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Periods of automorphic forms:
the case of (GL,+1 X GL,, GL,)

Atsushi Ichino and Shunsuke Yamana

ABSTRACT

Following Jacquet, Lapid and Rogawski, we define a regularized period of an
automorphic form on GL,+; X GL, along the diagonal subgroup GL, and express
it in terms of the Rankin—Selberg integral of Jacquet, Piatetski-Shapiro and Shalika.
This extends the theory of Rankin—Selberg integrals to all automorphic forms on
GLn+1 X GLn

1. Introduction

Let F be a number field and A the ring of adeles of F'. Let G be a connected reductive algebraic
group over F and G’ a closed subgroup of G over F. Let &/(G) and <7 (G’) denote the spaces
of automorphic forms on G(A) and G’(A), respectively. For ¢ € &7 (G) and ¢’ € &7 (G’), we will
consider the integral

/ ©(9)¢'(g) dg. (1.1)
G(F)\G'(A)

When this integral is convergent, it is called the period of ¢ ® ¢’ along G’, and often plays a
significant role in the theory of automorphic representations and L-functions.

For example, in the case of a special orthogonal group G = SO, 11 and its subgroup G’ = SO,
Gross and Prasad [GP92] proposed a conjecture on the nonvanishing of the period in terms of
the central value of a certain automorphic L-function. Further, a more precise conjecture in
[IT10] gives an exact formula for the square of the period in terms of L-values and endoscopy.
Also, the Gross—Prasad conjecture has been generalized to other classical groups by Gan, Gross
and Prasad [GGP12]. Their conjecture includes the case of a unitary group G = U4 and its
subgroup G’ = U, a substantial part of which has been proven by Wei Zhang [Zhal4a, Zhal4b].

In his proof of the Gan—Gross—Prasad conjecture, Wei Zhang developed the theory of the
relative trace formula of Jacquet and Rallis [JR11], which compares

U, \(Upt1 x Up) /U,

with
Resp,r(GLn)\Resg/p(GLnt1 X GLy)/(GLp11 x GLy).
Here F is the quadratic extension of F' which splits the unitary groups. On the other hand,

since Zhang employed a simple trace formula, he could treat only automorphic representations
satisfying certain local conditions. To prove a relation of the period to endoscopy, it is necessary
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to remove these local conditions, which requires one to develop the relative trace formula in
general.

Towards establishing the spectral expansion of the relative trace formula of Jacquet and
Rallis, we will study the period in the case of a general linear group G = GL, 41 and its subgroup
G’ = GL,,. If p and ¢ are cusp forms, then the integral (1.1) is absolutely convergent and can
be expressed in terms of the central value of the tensor product L-function via the integral
representation of Jacquet, Piatetski-Shapiro and Shalika. The purpose of this paper is to make
sense of (1.1) even when it may not be convergent, and to prove its expression in terms of the
L-value.

We regularize the integral (1.1) following Jacquet, Lapid and Rogawski [JLR99], but unlike
their case, none of the Siegel sets of G’ is contained in any Siegel set of G, so our case is more
complicated. More precisely, we define a mixed truncation operator AL which carries smooth
functions on G(F)\G(A) of uniform moderate growth to functions on G'(F)\G’(A) of rapid
decay, for a sufficiently regular T' € ag;, by setting

ALo(g) =3 (~1)dime? 3 or(v9)ip(Hp(vg) — T).
P WEP(F)\P(F)WG’(F)

Here P runs over standard parabolic subgroups of G, W is the Weyl group of G, ¢p is the
constant term of ¢ along P, and we refer to the notation section below for unexplained terms.
This operator is a variant of Arthur’s truncation operator [Art80], which is suitable for studying
the integral (1.1); in the n = 1 case, it was introduced by Jacquet and Chen (see [JCO1, §8.1]).
For ¢ € &/(G) and ¢’ € &/(G’), the integral

/ AL o(9)¢(g) dg
G/(F)\G'(4)

is absolutely convergent and defines a function in 7" of the form

> pA(T)eT
A

Here A runs over a finite subset of (agc)* and py(7") is a polynomial in 7. When the exponents
of ¢ and ¢’ satisfy a certain mild restriction (see Definition 3.2 for details), we can define a
regularized period P (¢ ® ¢') such that

P (p@¢') = po(T),
where the polynomial py(T") attached to A = 0 turns out to be constant. If ¢ is a cusp form, then

since AL ¢ = ¢, the identity

PY(p@¢) = / e(9)¢'(9) dg
G/(F)\G'(A)

is evident. It turns out that this identity always holds when the right-hand side is absolutely
convergent (see Corollary 3.10). What is special about the general linear groups is that one can
easily construct from a single automorphic form ¢’ € &/(G’) a holomorphic family ¢, over C of
automorphic forms on G'(A) by setting ©%(g) := ¢'(g)|det g|*. It is important to note that the
regularized period PG,(go ® ) is well-defined for s € C in general position.
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“We can compute the meromorphic function s — P& (p ®@ ) explicitly. Let W¥(p) and
W¥(¢') be the Whittaker functions of ¢ and ¢’ defined by

W (g, ) = / o(ug)bw) du, W(g, &) = / o (ug)(u) du,
N(F)\N(4) N'(F)\N'(A)

where N and N’ are the subgroups of upper triangular unipotent matrices in G and G’,
respectively, and 1 is a nontrivial character of F'\A, which we regard as a generic character
of N(F)\N(A) and N'(F)\N'(A). Consider the zeta integral

I(s,p,¢") = / W (g, 0)W?(g,¢) |det g|* dg,
N'(A)\G'(A)

which is studied by Jacquet, Piatetski-Shapiro and Shalika in [JPS83, JS90, Jac09]. It can be
shown to converge absolutely for the real part of s sufficiently large and uniformly for s in a
compact set by a gauge estimate combined with Franke’s theorem (see [JPS79, §§13 and 4.6]).
Then our main result is the following theorem.

THEOREM 1.1. For ¢ € &/(G) and ¢' € o/(G'), we have the identity

P (p @ ¢l) = I(s,0,¢).

Theorem 1.1 shows that the functional P is G’ (A)-invariant. The regularized period
P% (p @ ¢') turns out to be zero unless both ¢ and ¢’ are generic, in which case it can be
expressed in terms of the central value of the tensor product L-function. More precisely, assume
that ¢ and ¢’ belong to automorphic representations m and 7’ of G(A) and G’(A), respectively,
induced from irreducible cuspidal automorphic representations of Levi subgroups, and that they
are decomposable. Then we deduce that

(s, W, W)

L(s+ 3,my x )

/ 1
PY (g0®cp’s):L<s—|—2,7r><7r’> 1:[

Here L(s,m x ©’) is the tensor product L-function and (s, Wif , Wj,“) is the local zeta integral
of Jacquet, Piatetski-Shapiro and Shalika, defined by

oW Wi = [ WE W (o) et i ds

Corollary 5.7 shows that the functional P& does not vanish on 7 ® «’ if and only if L(1/2,
7 x ') #£0.

Let 7 and 7’ be irreducible residual automorphic representations of G(A) and G’(A),
respectively. Assume that 7 is not one-dimensional. Corollary 5.8 shows that for ¢ € m and
¢’ € 7', the integral (1.1) is absolutely convergent and equal to zero.

Theorem 1.1 looks straightforward at first glance, but the proof is rather indirect and relies
on a series of reduction steps. An important ingredient is the fact that any automorphic form is
a linear combination of derivatives of cuspidal Eisenstein series, which allows us to assume that
¢ is a derivative of a cuspidal Eisenstein series. Franke proved this deep result in [Fra98]. We use
Cauchy’s integral formula and Fubini’s theorem to reduce the computation to the case where ¢
is a cuspidal Eisenstein series.
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Formally, an automorphic form ¢ has a Fourier expansion of the form

)= > WE(v9.00,)

=0 yeZ[(F\G'(F)

where &7/ is the subgroup of the standard parabolic subgroup of G’ of type (i, n — i) consisting of
matrices whose GL,,_; part is upper triangular unipotent, Q; is the standard parabolic subgroup
of G of type (i,n+1—1), and ng(gpgi) is the Whittaker function of the GL,1_; part of the
constant term g, . This is simply an inductive abelian Fourier expansion beginning along the last
column of N (see [Sha74] and Proposition 4.2). If we ignore convergence issues, then a formal
computation yields

n
il

/ ©(9)¥s(9) dg ‘= Z/ W (9,00)W (9,90 |det g|* dg,
G'(F)\G'(A) 0w (W)GLi(P)\G' (A) i i

where Q! is the standard parabolic subgroup of G’ of type (i,n — i) and % is the unipotent
radical of the standard parabolic subgroup of G’ of type (i,1,1,...,1). The zeroth term in the
right-hand side is I (s, ¢, ¢'). For i > 0, the ith term involves an integral of an exponential function
over the multiplicative group of positive real numbers, and hence it is divergent. An integral of
this type should be interpreted as zero for the reason explained by Lapid and Rogawski in [LRO03]
(see also [Cas93]). Following [LR03], we compute the absolutely convergent integral

