.e. aj ≡ a. As is intuitively clear, the optimal rule now
stops with the first candidate. This remarkable feature can be ascertained as follows.

Corollary 3.3. Assume that aj ≡ a, i.e. bj ≡ b = 1 − a. Then the optimal rule is simple with
threshold value 1, whatever the distribution of N might be.

Proof. It is sufficient to show that G(k) > 0 for all k < n. This can be shown inductively
if we use, starting with G(n− 1) = pn−1 + bpn > 0, the relation

G(k) = bG(k + 1)+ pk

obtained from (3.10).
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3.1. Asymptotic results in the secretary case

For Examples 3.2, 3.3, and 3.4, we can obtain the limiting values

z∗ = lim
n→∞

t∗(n)
n

, v∗ = lim
n→∞�

∗(n)

by letting the prior distribution depend on n. Since rj = 1/(j − 1) and Bt−1,i = (t − 1)/i in
the secretary case, we have, from (3.12),

�(n, t) = t − 1

n

n∑
i=t

( i∑
j=t

1

j − 1

)
πi

i
. (3.13)

Substituting πi = ∑n
k=i pk into (3.13) yields another expression

�(n, t) = t − 1

n

n∑
k=t

( k∑
j=t

1

j − 1

k∑
i=j

1

i

)
pk. (3.14)

For the uniform distribution of Example 3.2, pk = 1/n, so (3.14) is

�U(n, t) = t − 1

n

n∑
k=t

( k∑
j=t

1

j − 1

k∑
i=j

1

i

)
1

n
.

If we let n tend to ∞ and write z as the limit of t/n, then, using x for i/n, y for j/n, v for
k/n, and dx, dy, and dv for 1/n, �U(n, t) becomes a Riemann approximation to an integral,
i.e. �U(n, t) → ψU(z), where

ψU(z) = z

∫ 1

z

(∫ v

z

dy

y

∫ v

y

dx

x

)
dv

= z

2

∫ 1

z

log2
(
v

z

)
dv

= z
(
1 − z+ log z+ 1

2 log2 z
)
. (3.15)

We now have the following results.

Lemma 3.1. (Uniform prior.) Let α∗(≈ 0.077 54) be the unique root α ∈ (0, 1) of the equation

2(1 + √
α)+ logα = 0. (3.16)

Then
z∗ = α∗, (3.17)

v∗ = α∗(1 + √
α∗)2 ≈ 0.126 74. (3.18)

Proof. The value z that maximizes ψU(z) in (3.15) is found by setting the derivative with
respect to z equal to 0 and then solving for z. When this is done, we have

ψ
′
U(z) = 1

2 [2(1 + √
z)+ log z][2(1 − √

z)+ log z],
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implying that ψ
′
U(z) = 0 for z ∈ (0, 1) is equivalent to 2(1 + √

z) + log z = 0, because we
easily find that

2(1 − √
z)+ log z < 0, 0 < z < 1. (3.19)

Thus, we have established (3.17) since the optimal z ∈ (0, 1) can be considered as
limn→∞ t∗(n)/n from the above approximation. Substituting the optimal value z∗ = α∗
back into (3.15) and then using (3.16) yields the desired optimal payoff ψU(α

∗) as given in
(3.18). This completes the proof.

Remark 3.1. Let us say that the random horizon is triangular if the prior distribution of N is
given by

pk = 2(n− k + 1)

n(n+ 1)
, 1 ≤ k ≤ n.

Gnedin (2005, Section 5) showed that model 1 withN uniform on {1, . . . , n} is equivalent to the
best-choice problem with triangular random horizon in a sense. This implies from Lemma 3.1
combined with Proposition 4.1 of Gnedin (2005) that, as n → ∞, the latter problem has the
same threshold value z∗ ≈ 0.077 54 and corresponding probability 2v∗ ≈ 0.253 48. Note that,
for a finite n, the threshold value and the corresponding probability for the best-choice problem
with random horizon can be calculated from Equations (2.26) and (2.27) of Tamaki (2011),
respectively, by putting m = 1.

