Core handling, transportation and processing for the South Pole ice core (SPICEcore) project — ERRATUM

Joseph M. Souney1, Mark S. Twickler1, Murat Aydin2, Eric J. Steig3, T. J. Fudge3, Leah V. Street4, Melinda R. Nicewonger2,*, Emma C. Kahle3, Jay A. Johnson5, Tanner W. Kuhl5, Kimberly A. Casey6,7, John M. Fegyveresi8, Richard M. Nunn9 and Geoffrey M. Hargreaves9

1Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA; 2Department of Earth System Science, University of California Irvine, Irvine, CA, USA; 3Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA; 4Antarctic Support Contract, U.S. Antarctic Program, Denver, CO, USA; 5U.S. Ice Drilling Program, University of Wisconsin-Madison, Madison, WI, USA; 6National Land Imaging Program, U.S. Geological Survey, Reston, VA, USA; 7Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA; 8School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA and 9NSF-Ice Core Facility, U.S. Geological Survey, Denver, CO, USA

http://doi.org/10.1017/aog.2020.80, Published online by Cambridge University Press: 07 December 2020

A corrected version of Figure 12 is provided here. The updated figure has several erroneous labels removed

Fig. 12. Cross-section of the 98 mm diameter ice core showing the generalized cut plan used at the NSF-ICF during the (a) 2015 CPL (5–555 m depth) and the (b) 2016 and 2017 CPLs (555–1751 m depth). After the 2015 CPL, the cut plan was modified to provide two equal-area sticks for water stable-isotope analysis (iso). Over 10 300 samples have been cut to date and distributed to 16 individually funded investigators from 13 US institutions for analysis. The thick red line represents the ice removed by the planer before the electrical properties are measured on the core. Chem = chemistry; Iso = water stable isotopes; Be10 = beryllium-10; Phys Prop = physical properties.