/ 0(9)¢s(9) dg (1.2)
G/(F)\G'(4)

in two ways to circumvent the convergence problems, where 6 is a pseudo-Eisenstein series on
G(A) and ¢’ € @(G’). We may suppose that

0(g) = / BOVE(g, 6. 2) d,
AE(af 0)*, RA=K

where & € (a$)* is positive enough, 3 is a Paley-Wiener function on (a%)*, and E(¢,)) is a

cuspidal Eisenstein series induced from a parabolic subgroup P of G. On one hand, we transform
(1.2), under some mild restriction on £, into the integral

*

/ BOVPC (E(6,)) @ 9)) dA
RA\=k

of the regularized periods. On the other hand, we transform (1.2), under another mild restriction
on 3, into the integral

/ BOVI(s, E(6,A), ¢') dA
RA=K

of the zeta integrals by inserting the Fourier expansion of 8. To justify the manipulation, we use
uniform estimates for archimedean Whittaker functions due to Jacquet [Jac04]. Strictly speaking,
we need to consider the convolution f * 6 by f € C°(Gw) to apply Jacquet’s estimates. There
are sufficiently many 3, which allows us to extract the desired identity

PY(E(¢,\) @ ¢l) = I(s, E(6,\), ¢).

This paper is organized as follows. In §2 we define the mixed truncation operator AL
and its analogue for parabolic subgroups (and Weyl elements). In §3 we define the regularized
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period P (¢ @ '), which exploits these mixed truncation operators, and show that it equals
the coefficient po(T') of the zero exponent of the polynomial exponential function defined by the
period of the truncated automorphic form. In §4 we prove Theorem 1.1, and in §5 we discuss
some simple consequences thereof.

Notation

For two integers a < b, we denote the set {a,a+ 1,...,b} by [a,b]. When a > b, we understand
that [a,b] = 0, Z;’:a =0 and H?:a = 1. For a complex number z, Rz denotes the real part of z.
The same notation will be used for elements of the complexification of a real vector space. For
a finite-dimensional real vector space V', we denote by V* the space of real linear forms on V,
by V¢ the space of complex linear forms on V, and by C[V] the space of polynomial functions
on V.

Let F be a number field with adele ring A. Let G be a connected reductive algebraic group
over F'. We write G, for the localization of G at a place v of F' and G, for the product of all
the archimedean localizations of G. Throughout this paper, the letters P and @ are reserved for
parabolic subgroups of GG defined over F', the letters M and L for their Levi subgroups, and the
letters U and V for their unipotent radicals. Thus

P=MU Q=LV.

If M appears as a subscript or a superscript, we shall often write P instead of M for the subscript
or superscript. Let Rat(M) be the group of algebraic characters of M defined over F. Put

ap = ay = Rat(M) @z R, ap = ay = Homz(Rat(M),R).

The canonical pairing on a}, x ap is denoted by ( , ). We define a function Hp : M (A) — ap by
the requirement that

ePHPm) — |y ()]

for all x € Rat(M) and m € M(A). Let M(A)! be the intersection of the kernels of the
homomorphisms |y|, where x ranges over Rat(M). Let Zj; be the maximal split torus in the
center of M. Choose an isomorphism Zy; ~ G.,, and let Ap be the image of (R)" in Zy/ oo, where
| =dimap and R — F ®qgR is given by z = 1®z. Note that M(A) = Ap x M(A)! and Hp
induces an isomorphism Ap ~ ap. We denote by e* the element in Ap such that Hp(eX) = X.
Using an Iwasawa decomposition, we extend Hp to the left U(A)-invariant, right K-invariant
function on G(A), where K is a fixed good maximal compact subgroup of G(A). Let W™ be the
Weyl group of M. Then W acts naturally on ap and ap.

Discrete groups are equipped with the counting measures, unipotent groups U with the Haar
measures giving U(F)\U(A) volume 1, and K with the Haar measure of total volume 1. We
choose Haar measures on M (A) for all Levi subgroups M of G' compatibly with respect to the
Iwasawa decomposition. We also have a Haar measure on Ap through its isomorphism with ap
once we fix a Haar measure on ap.

Let «7p(G) be the space of automorphic forms on U(A)P(F)\G(A), i.e. smooth, K-finite and
3-finite functions of moderate growth, where 3 is the center of the universal enveloping algebra of
the complexified Lie algebra of Goo. We write «73(G) for the subspace of those ¢ € «7p(G) such
that ¢(ag) = PP HP@)¢(g) for all a € Ap and g € G(A), where the function e?PHP()) is the
square root of the modulus function of P(A). Let @7/5(G) be the space of cusp forms in &2 (G).
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When P = G, we will omit the subscript P. For any smooth function ¢ on P(F)\G(A) and any
parabolic subgroup () C P, the constant term of ¢ along () is defined by

bq(g) = / P(vg) dv.
V(F)\V(A)

The map ¢ — ¢¢g sends &/p(G) to g(G). According to [MW95, §1.3.2], an automorphic form
¢ € @/p(G) admits a finite decomposition

d(uamk) =Y Qi(Hp(a))di(mk)elitor-Hr@) (1.3)

for u e U(A), a € Ap, m € M(A)! and k € K, where \; € a¢, Qi € Clap] and ¢; € #p(G)
such that ¢;(ag) = ¢i(g) for all a € Ap and g € G(A). The set of distinct exponents A; occurring
in (1.3) is uniquely determined by ¢ and is called the set of exponents of ¢. When @ C P, the
exponents of ¢ along () are, by definition, the exponents of ¢¢, and the cuspidal exponents of ¢
along () are the exponents of the cuspidal component of ¢ along Q; they are denoted by &p(¢)
and éaéuSp (¢), respectively.

For each positive integer m, we denote by G,, the general linear group GL,,, by T}, the
subgroup of diagonal matrices, by B,, the subgroup of upper triangular matrices, and by N,
the subgroup of upper triangular matrices with unit diagonal. A parabolic subgroup of G,, is
said to be standard if it contains B,,. A standard Levi subgroup of Gy, is the unique Levi factor
containing T}, of a standard parabolic subgroup of G,,,. By parabolic and Levi subgroups we shall
always mean standard parabolic and Levi subgroups. All these groups are regarded as algebraic
groups over F'. A composition of m is a sequence of positive integers whose sum is m. There is
a bijection between the set of compositions of m and the set of standard parabolic subgroups
of G, namely, for each composition n = (ny,...,n;) of m, the standard parabolic subgroup

Py, = MyUy of G, is given by

g1 1, = *
Mn: gieGni 5 Un: *
9t ]‘nt

When P = P,, we set
Ip:{n1—|—~~+nk|k6 [1,t]}.

Let K, be the standard maximal compact subgroup of G, (A). The Weyl group W™ = W& ig
identified with the symmetric group &,,,. We take permutation matrices in G,,, as representatives
of elements in W'™. In particular, we have W™ C K,,. We identify the spaces ap,, and a; ~with
R™. We fix a positive-definite W™-invariant scalar product on ap, . This defines a Euclidean

norm || -|| on ap,,, which in turn determines Haar measures on ap,, and its subspaces. We define
a height || - || on Gy, (A) by

lgll = TTlgoll,  Ngell = max]{\(gv)i,j\, (95 )i}

i,J€[1L,m

For any smooth function ¢ on G,,(A), s € C and A € a*P,C’ we define functions ¢s and ¢, on
Gm(A) by
5(9) = dg)ldet gI*,  da(g) = D(g)e MW g€ G ().
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We fix a positive integer n and write G = G, +1 and G' = G,,. When G,,, = G, we will omit
the subscript or superscript m, and we adopt the same notation, adding a prime ’ for G’. Thus
B =TN and B' = T'N’ are the Borel subgroups of G and G’, and K and K’ are the maximal
compact subgroups of G' and G’, respectively. For convenience, we will write 0 for any subscript
where our notation would normally call for B. Thus ag = ap, ay = ap/, aj = af, (ap)* = a}y,
Hy=Hp, H,=Hp/, Ay = Ap, = Ap and so on. We embed G’ into G via the map

(")

Then the associated embedding aj <> ag is given by
(Ayeo s An) = (A1, .o, A, 0).