In a similar manner, we can deal with other examples. Assume that npk → f (v) for some
bounded function f (v) if we let n → ∞ and k → ∞ in such a way that k/n → v. Then
�(n, t) in (3.14) becomes an approximation to

ψ(z) = z

∫ 1

z

(∫ v

z

dy

y

∫ v

y

dx

x

)
f (v) dv = z

2

∫ 1

z

log2
(
v

z

)
f (v) dv. (3.20)

The function f (v) can be viewed as a density function of the random truncation time V (≤ 1)
adjusted to N ; ψU(z) in (3.15) corresponds to f (v) ≡ 1.

Lemma 3.2. (Generalized uniform prior.) Let T depend on n in such a way that T/n → α

as n → ∞ for a fixed 0 < α < 1. Then the asymptotic results are distinguished between two
cases according to whether α ≤ α∗ or α > α∗, where α∗ is as defined in Lemma 3.1 (below
we use the notation z∗α and v∗

α for z∗ and v∗, respectively, to make explicit the dependence
on α).

(i) For 0 ≤ α ≤ α∗,
z∗α = α∗, (3.21)

v∗
α = α∗(1 + √

α∗)2

1 − α
. (3.22)

(ii) For α∗ < α < 1,
z∗α = α(

√
α−α)/(1−α)e−2, (3.23)

v∗
α =

(
1 −

√
α

1 − α
logα

)
z∗α. (3.24)

Proof. Obviously,

f (v) =
⎧⎨
⎩

0 if 0 < v ≤ α,
1

1 − α
if α < v < 1.

(3.25)
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Writeψα(z) forψ(z) to show dependence on α. Then a straightforward calculation from (3.20)
leads to

ψα(z) = z

2(1 − α)

∫ 1

max(α,z)
log2

(
v

z

)
dv

=

⎧⎪⎨
⎪⎩

z

2(1 − α)
[1 − 2z+ {p(z)+ 1}2] if α < z,

z

2(1 − α)
[1 − α + {p(z)+ 1}2 − α{qα(z)+ 1}2] if z ≤ α,

(3.26)

where

p(z) = log

(
1

z

)
− 2, 0 < z < 1, (3.27)

qα(z) = p(z)− log

(
1

α

)
, 0 < α < 1. (3.28)

Differentiating ψα(z) with respect to z yields

ψ
′
α(z) =

⎧⎪⎨
⎪⎩

1

2(1 − α)
[p(z)− 2

√
z][p(z)+ 2

√
z] if α < z,

1

2(1 − α)
[p(z)+ √

αqα(z)][p(z)− √
αqα(z)] if z ≤ α.

We can show the following inequalities:

(a) p(z)+ 2
√
z > 0, 0 < z < 1,

(b) p(z)− √
αqα(z) > 0, 0 < z < α < 1.

Inequality (a) is just the inequality given in (3.19). As for (b), we have, from (a),

p(α)+ 2
√
α > 0, 0 < α < 1,

or, equivalently,

−p(α) <
√
α

1 − √
α

[p(α)+ 2].
Applying −p(z) < −p(α) for z < α to the left-hand side of this inequality gives (b). Hence,
the sign of ψ

′
α(z) coincides with that of the function ηα(z) defined as

ηα(z) =
{
p(z)− 2

√
z if α < z,

p(z)+ √
αqα(z) if z ≤ α.

Therefore, to derive (3.21) and (3.23), it is sufficient to show that

1. ηα(z) = 0 has a unique root z ∈ (0, 1) for each α,

2. ηα(z) = 0 is reduced to p(z)− 2
√
z = 0 for α ≤ α∗, whereas ηα(z) = 0 is reduced to

p(z)+ √
αqα(z) = 0, or, equivalently, p(z) = −√

α log(α)/(1 + √
α) for α > α∗.

Assertion 1 is immediate because ηα(z) is a continuous and decreasing function of z with
boundary conditions limz→0 ηα(z) = ∞ and limz→1 ηα(z) = −4. For assertion 2, it is
important to note that ηα(α) = p(α)− 2

√
α is decreasing in α such that ηα(α) ≥ 0 if α ≤ α∗,

https://doi.org/10.1239/aap/1386857856 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1386857856


1040 M. TAMAKI

Table 1: Values of z∗α and v∗
α for several α (generalized uniform prior).