Let Ag be the set of simple roots of T" in M. If () is a parabolic subgroup contained in P,
then we have canonical direct sum decompositions

agQ = ag ©ap, a5= (ag)* ® ap.

Let Ag be the set of linear forms on ag obtained by restriction of elements in the complement
of AOQ in A{f. Then ap is the subspace of ag annihilated by Ag. For each o € AS, let o be the
projection of ¥ to ag), where 3 is the root in Ay whose restriction to af, is a. Set (AY)g) = {av |
a € AL o} Let AP be the dual basis of (AV)Q in (aQ) We define (AV)P to be the basis of aQ
dual to Ag . When P = G, we will omit the superscript G. For example, we will write Ag = AO ,
Ap =A%, A} = (AVE, Ap = AG, A}, = (AV)G and W = WE. If we put

w) = ! m+1—g,...,n+1—4,—j,...,—J),

n+1 ~
j n+1l—j

then AY = {@} |j €[1,n]} and

b={w) |jelp~ {n+1}}.

We denote by X (respectively XS or Xp) the canonical projection of X € ap onto aOQ

(respectively ag or ap) given by the decomposition ay = aQ o ag @ ap, and similarly for aj.

We extend the linear functionals in AP (respectively (AV) ) to elements of afj (respectively ag)

by means of these projections. We wrlte po € ag for half the sum of the positive roots of T in G

and denote by pOQ, ,05 and pp its projections onto (a(?)*, (ag)

* and ap, respectively.

2. Mixed truncation

For any pair of parabolic subgroups @) C P, we write 7'5 for the characteristic function of the
subset
{X €a| {a, X)>0f0rallo<EA }

and %5 for the characteristic function of the subset

{X€ay|(w,X)>0forall we Ag}
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When P = G, we will omit the superscript G. Put
af ={X €ap| (o, X) >0 for all « € Ag}

and
(ap)T ={Acab|(A,aY)>0forall a” € AY}.

Fix a composition n = (ny,...,n;) of n + 1 and put P = P,. For i € [1,n + 1] we define
w; € W to be the cyclic permutation

1,4 0 0
wi=(,i+1,....n+1)=[ 0 0 1
0 1,115 O

For w = w; we define a standard parabolic subgroup P, = M, U, of G’ by
P,=w'Pwn G, M,= w  Mw N G, U, = wlUwNG'.

Ifi€ni+---+mnj—1+1,n +--+ny], then P, is the standard parabolic subgroup of G’
attached to the composition (n1,...,n;-1,n; — 1,nj41,...,n). We write

My =My X My, M =wMpw™ ' x My,
ap, = oM, D am,, ap =wan, D dyv,,
where

My ~ [ Gnpr Gnjo1 = Muy € My ~ G,
k#j

The set MWg/ of reduced representatives for WM\W&/ W& is given by
MWGG/ = {wi | S Ip}.

Let @ be a parabolic subgroup contained in P. When w € MWg,, we can identify
WEIAWM /W Meyy=1 with the set LWJ\]\;U, of reduced representatives. We can also identify

LWJ\%U with LﬁMwW/\J\f{Z‘ More precisely, if w = w; with ¢ = n; +--- + n; and @ = Py with
m = (my,...,m,) such that

mi+---+mg1=n1+---+n;-1, mi+---+mp,=ny+---+n;
then
LWA%U:{(m1+---—|—mk,m1+~--+mk—|—1,...,n1+-~+n]~)€6n+1|k€[a,b]}.
We write OW]%U in place of TWJ\%,,‘ Note that

e = | Wil w. (2.1)

we Wg,

Let w e LWg,. Then QY = w~'QwN M, is a parabolic subgroup of M,,. We can view apg, and
apg, as subspaces of ar,, and aj, , respectively. Put

ap ={X €ar, | (\,X)=0for A € ayy, }-

Then ar,, = a%/iw @ anr,, - Notice that waLMw is not a subspace of ag in general.

w
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Let T € a be a truncation parameter. Recall that for any smooth function ¢ on P(F)\G(A),
Arthur’s truncation of ¢ was defined in [Art80] to be

imal A
ATPo(g) =D (-1 N gg(v9)7b (Hg(vg) — T).
Qcrp YEQ(F)\P(F)
We define a mixed truncation of a smooth function ¢ on G(F)\G(A), which is a function on

G'(F)\G'(A), by
Aelg) = Z p)dim e Z Z ep(wyg)Tp(Hp(wyg) —T)

P wE \ WG, 1EPu (F\G'(F)

for g € G'(A). It is noteworthy that
im a§ ~
ALp(g) = (—1)dimer > op(v9)7p(Hp(vg) — T).
P YyEP(F)\P(F)WG'(F)

Note that AL ¢ depends only on the image of 7' in the intersection (a§)* of al with a§. For

w € W&, a wth mixed truncation of a smooth function ¢ on P(F)\G(A) is a function on
Uw(A) M, (F)\G'(A) defined by

AL o(g) = (—1)dimeg Z > 6@ (Ewdg) Ty (Ho(Ewdg) — T).
QCp €€L Wi, 0€Q5Y (F)\ My (F)

Remark 2.1. In the formula for the wth mixed truncation operator, the sum over 9 is really over
a finite set which depends on g but is independent of ¢ (see [Art78, Lemma 5.1]).

Langlands’ combinatorial lemma asserts that

Z ( 1)d1maQAg7.R _{1 1fP:Q7 (22)

oCReP 0 otherwise

for any pair of parabolic subgroups @) C P. For any H, X € ag put

THH.X)= Y (~ndmerB(m)E(H - X).
QCRCP

Langlands’ lemma gives the formulae

iHH—-X)= Y (~1)ImeR B rh(H, X), (2.3)
QCRCP

TH(H - X)= Y THH - X,-X)rf (H). (2.4)
QCRCP

LEMMA 2.2.
(i) If ¢ is a smooth function on G(F)\G(A), then for g € G'(A),

Z Z Z ALE e(vg) TP (Hp(wyg) — T).

P we ) W vePu(F)\G'(F)
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(ii) If ¢ is a smooth function on P(F)\G(A) and w € ,,W§,, then for g € G'(A),

AT Pogy =S Y > An,0(09)Th(Ho(Swdg) — T,T').

QTP e, Wi 5eQ5y (F)\Mw(F)

Proof. Substituting the definition of AZ{ZQ@ into the right-hand side of the formula in (i), we see
that it is equal to

XYoo X o eyt Yo 3

P we, WG vePu(F)\G'(F) QCP €L WL, §€Q5Y (F)\Mw(F)
pQ(Ewdyg)7y (Hq(§wdyg) — T)7p(Hp(wyg) — T).
Using (2.1) and observing that
Q57 = Qew N My, 7p(Hp(wyg) — T) = 7p(Hg(§wdyg) — T),

we combine the sum over w, v, £ and § into the double sum over ; WS, and Qg (F)\G'(F) to
write this as the sum over Q, w € ;W& and v € Qu(F)\G'(F) of

3 (~1)H %@ oo (wrg) 7S (Ha (wyg) — T)rp(Hp(wyg) — T).
PDQ

Assertion (i) now follows from (2.2).
Assertion (ii) is a formal consequence of (2.3). O

Let 67 = wAl(tg)K be a Siegel set of G(A) relative to a parabolic subgroup P, where
w C N(A)T(A)! is compact, ty € ag is negative enough and

AL (t0) = {a € Ay | (o, Hy(a) — to) > 0 for all « € AL}

We also take a Siegel set &7 = /AL (th) K’ of G'(A). We fix w, W', to and t) so that G(A) =
P(F)&" and G'(A) = P'(F)&" for all P and P’. We write

6=69 & =69 A(t)=AF (), Aty = AT (tp).
Since w; N'w; ' € N, we may take w so that w;w'w; * C w for all i € [1,n + 1]. Put
A (te) D = {a € AY(t}) | wiaw; ™t € Ao(to)}.

For a suitable choice of ¢y and ¢, we have

n+1
Al (th) = U Al (th) (2.5)

From now on, we require that 7" be a suitably regular point in ag . Put
6L ={9€6" | (@, Ho(g) - T) <0 for all w € AL}

Let F(-,T) be the characteristic function of P(F)GQT.
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LEMMA 2.3. For a parabolic subgroup P of G, w € MWGq and g € G'(A),

> D > FQ(&wdg, T)r (Hg(wdg) — T) = 1.