Model 1 Model 2
α

z∗α v∗
α z∗α v∗

α

0.0 0.077 54 0.126 74 0.077 54 0.253 48
0.1 0.077 83 0.140 80 0.085 54 0.279 99
0.2 0.082 30 0.156 35 0.108 74 0.286 32
0.3 0.088 38 0.171 65 0.121 24 0.284 41
0.4 0.094 89 0.186 55 0.128 19 0.281 02
0.5 0.101 56 0.201 11 0.131 97 0.277 74
0.6 0.108 29 0.215 41 0.133 92 0.275 04
0.7 0.115 04 0.229 47 0.134 84 0.273 02
0.8 0.121 80 0.243 35 0.135 21 0.271 67
0.9 0.128 57 0.257 08 0.135 32 0.270 91
1.0 0.135 34 0.270 67 0.135 34 0.270 67

whilst ηα(α) < 0 if α > α∗ (α∗ is the unique root of the equation ηα(α) = 0). This just
proves assertion 2 because, if α ≤ α∗, z∗α must be greater than or equal to α, whereas, if
α > α∗, z∗α must be less than α. The v∗

α term in (3.22) and (3.24) is obtained from (3.26)
through v∗

α = ψα(z
∗
α), combined with the optimization condition ηα(z∗α) = 0. This completes

the proof.

We list the values of z∗α and v∗
α for some α in Table 1 together with the corresponding values

for model 2 (see Section 4). Inspection of this table shows that both z∗α and v∗
α are increasing

in α (except for z∗α ≡ α∗ for 0 ≤ α ≤ α∗).
To examine a general property of ψ(z) in (3.20), differentiate ψ(z) with respect to z. Then

ψ
′
(z) = 1

2

[∫ 1

z

log2
(
v

z

)
f (v) dv + z

∫ 1

z

∂

∂z

{
log2

(
v

z

)}
f (v) dv

]

= 1

z
ψ(z)−

∫ 1

z

log

(
v

z

)
f (v) dv. (3.29)

Thus, the optimal z (= z∗) satisfies ψ
′
(z) = 0, or, equivalently,

∫ 1

z

log

(
v

z

)[
log

(
v

z

)
− 2

]
f (v) dv = 0, (3.30)

implying that z∗ ≤ e−2, because log(v/z) < 2 for e−2 < z < v < 1. The optimal payoff is
given by (from (3.29))

v∗ = ψ(z∗) = z∗
∫ 1

z∗
log

(
v

z∗

)
f (v) dv. (3.31)

To obtain interesting asymptotic results for the curtailed geometric prior given in Exam-
ple 3.4, we allow the parameter q to depend on n.

Lemma 3.3. (Curtailed geometric prior.) Let q depend on n through q = 1 − c/n for a fixed
positive value c(< n). We use the notation z∗c and v∗

c for z∗ and v∗, respectively, to make
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Table 2: Values of z∗c and v∗
c for several c (curtailed geometric prior).

Model 1 Model 2
c

z∗c v∗
c z∗c v∗

c

0 0.077 54 0.126 74 0.077 54 0.253 48
0.01 0.077 45 0.126 51 0.077 40 0.253 41
0.1 0.076 56 0.124 40 0.076 08 0.252 79
0.5 0.072 57 0.115 14 0.070 29 0.250 07
1 0.067 47 0.103 96 0.063 32 0.246 88
2 0.057 31 0.083 81 0.050 96 0.241 63
3 0.047 93 0.067 43 0.041 26 0.238 11
4 0.039 95 0.054 84 0.034 03 0.236 00
5 0.033 55 0.045 43 0.028 71 0.234 81

10 0.017 40 0.023 28 0.015 80 0.233 29
20 0.008 70 0.011 64 0.008 28 0.232 98
30 0.006 00 0.008 03 0.005 80 0.232 92

explicit the dependence on c. Then z∗c is a unique root z ∈ (0, 1) of the equation

Jc(z)+ log z
[
Ic(z)+ e−c(1 + 1

2 log z
)] = 0, (3.32)

where

Ic(z) =
∫ 1

z

e−cx

x
dx, Jc(z) =

∫ 1

z

e−cx

x
(1 − log x) dx.

Moreover,

v∗
c = z∗c

1 − e−c [e−c log z∗c + Ic(z
∗
c )]. (3.33)

Proof. Letting n → ∞ and k/n → v, we find that

npk = c(1 − c/n)k−1

1 − (1 − c/n)n
→ f (v) = ce−cv

1 − e−c .

Thus, in this case, f (v) turns out to be curtailed exponential with parameter c, and so (3.32)
and (3.33) are obtained by straightforward calculations from (3.30) and (3.31), respectively.

We list the values of z∗c and v∗
c for some c in Table 2 together with the corresponding values

for model 2 (see Section 4). Inspection of this table shows that both z∗c and v∗
c are decreasing

in c. Denote by Vc the truncation time in the above lemma. Then its expected value is given by

E[Vc] =
∫ 1

0
vf (v) dv = ec − c − 1

c(ec − 1)
.

Since E[Vc] → 0 as c → ∞, both z∗c and v∗
c tend to 0 as c → ∞. On the other hand,

as c → 0, Vc converges in distribution to the uniform distribution on (0, 1) (consistent with
limc→0 E[Vc] = 1

2 ).

Remark 3.2. The asymptotic argument given in this section is rather intuitive. We can make it
more rigorous by approximating the difference equation (2.9) by a differential equation. This
method was suggested in Dynkin and Yushkevich (1969). Mucci (1973a), (1973b) developed
the idea for a wider class of optimal stopping problems.
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4. Model 2

In this section we consider model 2. We make the transformations (3.1)–(3.4) here as well.
Then we see that, though (3.5) must be replaced by

s(k) = s(k + 1)+ σkB1,k

from (2.3), (3.7) still holds if G(k) is newly defined as

G(k) = σk − rk+1

n∑
i=k+1

σiBk,i , 1 ≤ k < n.

Analogously to Theorem 3.1, for model 2, we have the following result.

Theorem 4.1. A sufficient condition for the optimal rule to be simple is that G(k) changes its
sign from − to + at most once before s∗(n).

Proof. The proof is similar to that of Theorem 3.1, and is thus omitted.

Remark 4.1. It is interesting to compare G(·)-functions among three problems. Define, for
j = 0, 1, 2,

G(j)(k) = α
(j)
k − rk+1

n∑
i=k+1

α
(j)
i Bk,i , 1 ≤ k < n,

where α(0)i = pi, α
(1)
i = πi, and α

(2)
i = σi = α

(1)
i + (n− i)α

(0)
i for each i. The function

G(j)(k) depends on the prior {pi} through {α(j)i }. Theorems 3.1 and 4.1 show that G(k) for
model j (j = 1, 2) isG(j)(k). Tamaki (2011) studied the problem of maximizing the probability
of stopping with any of the lastm candidates in Bernoulli trials with random horizon. Them = 1
case is considered as a random horizon version of the Bruss problem (see Bruss (2000)). Tamaki
gave, in his Theorem 2.2, a similar sufficient condition for this problem to have a simple optimal
rule, where the corresponding G(k) is given by G(0)(k).

Analogously to (3.10), (3.11), and (3.12) for model 1, we can give the same expressions for
model 2 by replacing π with σ . That is,

G(k) = ak+1bk+2

ak+2
G(k + 1)+

(
σk − ak+1

ak+2
σk+1

)
(4.1)

for k < n− 1 with G(n− 1) = σn−1 − anσn = 2pn−1 + bnpn > 0,

t∗(n) = min

{
k ≥ 1 :

n∑
i=k

σiBk,i ≥
n∑

i=k+1

( i∑
j=k+1

rj

)
σiBk,i

}
,

and

�(n, t) = πt−1C̃(t − 1) =
n∑
i=t

( i∑
j=t

rj

)
σiBt−1,i . (4.2)

Of course, t∗(n) and �(n, t) are defined as in model 1.
For the applications to the secretary case, the following corollary is useful.
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Corollary 4.1. Let

H(k) = (k + 1)σk − (k + 2)σk+1, 1 ≤ k < n− 1.

Then, in the secretary case, a sufficient condition for the optimal rule to be simple is thatH(k)
changes its sign from − to + at most once.

Proof. See the proof of Corollary 3.2, because (4.1) is reduced to

G(k)−G(k + 1) = 1

k + 1
H(k).