QCPee, Wi 55y (F)\Muw(F)

Proof. Using the decomposition P, = M,U,,, we may write the inner sum as the sum over
Qew(F)\Py(F). There is § € P,(F) such that dg € &™. From (2.5) one can find an element
e UW]%U such that éwdg € &F. We apply [Art78, Lemma 6.3] with Q = B, A € (a})* and
H = Hy(§wdg) — T to find a parabolic subgroup @ C P satisfying the following conditions:

- (w,Hyo(§wdg) —T) < 0 for all w € AZ;
—  {a, Hy(§wdg) — T) > 0 for all a € Ag.
It follows that
FO(§wdg, T)rg (Hg(§wdg) — T) = 1.

Since F¥ and Hg are left Q(F)-invariant, we may assume that £ € LWJ%U after translating £ by
an element in W7 if necessary. Thus the given sum is at least 1. Lemma 6.4 of [Art78] asserts
that for any =z € G(A),

> > FO%Ux,T)rf(Ho(dx) = T) =1,

QCP6cQn (F)\M(F)

where we have put Qu = @ N M. The double sum over £ and § can be combined into a single
sum over Q(F)\Qu(F) ;Wi wM,(F), so the given sum is at most 1. O

To simplify notation, we put
My, (A) = 1\/Iw(A)1 X My (A).

LEMMA 2.4. If ¢ is a smooth function on P(F)\G(A) such that it and its derivatives have
uniform moderate growth, then for any A € (aj))*, there exists a constant C' > 0 such that for all
g€ &N M,(A) and k € K/,

AP 6(gk)| < CeMHolo)),
Proof. 1If we set
Y(m1,ma) = p(miwms), m1 € My(A), ma € My (A),
then for m; € M, (A) and ma € M, (A),
Anlud(mima) = (AR @ ATM)g(my, mo),
where we apply the mixed truncation to the first variable and Arthur’s truncation to the second
variable. We may therefore assume that P = G. Although it only remains to check that each step
of the argument in [Art80] applies, we shall go over the proof, keeping track of the dependence
on T in view of our later application.
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Let g € &'. We multiply the summand corresponding to P and w in the definition of AL ¢(g)
by the left-hand side of Lemma 2.3. Then A% ¢(g) equals

PICOE DD MDD D 2

P we W& 7€ w (F\\G'(F) QTP ¢e Wi 6€QSy (F)\ My (F)
FQ(¢wdvg, T4 (Ho(éwdvg) — T)dp(wyg)ip(Hp(wyg) — T)

D IC AL D DD

P QcCP we, W& 7€Qu(FN\G'(F)
FQ(wyg, T)¢p(wyg)rh (Ho(wyg) — T)7p(Hp(wyg) — T).

For a given pair of parabolic subgroups @Q C P, we can write

TQP7A'P = Z ag,

RDP

where

o= Y (C1ymsingrs

SOR

We apply this identity to the product of the functions 75 and 7p which occurs in the expansion

above. The function AT ¢(g) becomes the sum over pairs Q@ C P, elements w € ;WS and
v € Qu(F)\G'(F) of the product

Fe(wyg, T)ob(Ho(wyg) — T)og,p(wyg),

where we put

do.p(x)= Y (-1)Um%Rpr(z), e G(A).

QCRCP

For the moment, we fix @ C P, w, v and g. We regard v as an element in G’(F) which we
are free to left-multiply by an element in Q,,(F'). Then we can assume that

vg = n*nymak,

where k € K', n*, n, and m belong to fixed compact fundamental domains in U,(A),
(M, N N')(A) and T'(A)!, and a € A} with

Jg(Ho(wa) —T)#0, (B,Ho(wa)—ty) >0, (w,Ho(wa)—T)<0

for all g € Ag) and all w € AOQ. Let {w) | a € Ag} (respectively {wgs | € Af;?}) stand for
the basis of ag (respectively of (ag})*) which is dual to Ag (respectively to (Av)(?). We can
decompose the vector Ho(wa)® as

= > tewml+H = ) B’ +1T,

aEAg BEAOQ
where t, and 75 are real numbers and H* is a vector in a§. Note that rg = —(wg, Ho(wa) —T) is

nonnegative for all 8 € AQ By [Art78, Corollary 6.2], t, > 0 for all « € AQ, and H* belongs to
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a compact subset whose volume can be bounded by some polynomial, say [],c AL Pa(ta). Recall
that (o, 8Y) < 0 for all @ # 3 in Ag. Each root § € Al Ag satisfies

(6, Ho(wa)) =to — Y 15(5,8Y) +(6,T) >0,

BeAY

where « is the projection of § onto ag. Thus the projection of Hyp(wa) onto aOP belongs to

a translate of the positive chamber, and hence a=!

independently of T'. Then

nya remains in a fixed compact subset

¢q,p(wyg) = ¢g,p(wnsmak) = ¢ p(wac),

where ¢ = a~1n,mak belongs to a fixed compact subset of G'(A) independent of T. We write

waw™! = apaiag, where ag € Ag, a1 € AgNG(A)! and ay € AgNL(A)'. Note that [|aol| < [|araz].
For each positive integer m, the argument of [Art80, pp. 93-95] gives a constant ¢,,(¢) such that
|pg,p(wac)| is bounded by

o) 3 e smipnanten) | | R(Ad(we) ™ Ad(a2) " ¥{" )0 uwac)| du
Nr(F)\Nr(A)

where [; is a positive sum of the roots in Ag, Ny is a subgroup of V| Y7 is a left invariant
differential operator on (M NV)s and R is the regular representation of G(A). We can choose a
finite set of left invariant differential operators {X;} on Go such that Ad(we)"tAd(az) " 1YP™ is
a linear combination of {X;} for any Q) C P, w, I, ¢ and ag. Since the projection of Hy(az) onto
aéj belongs to a translate of the positive chamber, the coefficients are bounded independently of
¢, as and T

Set d(T') = min{(a,T) | @ € Ag}. We shall let T" vary over suitably regular points such that
d(T) > €o||T|| for some fixed positive number ¢y. Corollary 6.2 of [Art78], referred to above,
concludes that ||a;|| is bounded by a fixed power of e!fr-Ho(@1)) Note that

eOlITl < dT) < Br.T)  o(Br.Ho(ar))

Therefore ||vg|| = ||n*ac| is bounded by a constant multiple of a fixed power of e{#r-fo(a1)) By
the assumption on ¢, we can take m so that

I IR (wwac) du
Nr(F)\N1(A)

is bounded for all @ C P and w. There is a constant ¢ such that ||z| < c||yz]| for all v € G'(F)
and z € &' (see [MW95, §1.2.2]). Tt follows that for any Ny > 0 there exists C; > 0 such that

|60,p(wyg)| < Cillg|~™

for all v € G'(F) and g € & with FQ(wq/g,T)JS(HQ(wvg) -T)=1.
On the other hand,

S PO, T)ob(Ho(ow) — T) < Clle|™, = € G(A),
SEQI\G(F)

for some constants C > 0 and Ny > 0 (see [Art80, pp. 96-97]). Since the summand takes values
0 or 1, a similar estimate holds for the sum over ; W& and Q.,(F)\G'(F). There exist ¢/, ¢, ¢ >0
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such that ¢|la|!||z]|" < ||laz|| for all @ € Ag and z € G(A)'. Therefore, for any N3 > 0 there
exists C3 > 0 such that

AL 0(9)| < Csllgll~™.

For a given A € (a})*, we can take Cy > 0 and Ny > 0 such that e~ M@ < Cy||g||Vt. We
obtain the desired estimate by taking N3 = Njy. m

Remark 2.5. If ¢ is an automorphic form, then we have proven that the rate of rapid decrease
of Aﬁ’ﬂqﬁ is majorized in terms of the rate of slow increase of finitely many derivatives of ¢ and
hence in terms of the exponents of finitely many derivatives of ¢. If ¢(\) is an analytic family
of automorphic forms, then its exponents vary analytically, and hence, for any p € (aj)*, there
is a locally bounded function ¢(\) such that for all g € & N M, (A) and k € K,

A ¢\ (gh)] < e(A)et 1o,

3. Periods of automorphic forms on GL,4+1 X GL,

3.1 Integrals over cones
The regularization of the period integral is based on a regularization of integrals of polynomial
exponential functions over cones in vector spaces. We recall its basic properties and refer the
reader to [JLR99, §1I] for additional explanation.

Let V be a finite-dimensional real vector space. A polynomial exponential function on V is
a function of the form

Z pi(X)eH X

where \; € V¥ and p; € C[V]. The decomposition above is unique if the A; are distinct and p; # 0
for all 7. We call \; the exponents of f. We denote the characteristic function of a subset ) of V
by 7.

For w = w; € OWg,, we define a C-linear map pr,, : a5 ¢ — (aOCT:C)* by

n+1
I‘w()\l,...,)\n+1) = <)\1,... i— 1, Z}\J,)\Z+1,...,)\n+1>.