Corollary 4.1 is applicable to the following distributions.

Example 4.1. (Uniform.) We have

H(k) = 2(2k − n)+ 3

n
,

which is increasing in k and so satisfies the condition of Corollary 4.1.

Example 4.2. (Generalized uniform.) We have, for 1 ≤ T ≤ n,

H(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 if k ≤ T − 2,

− (n− T )(2 + T )+ 1

n− T + 1
if k = T − 1,

2(2k − n)+ 3

n− T + 1
if k ≥ T .

It is easy to see thatH(k) satisfies the required condition, becauseH(k) is increasing in k(≥ T ),

attaining its bottom at k = T − 1.

Example 4.3. (Curtailed geometric.) A bit of calculation gives

H(k) = qk−1

1 − qn
K(k),

where

K(k) = (1 − q)[(k + 1)(n− k + 1)− (k + 2)(n− k − 1)q] − q(1 − qn−k). (4.3)

To show that H(k) satisfies the condition of Corollary 4.1, it suffices to show that K(k) is
unimodal with K(n− 2) > 0 for n ≥ 4. Let L(k) = K(k)−K(k − 1). Then, from (4.3),

L(k) = (1 − q)[(n− 2k + 1)− (n− 2k − 2)q + qn−k+1],
which implies that L(k) is decreasing in k because

L(k)− L(k + 1) = (1 − q)2(2 − qn−k) > 0.

Thus, K(k) proves to be unimodal. On the other hand, we again have, from (4.3),

K(n− 2) = (1 − q)(3 − q)

[
n− 3 + q(1 + q)

3 − q

]
.

Since (3 + q(1 + q))/(3 − q) ≤ 5
2 ,K(n− 2) > 0 for n ≥ 4. Thus, we have shown that K(k)

has the desired property.
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When it comes to the case of the constant occurrence probability, we obtain, from (4.1), the
recursive relation

G(k) = bG(k + 1)+ (σk − σk+1), (4.4)

and have the following results.

Corollary 4.2. Assume that aj ≡ a, i.e. bj ≡ b = 1 − a. Then the following assertions
hold.

(i) If σk is unimodal, the optimal rule is simple.

(ii) If σk is in particular nonincreasing in k, the optimal rule stops with the first candidate.

Proof. (i) Let K be an integer such that σk − σk+1 ≤ 0 for k < K and σk − σk+1 ≥ 0 for
k ≥ K . Since G(n− 1) > 0, we find that G(k) > 0 for k ≥ K by induction from (4.4). This
implies that ifG(k + 1) ≤ 0 then k ≤ K − 2, and soG(k) ≤ 0 again from (4.4), ensuring that
G(k) changes its sign from − to + at most once.

(ii) See the proof of Corollary 3.3. In a similar manner, we can show that G(k) > 0 for all
k < n.

Remark 4.2. Note that if pk is nonincreasing in k, σk is also nonincreasing. Hence, the
optimal rule with a uniform prior or a curtailed geometric prior stops with the first candidate
from Corollary 4.2(ii). For a generalized uniform prior, the optimal rule is simple from
Corollary 4.2(i). However, unlike model 1, it is not always the case that the optimal rule
stops with the first candidate.

4.1. Asymptotic results in the secretary case

Let �(n, t) = �(n, t)/n. Then, in the secretary case, we have, from (4.2),

�(n, t) = t − 1

n

n∑
k=t

( k∑
j=t

1

j − 1

k∑
i=j

1

i
+ n− k

k

k∑
j=t

1

j − 1

)
pk.

It is easy to see that, if npk → f (v) for some bounded function f (v) as n → ∞ and k → ∞
in such a way that k/n → v, �(n, t) becomes an approximation to

ψ(z) = z

∫ 1

z

(∫ v

z

dy

y

∫ v

y

dx

x
+ 1 − v

v

∫ v

z

dy

y

)
f (v) dv

= z

2

∫ 1

z

log2
(
v

z

)
f (v) dv + z

∫ 1

z

1 − v

v
log

(
v

z

)
f (v) dv. (4.5)

The first term of (4.5) is just the expected payoff for model 1 (as given by (3.20)) and so the
second term is the additional expected payoff. As before, let

z∗ = lim
n→∞

t∗(n)
n

, v∗ = lim
n→∞�

∗(n),

where �∗(n) = �(n, t∗(n)). For a uniform distribution, we have the following result.