Let P be a parabolic subgroup of G. For A € ag ¢, we denote the restriction of pr,,(A) to ap by
np(A). Note that the map A — np(wA) restricts to an isomorphism ayy ¢ =~ (ag’c)*. Fix ¢ € ay,.
For any polynomial exponential function f on af), we define a polynomial exponential function
f¥ on ap by
FE(wX)%) = f(X +¢)
for X € am,,. Since
pwX), (wX)) = (A, X), A€aje, X €am,,

if the exponents of the restriction of f to am, are A;, then the exponents of fi’ are n(w;).
Put tp = dim aP Let C be a subset of ag of the form

C={X€a| (u;, X)>0forall j €[l tp]}
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where {f; }éi | is a basis of (a%)*. Let {e; };1; | be the corresponding dual basis of a§. Fix T' € ao.
The #-integral

/# F(X)T(wX —=T)dX = f X)X =T 4 we) dX

My, +¢ ap

is discussed in [JLR99]. It exists if and only if (n}3(w);), e;) # 0 for all 4, j. The ordinary integral
/ fF(X) T (wX —T)dX
M, +C

converges if and only if (1} (wA;), e;) < 0 for all 4, j. In this case it coincides with the #-integral.
The function

#
T — / F(X) 7 (wX = T)dX
M, +C

is a polynomial exponential function on ag whose exponents are n}3(wX;). The function

. /# FX)C(wX — T) dX
anM,, ¢

is a polynomial exponential function on af, whose exponents are given by
c— (whi —np(wh;),we), ¢ € ag.
For \ € ag’(c we deduce the explicit formula
A (wX —T) dX = (1) v(
e ™ (w = v(er, ... ep)—7
My, ¢ Hj1;1<77$(w)‘)a €;)

from [JLR99, (15)], where v(eq,...,e:,) is the volume of the parallelotope formed by {ej}?;l‘

Let Q be a parabolic subgroup contained in P and g a compactly supported function on ag.
In [JLR99] the domain of the #-integral is extended to functions of the form

WY) =g(Yg)r(Y), Y €a,

# (Ae) (B (w),T—wce)
/ cer (3.1)
a

which we call functions of type (C). If f is a polynomial exponential function on af and
f(Y)h(wY —T) is #-integrable over ay,, + ¢, then

/a# F(Y)h(wY — T)dY :/

Moy
Ly € ag,..+c

g((wY = T)g) /# FX+Y)7w(X +Y)-T)dX dY.

(3.2)
This identity follows by definition and analytic continuation. Note that the map Y +— (wY)g

restricts to an isomorphism of alﬁ/fuw onto ag.

LEmMA 3.1. Let Q) be a parabolic subgroup of G, w € LWg,, ¢ € ay, f a polynomial exponential
function on afy and C a cone in ag. For each parabolic subgroup P with P D @, let gp be a

function on ag and Cp a cone in a%, and set hp(X) = gP(Xg)TCP (X) for X € ay. Assume that

(X) =) aphp(X)

POQ

for some constants ap and that either
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—  gp is compactly supported and Cp C C for every P; or

—  gp Is the characteristic function of a cone Cg in ag and C]QD x Cp C C for every P.

Assume further that f(X)hp(wX — T) is #-integrable over ay,, + ¢ for every P. Then
f(X)7¢(wX — T) is #-integrable over ar,, + ¢ and

#
/ FXOwX —T)dX = ) ap/ X)hp(wX —T)dX.
ar,,, +c¢ POQ ar,, +c
Proof. The proof is the same as that of Lemma 6 in [JLR99]. m

3.2 Regularization of the period integral
A regularization of the period integral was introduced in [JLR99, LR03] for the Galois case. We
will observe that the construction carries over to the context of this paper.

Let P be a parabolic subgroup of G and w € MWg,. Automorphic forms ¢ € /p(G) and
¢ € op,(G’) have decompositions of type (1.3), namely,

d(uamk) ZQ’ (Hp(a))¢i(mk)e (/\'+/1P,1L1p(a)>7

¢ (u'a'm'k") ZQ (Hp,(a qﬁj(mk)< jHPPw e, (@) (3.3)

for
weU(A), a€Ap, meM(A)?, keK,
u € Uy(A), d € Ap,, meM,A?', kKeckK'.
We define Q;; € Clag] by
Qij(X) = Qi((wX)p)Q;(Xp,), X € ag.

Let g = ueXmk be an Iwasawa decomposition of g € G’(A) relative to P, with X € apg, and
m € My, (A)'. Since Hp(wm) € ayq,, is the projection of Hp, (m) = wHp, (m) € axq,, onto ap for
any m € My (A), if we set

X(m):X—i—H(’)(m), Aij:)\z-—i—w)\;-,

then
ARld(9)d'(9) = Y Qi (X (m)) AL di(mk) gy (mk)elhiatortuppy wXm),
,J
Let 7 be a function on a% of type (C) which depends continuously on k € K.
For parabolic subgroups Q C P of G and w € LWg,, we put

0w = Pl — WP

When P = G, we write og,,, in place of Qg »- Note that when P = P, with n = (nq,...,n;) and
w=w; with i =nq +---+nj,

P / P,
oPw = pPo — Py — w(py — Py*)
1 1 1 1 1 *
:( PERRERID) ,0,...,0,§(nj+1+“‘+nt—nl—"‘—Tl/’jfl),—i,...,—i) Gao.
— . , —
ni+-+nj—1 nj—1 Njp1+-+nt
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For A € af ¢ and X' € (aj )", we define kp (X, \') € ajy ¢ by demanding that
(kPw(AN),Y) = A+ w) + opw — 1A+ wX + 0pw),Y)
for Y € apq,. Assume that the #-integrals

#
/ +Hp, ( )Qij(X)6<Aij+gp’w’wx>7k(wX —T)dX
M Py (M

exist for all 7, 7 and k. Then this integral is equal to a function of the form

€<n$ (Aij+9P’w),T>e(ﬁp’w(Ai,Ag),HPw (m))pijk (pr (m), T)7

where p;;, € Clapg, @ ag] depends continuously on k € K’. We define the #-integral

#
/ ATE 6(9) 6 (g) i (Hp (wg) — T) dg
(FO\G'(A)

as

S el (hitera)T) / / P (Hp, (), T)elsraw Q) ey, (m)
o I Mo (F)\Ma (8

x ALt di(mk) ¢ (mk) dm dk.

Lemma 2.4 and Remark 3.5 guarantee the convergence of this integral.

DEFINITION 3.2. Let o/ (G x G')* be the space of pairs (¢, ¢’) € & (G) & &/ (G") which satisfy
(pryy(X +wX) + opw, @) # 0
for any proper parabolic subgroup P of G and
we WS, Neéplp), Neép (o), ='eA.

When (p,¢') € & (G x G')*, all the #-integrals
, “
Py (o) = [ AL o(0) ¢, (9) e (Hp(wg) — T) dg
Py, (F)\G'(A)
exist and a regularized period PG/(gp ® ¢') is defined as the sum

Z S PYTwe¢).

wEMWG,
It is worth emphasizing that this definition is based on Lemma 2.2(i).
PROPOSITION 3.3. P¢ is well-defined and is independent of T.

GT+T(

Proof. We use Lemma 2.2(ii) to write P e ®¢') as

/ MO > ALe9)eh, 69)
NG QcPee,wi, seqfy (0 (p)
xTH(Hg(¢wdg) — T,T')rp(Hp(wg) — T — T") dg.

We take the sum over Q and £ outside the integral, which will be justified by the absolute
convergence of each integral, as explained below. Expand ¢p and ‘ple asin (3.3). Let g = ueXmk’
be an Iwasawa decomposition of g € G'(A) relative to P, with X € ap, and m € M, (A).
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Since Fg (Y, Z) depend only on the projections of Y and Z onto ag, we may write the #-integral
of the sum over ¢ as the integral over ¥ € K’ and sum over 4, j of

/ N6 (mk") 6} (mk )T (Ha€wm) — T,7)
Q5 (F)\ M (A)
#
X/ Qij(X)e WijterwwX) (WX — T —T') dX dm.
an,, +Hg(m)

Since FS(X — T,T") is a compactly supported function of X € ag, each term is separately

integrable over Q%”(F )\My,(A) by Lemma 2.4; hence we may take the sum over @ and £ outside
the integral. Choose a decomposition of type (1.3) for (¢i)q and (¢})q,,:

(¢i)o(uamk’) quk Ho(a Qszk(mk/)e()\ikerg,HQ(a))’

’ Py a/
(qb )ng da'm k‘” qul Hng a d)‘l(m/k,//)e(AerPng,Hng( ) (3.4)
for
weV(A), a€Ag, meLA), KeKkK,
U € Vew(h), d €Aq,,, m € L), kK eK,
where
Aik € (ag,(})*a >‘/l € (aQ£ (C)*a Qik € C[ag]v q]l € (C[QQE ]
We put

Ay = A+ EwXy, QX)) = qu((wX)Q)aju(Xge ) X € ap.

Using the Iwasawa decomposition of M, (A) relative to Q%}’, we can express the integral over
Q%”(F)\MW(A)’ as the integral over m’ € Lg,, (F)\Lgw(A)" and sum over k, 1 of

# y ij
ADQ G ('K )@y (m'K) / Q;Jl(Y)6<Aé+95,gwéw“rg(gwy - T,7T")

e a?‘/g‘; +H{(m)
#
X / Qi (X)elMiaterwwX)rp (X — T —T') dX dY,
uMw+Y

where we have absorbed the integral over &” into the integral over k¥’ € K'. We may combine
the #-integrals over all\ii and ap,, into a ##-integral over ar,.,, by (3.2), and we obtain the triple
integral

#
/ / ATQ i ('K ('K / QLX) Qi (X)e Akt uX)
! L&w \Lﬁw(A

aLg,, +Hy(m')
x NP NP B (cw X — T, T )rp(wX — T — T') dX dm’ dk.

We conclude that

#
. ST A o(69)eh, (39)T5 (Holwdg) — T, T')rp(Hp(wg) — T — ') dg
PN s P\ ()
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is equal to the #-integral over Qg (F)\G'(A) of

ATQ 0(9)@lg,, ()5 (Ho(€wg) — T.T')rp(Hp(wg) — T — T).

Summing this over all Q C P, w € MWg, and £ € LWJ\%U? we see that

SN PRI (eey)

P wEMWg,

=22 2 / v ALLo(9)00., (9T G(Ho(wg) — T, T )rp(Hp(wg) — T — T') dg.

Q@ POQuwe, W§

The cone defining 7p is the positive Weyl chamber Cp in ap and is contained in the positive Weyl
chamber Cg of ag. We may apply Lemma 3.1 to take the sum over P inside the #-integral. The
relation (2.4) applied to P = G, H = Hg(wg) — T —T" and X = —T" shows that the right-hand

side equals
> Y Poulped). o
Q wELW

Let m = (my,...,m,) be a composition of n. For the parabolic subgroup Q = Py of G' and
w=w; € OWg, we define the parabolic subgroup Q(w) of G by Q(w) = Py (w), Where

m(w) = (m1,...,mj_1,m; +1,mji1,...,m;)
if i € [my+---+mj_1+2,m+---+my|, and
m(w) = (m,...,mj,1,mj1,...,my)
ifi=my+---+mj+1
PROPOSITION 3.4. If (p,¢') € & (G) @ o/ (G') satisfies
R(pr, (A +w') + pp —wpg, @) <0
for all parabolic subgroups P of G and Q of G', w € OWg/: P g}gusp((p), N e @@qczusp(@,) and

@ € AL N A O(w): then (o, ') e (G xG)*, p(g)¢'(g) is integrable over G'(F)\G'(A), and

PYpe) = [ #l9)#'(9) dg.
G'(F)\G'(A)
Proof. By Lemma 2.2(i), if the integrals

/ TP o) (g) e (Hp(wg) — T) dg (3.5)
(FO\G'(A)

are absolutely convergent for all Pandw € ,,W§&, then ¢(g)¢’(g) is integrable over G'(F)\G'(A).
Fix P, w € ,,W§ and € € . Put 8 = &w and take i € [1,n+ 1] such that § = w;. In order
for (3.5) to be absolutely convergent, it suffices to find elements i € (af)* and ps2 € (a))* such
that the integrals

/ eRMFpp-+i1,BH (@) o Ratpo-+i5 —200:H5(@) (1 4 || HY (a)]|)? da
A(tp)®
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are convergent for all parabolic subgroups @ of G', A\ € &p(p) and Ay € é"éuSp (¢') in view
of Lemma 2.4, (2.5) and [MW95, Lemma I.4.1]. Thus it amounts to the same to prove the
convergence of the integral

Q /
/ e RA1+PA2)+p1+Bu3 +pp+ﬁ(pr2po),ﬁX>TB(5X — 1) (1 + HXH)d dX,
a

which is easily seen to be equivalent to showing that

Riprg(Ar + BA2) + 1 + Bu§ + pp + Blpg — 204), =) < 0

for all w" € AY. If @¥ € A%~ Aé(ﬁ), then (u1,@") = 0 and we can choose po € (aj)* so that

(Bug, @) is very negative and the condition above is satisfied. The condition for " ¢ AY, is
fulfilled if p1 € (af)* is sufficiently regular (depending on p2) in the negative Weyl chamber. As
shown in [MW95, p. 50], there exist a parabolic subgroup R C P and g1 € &5 (¢) such that
A1 coincides with the restriction of g1 to ap. Let @w" € A}é N Aé(gy Then

(i, @) = (BuS, @") = (pp — pry @) = (B(pg — ph), @) = 0.
Since A% c AY,

R(prs(A 4 Br2) + pp + Blpg — 200), @) = R(prs(o1 + BA2) + pr — Bpg.@”) <0

by assumption. Thus (3.5) is absolutely convergent, so that it is equal to Pglf(go®<p’ ). Summing

this over all P and w € MWg,, we obtain the desired equality.
For each N € &p, (¢'), there exist a parabolic subgroup @ C P, and ¢’ € c%uSp(go/) such that

X' is equal to the restriction of ¢’ to ap,. If @' € A}, then since @’ € A% N Aé(w),
R(pry,(A1 + wX) + 0pw, @) = R(pr, (01 + wo') + pr — wpg,=’) < 0.
Thus (¢, ¢') belongs to o7 (G x G')*. O

Remark 3.5. The proof above confirms that if ¢ : G(F)\G(A) — C is rapidly decreasing and
¢ G'(F)\G'(A) — C is slowly increasing, then ¢(g)¢'(g) is integrable over G'(F)\G'(A).

PROPOSITION 3.6. If p(\) and ¢'(N') are analytic families of automorphic forms and if O is the
set of all triplets (\, X, s) such that (¢(\), ¢ (XN)s) € (G x G')*, then O is a nonempty open
set and (A, N, s) = P (p(X) ® ¢/ (XN)s) is an analytic function on O.

Proof. If we put e = (1,1,...,1) € ag, then for s € C,

Y

<prwi(se)’wj> — {]8 1 ] < Z)

(G—n—1)s ifj>i.

It follows that for any fixed A and )\, the pair (¢(X), ¢'(\)s) belongs to &7 (G x G')* for generic

values of the parameter s. Remark 2.5 concludes that the integral PIGDI{UT(QO()\) ® ¢'(N)s) is
uniformly convergent for A\, \’ and s in compact subsets, which completes the proof. o
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3.3 Periods of truncated automorphic forms
PROPOSITION 3.7. (i) For ¢ € &/(G) and ¢' € o/ (G') the function

T AL ()¢ (9) dg,
G'(F)\G'(A)

defined for T € (a§)* sufficiently positive, is a polynomial exponential function 3", px(T)eMT).
The exponents may be taken from the set

U U B0+ wX +opw) | A€ Ep(0), X € p,(¢)}.

P wGMWg,

(ii) If (¢, ¢') € o/ (G x G')*, then P (o ® ¢') = po(T). In particular, the right-hand side is

constant.

Proof. The argument parallels that in the proof of Proposition 8.4.1 of [LR03]. Because of the
importance of this result for us, we reproduce the proof here. Since I'p(X —T,T") is a compactly
supported function of X € a}Gp, Lemma 2.4 enables us to integrate the equality in Lemma 2.2(ii)
against ¢’ over G'(F)\G'(A). Then we get

/ ATHT (g0 (g) dg
G'(F)\G'(A)

P> / ooy AP @) @ (Hi(wg) = T, dg

wEMWG

_Z > / AT e(9)¢p, ()T p(Hp(wg) — T, T") dg.

w(A) My (F)\G'(
wern G, Un MG (4)

Expand pp and ¢/, as in (3.3). The inner integral is equal to the integral over M, (F)\ M, (A)" x
K’ and sum over i, j of

#
ATPqﬁz(mk)%(mk)/ Qi (X)ehiiterwwX)Pp (X — T, T') dX.
am,, +Hpy, (M)

Lemma 2.2 of [Art81] implies that the #-integral is a polynomial exponential function in 7"
whose exponents are {n¢(Aij + opw)}q>p, Which proves (i).