Lemma 4.1. (Uniform prior.) Let α∗(≈ 0.077 54) be as defined in Lemma 3.1. Then

z∗ = α∗, v∗ = 2α∗(1 + √
α∗)2 ≈ 0.253 48.
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Proof. Since f (v) ≡ 1, we have, from (4.5),

ψ(z) = z

2

∫ 1

z

log2
(
v

z

)
dv + z

∫ 1

z

1 − v

v
log

(
v

z

)
dv.

Straightforward calculations show that the first term and the second term are the same, i.e.

z

2

∫ 1

z

log2
(
v

z

)
dv = z

∫ 1

z

1 − v

v
log

(
v

z

)
dv = z

(
1 − z+ log z+ 1

2
log2 z

)
.

Therefore, we obtain
ψ(z) = 2z

(
1 − z+ log z+ 1

2 log2 z
)
,

which yields the desired result by the same argument as used in the proof of Lemma 3.1.

It is interesting to see that, in comparison to model 1, the optimal threshold value is the same,
but the optimal payoff is twice as large. This is not surprising because, in the uniform case,
σi = 2πi − 1/n and so, from Lemma 2.1, the stopping payoff for model 2 is asymptotically
two times as large as that for model 1.

For the generalized uniform prior, we have the following result.

Lemma 4.2. (Generalized uniform prior.) The two cases are distinguished according to
whether α ≤ α∗ or α > α∗, where α∗ is as defined in Lemma 3.1 (below we use the notation
z∗α and v∗

α for z∗ and v∗, respectively).

(i) For 0 ≤ α ≤ α∗,

z∗α = α∗, v∗
α = 2α∗(1 + √

α∗)2

1 − α
.

(ii) For α∗ < α < 1, let

ρ = −
(

2 + 1 + α

1 − α
logα

)
. (4.6)

Then

z∗α = exp

{
−

(
1 − ρ +

√
1 + 2ρ(2 + ρ)

1 + α

)}
,

v∗
α =

(
1 +

√
1 + 2ρ(2 + ρ)

1 + α

)
z∗α,

or, equivalently,
z∗α = e−σ , v∗

α = (ρ + σ)e−σ ,
if we put

σ = 1 − ρ +
√

1 + 2ρ(2 + ρ)

1 + α
. (4.7)

Proof. Write ψα(z) for ψ(z). Since f (v) is given by (3.25), a straightforward calculation
from (4.5) leads to

ψα(z) = z

2(1 − α)

∫ 1

max(α,z)

{
log2

(
v

z

)
+ 2(1 − v)

v
log

(
v

z

)}
dv

=
⎧⎨
⎩

z

1 − α
[1 − 2z+ {p(z)+ 1}2] if α < z,

z

1 − α
[1 − α + {p(z)+ 1}2 − α{qα(z)+ 1}2] − z

2
{qα(z)+ 2}2 if z ≤ α,
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where p(z) and qα(z) are as given in (3.27) and (3.28), respectively. Differentiatingψα(z)with
respect to z yields

ψ
′
α(z) =

⎧⎪⎨
⎪⎩

1

1 − α
[{p(z)}2 − 4z] if α < z,

1

1 − α
[{p(z)}2 − α{qα(z)}2] − 1

2
qα(z)(qα(z)+ 2) if z ≤ α.

(4.8)

By considering
1

1 − α
[{p(z)}2 − α{qα(z)}2] − 1

2
qα(z)(qα(z)+ 2)

= 1

2

[
{p(z)}2 + 2(1 + ρ)p(z)− 1 − α

1 + α
ρ(2 + ρ)

]
= 1

2 [p(z)+ 2 − σ ][p(z)+ 2ρ + σ ],
we can write (4.8) as

ψ
′
α(z) =

⎧⎨
⎩

1

1 − α
[p(z)− 2

√
z][p(z)+ 2

√
z] if α < z,

1
2 [p(z)+ 2 − σ ][p(z)+ 2ρ + σ ] if z ≤ α.