Observe that PG T(gp ® ¢') is a polynomial exponential function in T' by applying (i) to M.
The zero exponent does not appear in all terms P # G by assumption. Since the regularized

period does not depend on T, it is equal to the coefficient of the zero exponent in the term
P=aG. o

Set d(T) = min{{a,T) | @« € Ap}.

PROPOSITION 3.8 (cf. [Art85, Theorem 3.1]). Let ¢ be a smooth function on G(F)\G(A) such
that it and its derivatives have uniform moderate growth and let ¢’ be a function of moderate

growth on G'(F)\G'(A). Then for each positive integer m there is a constant C,, independent
of T such that

/ [AL(9)¢'(9) — w(9)¢'(9)F4 (g, T)| dg < Crpe™ ™),
G (F\G'(A)

where T varies over suitably regular points such that d(T) > €||T|| for some fixed positive
number ¢.
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Proof. We will freely use the notation and the discussion of Lemma 2.4. Lemma 6.1 of [Art78§]
implies that 08 is zero unless Q@ = G. Thus AT p(g) — ©(9)F%(g,T) is equal to the sum over
pairs Q ¢ P, elements w € ;W& and v € Q,(F)\G'(F) of the product

F®(wyg, T)ob(Hg(wyg) — T)eq,p(wyg)-

By the assumption on ¢ and ¢, we can take m so that

ZZefm</51,Ho(a1)>|(p/(n*ac)‘ |R(X;)p(uwac)| du
75 Ni(F)\N;(A)

is bounded independently of T" for all @ C P and w. It follows that
[Ame(9)¢'(9) — 2(9)¢'(9)FC (9, T)|
is bounded by a constant multiple of the sum over @ C P, w, I and y of
FQ (w9, T)ok (He(uwrg) — T)e2m{brHowia),
Thus the integral

/ AT o(0)'(9) — 0(9)¢ (9)FC(g.T)] dg
G'(F)\G'(A)

is bounded by a constant multiple of the sum over @ C P, w and I of

/ / FQ(wm,T)ag(wX — T)e 2mBrwX) 4 X dm.
Loy (F)\Lw (A)" Jav,, +Hg,, (m)
Observe that

/ US(UJX — T)e 2mBrwX) g x — 0—5(}( —T)e 2mBnX) g x
oL, +HQ,, (m) a§

oo
<6—2m<51,T> H / pa(t)e_thwI’wX) dt.
aEAg 0

The integral

/ F@(wm,T) dm
Lu (F)\Luw (A’

is certainly bounded by a constant multiple of a fixed power of el”ll. This completes our proof,
as the factor e 2™Pr.T) is bounded by e~2m(T), o

We write C* = {3 ca, Ta® | To < 0} for the closed negative Weyl chamber.
LEMMA 3.9. Let

k
f(I) =po(T) + Zpi(T)e<)\i,T>
i=1

be a polynomial exponential function on a§, where 0, \1, ..., \; € (ag;(c)* are distinct and p;(T) #
0 for i € [1,k]. Then the following conditions are equivalent:

(a) f(T') converges as T — ¢ in (aoG)+§
(b) po(T') is constant and R\; € C* ~ {0} for all i.

If these conditions are fulfilled, then f(T) converges to po(T) as T — oo in (a§)*.

686

https://doi.org/10.1112/50010437X14007362 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X14007362

PERIODS OF AUTOMORPHIC FORMS: THE CASE OF (GL,4+1 X GL,,GL,)

Proof. Clearly, (b) implies (a). Now we derive (b) from (a). We may assume that & > 1 and
that f(T) converges to 0 as T — oo in (a§)*. Note that f(¢5) converges as t — oo for all
§=3", 00w € a§ with d, > 0. Thus the statement immediately reduces to the case of a§ = R.

We may assume that R\ > R\; for all ¢ € [2,k]. If RA\; > 0, then f(7") is asymptotic to

Z P (T)eAiT

RN =RA\1

as T — oo, which reduces the statement to the case where R\, = 0 for all i. Put \, =
(2my/—1)71)\;. Considering the terms of maximal degree, we can reduce the statement to the

case where pg,p1,...,p, are constant. We may assume that \j,...,\] are rational and that
Al1s -+ 5 A are irrational. Since g(T') = po + 22:1 pie’T is periodic, we have | < k by (a). We
fix irrational numbers pu1, ..., ., which are linearly independent over Q, such that

.
/\;-:Zaijuj, aijGZ, 1€ [l—i—l,k].
j=1

We fix real numbers dy, ..., d, satisfying the following conditions:
cm = g(m) + Zf:l+1 pie?™Y 1 0iads # 0 for all m € Z;

- g(m)+ Ef:lﬂ pie 2TV TIE, aijds # 0 for all m € Z.

Note that the set {g(m) | m € Z} is finite. For any ¢ > 0, Weyl’s equidistribution theorem gives
an integer m such that |m| is arbitrarily large and |e2™V =™ — 27V=1dj| < ¢ for all j € [1,7].
At the cost of replacing d; by —d;, we may assume that m is positive. Then

k
fm) =g(m)+ Y pe?™Y TRy pm
i=l+1
is very close to ¢, # 0, which is a contradiction. i

COROLLARY 3.10 (cf. [Lapll, Lemma 9]). If p®¢' € o/ (G x G') is integrable over G'(F)\G'(A),

then
/ (9)¢'(9) dg = po(T),
G'(F)\G'(A)
where po(T) is as in Proposition 3.7(i).
Proof. The integral

/ AL e(9)¢' (9) dg
G/(F\G(A)

converges to the left-hand side as T — oo in (a$)* by Proposition 3.8, while it converges to the
right-hand side by Lemma 3.9. O

4. Proof of Theorem 1.1

4.1 Eisenstein series on GL,,

Let P = MU and Q = LV be parabolic subgroups of G,,. The longest element in W is denoted
by wé‘/[. When @Q D P, we put w]%/[ = wéwé\/l. We write W (M, L) for the set of elements o € W™ of
minimal length in ¢W™ such that oMo' = L. We say that Q is associated to P if W (M, L) is
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not empty. Set W (M) =J;, W (M, L). Explicitly, an element in W (M) is represented by a unique
permutation matrix that shuffles the diagonal blocks of M without causing any internal change
within each block. For o € W (M), put °M = oMo', denote by °P the standard parabolic
subgroup of G, whose Levi subgroup is °M, and denote by °U the unipotent radical of °P. Let
Wi be the set of elements ¢ € W™ such that ca > 0 for all a € A(If and o 'a > 0 for all
o€ AOQ. Let ; W§, be the set of elements o € [ W) such that °M C L.

For ¢ € 5(Gm), A € apc and @ D P, the Eisenstein series

E%g, )= > &)

YeP(F)\Q(F)

converges absolutely if (RAQ — pg,av> > 0 for all ¥ € (Av)g. When @ = G,,, we also write

wo, wy and E(¢, \) instead of wy™, wAG[’ and E¢m (¢, )\), respectively. Alongside, we define the
intertwining operator M (o, \) for o € W(M) by

M(o,N)¢(g) = e~ (oA Hop(g)) / (j)(a_lug)eO‘vHP(J*lug)) du.
(UNoUo~)(A)\U(A)
These admit the meromorphic continuation to aj . The constant term of E(¢, ) along @ is
given by
Eq(¢,\) = Y E9M(o,\),0N) (4.1)
o, W5,

(see [MWO5, §11.1.7]).
We fix once and for all a nontrivial additive character ¢ : F\A — C* and extend it to a
character of N,,(A) trivial on N,,(F) by setting

Y(u) =Y(ure + -+ Um—1,m)

for u € Ny, (A). Its restriction to any subgroup of N,,(A) is also denoted by 1. For a smooth
function f on Np,(F)\Gm(A), we put

W(g, f) = / F(ug)(a) du.

N (F)\Nm (A)

For any Levi subgroup M, put M= woMwy. For ¢ € o/5(Gp,) and X € ap e, the integral

W9 6.0 = Wg.on = [ S (wyug) i) du
(NmNM)(F)\Nm (A)
factors through a nondegenerate Fourier coefficient

W9, ¢) = $(ug)d(u) du

/<NmmM><F>\<NmmM><A>

of the inducing data. We have the following identity of meromorphic functions on ap:
WY (E(6, 1) = W¥(¢, ). (4.2)
For ¢ € /5(G), ¢’ € &/(G') and a point A € a} ¢ at which WY (¢, \) is analytic, the integral

I(¢, L, A) = / WY (g, 6, VW¥ (g, ) dg
N'(AN\G'(A)
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is absolutely convergent for Rs sufficiently large (depending on \) (see [JPS79, §13]). This is a
generalization of the integral studied extensively by Jacquet, Piatetski-Shapiro and Shalika in
[JPS79, JPS83, JS90, Jac09]. Since I(¢, ¢’, A) converges absolutely uniformly for A in a compact
set in the domain of convergence of the integral (see [Jac09, Proposition 3.3]), it is holomorphic
for A in that domain.