(4.9)

Observe now that, for 0 < z < 1 and 0 < α < 1,

p(z)+ 2ρ + σ > 0,

or, equivalently,
2ρ + σ − 2 > log z. (4.10)

To prove this, it suffices to show that the left-hand side is positive. This, in fact, follows since
ρ in (4.6) is decreasing in α with limα→1 ρ = 0 implying that, for 0 < α < 1, ρ > 0 and so
σ + ρ = 1 + √

1 + 2ρ(2 + ρ)/(1 + α) > 2 from (4.7).
From (3.19) and (4.10), the sign of ψ

′
α(z) in (4.9) coincides with that of the function ηα(z)

(continuous with respect to z) defined as

ηα(z) =
{
p(z)− 2

√
z if α < z,

C(α)[p(z)+ 2 − σ ] if z ≤ α,

where C(α) is a positive function of α given as

C(α) = (1 − α)[p(α)+ 2ρ + σ ]
2[p(α)+ 2

√
α] .

We can show that the equation ηα(z) = 0 has a unique solution whose value is greater than or
equal to α for α ≤ α∗, but less than α for α > α∗ by the same reasoning as used in the proof of
Lemma 3.2. Taking this into consideration, we obtain z∗α as a unique root z of ηα(z) = 0 and
then v∗

α = ψ(z∗α).

See Table 1 for the values of z∗α and v∗
α . Inspection of this table reveals that z∗α is increasing

in α (≥ α∗) and larger than the corresponding values for model 1. Interestingly, v∗
α is not

increasing in α, but seems unimodal with its peak near α = 0.2. More elaborate calculations
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show that the peak is flat, i.e. the maximal value v∗
α = 0.286 316 is the same to the 6th decimal

place for α ∈ [0.2009, 0.2033]. As a whole, the variation of v∗
α is rather small, staying between

0.253 and 0.283.
To examine a general property of ψ(z) in (4.5), differentiate ψ(z) with respect to z. Then

ψ
′
(z) = 1

z
ψ(z)−

∫ 1

z

{
log

(
v

z

)
+ 1 − v

v

}
f (v) dv. (4.11)

Thus, the optimal z (= z∗) satisfies ψ
′
(z) = 0, or, equivalently,∫ 1

z

[
1

2
log

(
v

z

){
log

(
v

z

)
− 2

}
+ 1 − v

v

{
log

(
v

z

)
− 1

}]
f (v) dv = 0,

implying that z∗ ≤ e−1, because log(v/z)− 2 < log(v/z)− 1 < 0 for e−1 < z < v < 1. This
property can be seen, in a sense, as a limiting version of Lemma 2.3, because, in the secretary
case, s∗(n) = s∗c (n) ≈ e−1n as n → ∞ in (2.13). The optimal payoff is given by (from (4.11))

v∗ = ψ(z∗) = z∗
∫ 1

z∗

{
log

(
v

z∗

)
+ 1 − v

v

}
f (v) dv.

For the curtailed geometric prior, we have the following result. The proof is omitted since
it is similar to that of Lemma 3.3.

Lemma 4.3. (Curtailed geometric prior.) We use the notation z∗c and v∗
c for z∗ and v∗,

respectively. Then z∗c is a unique root z ∈ (0, 1) of the equation

e−cz − e−c − e−c log z
(
2 + 1

2 log z
) = (1 + c)Jc(z)+ {1 + (1 + c) log z}Ic(z),

where Ic(z) and Jc(z) are as given in Lemma 3.3. Moreover,

v∗
c = z∗c

1 − e−c [e−c − e−cz∗c + e−c log z∗c + (1 + c)Ic(z
∗
c )].

See Table 2 for the values of z∗c and v∗
c . These values are both decreasing in c. In contrast to

the generalized uniform case, the threshold value z∗c of model 2 is smaller than the corresponding
value of model 1. However, v∗

c varies little, staying between 0.233 and 0.253. It is interesting
to compare this duration problem with the corresponding best-choice problem considered in
Tamaki (2011, Lemma 3.2 and Table 2 for m = 1). As c → ∞, both problems seem to have
the same asymptotic optimal value of 0.2329. This is intuitive because, depending on whether
the chosen object is best overall (i.e. the last candidate) or not, the resulting duration tends to
1 or 0 from limc→∞ E[Vc] = 0.
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