The proof of Theorem 1.1 begins with the following special case.

LEMMA 4.1. If ¢ € &/5(G) and ¢' € &/ (G"), then for X\ € a}, - in general position,

P (E(¢,\) @ ¢) = 1(¢,¢, \).

4.2 Fourier expansions of pseudo-Eisenstein series
For i € [0,m] we regard G; and G,,—; as subgroups of G, through the natural embedding

(91,92)’—’<gl 92> :
When Q = P; ;,—; and ¢ is a smooth function on Q(F)\G(A), put

W _ 1L Y
Wito.0) = [ m_mwm_imfb[( o P g€ Guin)

For i € [0,n] we define the subgroup &; of G by

P = {<g Z) ‘ g€ Gy, u€e Npy1-4, y € Mi,n—l—l—i} .

Let Q; = L;V; be the parabolic subgroup of G attached to the composition (i,n+ 1 —14). We put
Pl=PNG, Q. =LV =9 NG
PROPOSITION 4.2. Let ¢ be a smooth function on &,(F)\G(A). If the series
n
Yoo > Wi(9.60)
=0 yeZ{(F)\G'(F)
converges absolutely, uniformly on compact subsets of G(A), then it is equal to ¢(g).

Proof. Following the proof of Theorem 5.3 in [Sha74], we get

¢(g) = Y Pé(vg) + do.(9),

VEZ, L (FN\G'(F)

Po(g) = /Fn\mcé [(1” ‘i’) g} U (yn) dy.

We fix g and consider the function f, on G'(A) given by f4(¢’) = Pp(g'g). Since f, is a smooth
function on &2, _,(F)\G’'(A), we may assume that

where

AGEDYS > Wa (89, fy.0r)

=0 6€(Z[NGr—1)(F)\Grn-1(F)
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by induction. Since

ngz (9/7 fg,Q;)

1, 0 ,} —
= / u) du

Sﬁ
| — |
Y
o

/ / ) (0 )o] P dvan
N s (F)\Np—i(A) I M i (F)\M; i (A) n—i u

1, vu
- / / / 6 u Y oo| Pom)d) dy dv du
Np— i (F)\Np—i(A) JM; p—i (F)\M; n—i(A) JF\A™ 1

= WSZ (g/ga ¢Qz)7

the series in the right-hand side converges absolutely by assumption. Substituting the above into
the expression for ¢, we get

dlo)= D, Fo(0) + 62, (9)

VP 1 (F\G'(F)

n—1

n—1
- Y ¥ 3 W (079, 60,) + W (9, 60,)

NEP! L (F\G'(F) i=0 6€(2!NGp_1)(F)\Gn_1(F)

n—1
=y > Wi da)
i=0 ye Z(F)\G'(F)
as claimed. O

For a finite-dimensional real vector space V, let PW(V{¥) be the Paley—Wiener space of
functions on V{ obtained as Fourier transforms of compactly supported smooth functions on V.
Fix a finite-dimensional subspace V of @/5(G). Let PW(py) be the space of V-valued entire

functions on (a%c)* of Paley-Wiener type. We may identify PW py,) with PW((agC)*) ® V.
For ¢ € PW(py) and any fixed s € (a%)*, we define a function Fy on AgU(A)M(F)\G(A),
compactly supported in Hp(g), by

Fylg) = / (N)(g)eMP@) gy
Ae(a0)*, RA=r

and define the pseudo-Eisenstein series 6, by

Os(9)= >, Fy(vg).

YEP(F)\G(F)

The sum is actually over a finite set depending on ¢ (see [Art78, Lemma 5.1] and the argument
at the end of §4.3), 64 is rapidly decreasing, and

0olo) = [ Blg.600. 0 dA (4.3
RA=k
for any x in the region of convergence of the Eisenstein series (see [MW95, §I1.1]).

When P C Q; for i € [0,n], put .#4° = M NG;. Let P, = M;U; be the parabolic subgroup of
G whose Levi subgroup M; is 4" x Gy41—; and let P! = MU/ be the parabolic subgroup of G’
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whose Levi subgroup M/ is #* x G,,_;. Define a Levi subgroup .#; of G, 11-; by

()

where ;g = wp lgwp is the ‘second transpose’ of g about the second diagonal. For ¢ € «7p(G) and
A € ap we put

W (0,003) = V(g 00) = [ or [ty (M) o] vt au
(NNA)(F)\Npy1—i(A)

COROLLARY 4.3. Let ¢ € PW(pyy and let f € C°(G) be a decomposable function. Then

Feod0=> Y Y[ e e onen) ar

i=0 O'EQWJ?Z YE(ZINP)(F)\G'(F)

M = {g € Gny1-i

where * denotes convolution (see §4.3 below for details) and the sum converges absolutely,
uniformly on compact subsets of G(A).

Proof. By (4.1) and (4.3),

0s,0,(9 / Z E9 (g, M(0,\)p(N\), 0\ d.
Formally, Proposition 4.2 gives

Fro =Y % S [ WEE (Mo 60 o) () d

i=0 ye P)(F)\G(F) o€ o, W, 7 FA=F

The corollary can be deduced from this and (4.2). To justify the manipulation, we will prove the
absolute convergence at the end of the next subsection. o

4.3 Uniform estimates for Jacquet integrals
In the first half of this subsection, we switch to a local setting. Thus F' = F,, is a local field. If
F' is nonarchimedean, we denote by o = 0, the integer ring of F' and by ¢ = ¢, the cardinality of
the residue field of F.

Fix a composition n = (ny,...,n;) of n + 1 and put P = P,. For an irreducible unitary
representation w of M and \ € a}(c, let 7y be the representation of M given by my(m) =
eMHPM)) 1 (1m). We denote by Ig(w,\) the corresponding induced representation of G. Suppose

that 7 is generic and fix an isomorphism WRZ from 7 to the space of Whittaker functions of
7. For ¢ € I§(w) and X € apc we may define a Whittaker function W¥(¢y) of IS(my) by the
holomorphic continuation of the Jacquet integral

WY (g, 63) = /ﬁ WY (1, 6 (witug))0(u) du,
where U = Us with 0 = (ng,...,n1).
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First assume that F' is nonarchimedean. Fix ¢ and choose an open compact subgroup K of
G so that ¢ is Ko-invariant. We have WY (gk, ¢)) = W¥(g, ¢,) forall g € G, k € Kgand A € apc,
and thus there exists a constant ¢ which does not depend on A such that

WY (g, 1) =0 (4.4)
unless (o, Hy(g)) < c for all @ € Ag. By a gauge estimate (see [JPS79, Proposition 2.3.6]),
WY (m, d(k))] < CeleHolm)

for all m € M and k € K, for some C > 0 and p € aj. It follows that |WJ\¢/1(1’¢)‘(9))| S
CelfAtntrrHo()) and hence

|W'¢'(g’¢)\)| < C’/(l7 e(%)\+u+pP,H0(wxflug)> du. (45)

If k (a]GD)* is sufficiently positive and RA = «, then this integral is convergent and defines an
element in Ig(ewM(”Jr“_pg)). Combining (4.4) and (4.5), we can take C’ > 0 and x4 € aj such
that

[WY (g, ¢a)] < C'elt"Hol0) (4.6)

for all g € G and R\ = k.

Now suppose that 1 is of order zero and 7 is unramified. We denote by Ww(ﬂ')\) the K-
invariant Whittaker function of I§(my) such that W¥(1,7y) = 1. For i € [1,n] we define o; €
Rat(T) by

ai(t) =tit Y, t=diag(ts,...,tas1) € T.

Assume further that ¢ > n + 1. Since 7 is generic and unitary, it follows from [JPST79,
Proposition 2.4.1] that for any x € (a$)* there exists 7 > 0 which depends on x but not on
F' or 7 such that

(WY (t,70)| < |ar(t) - an®)|"®(ar(t),. .., an(t)) (4.7)

for all t € T and R\ = k, where ® is the characteristic function of o™.
Next, assume that I is archimedean. For ¢ € Ig(ﬂ'), A€apcand f € C(@G), we define an
element f x ¢y in I§(my) by

(f xox)(g /qﬁ,\gﬂf

which we call a convolution section. By [Jac04, Lemma 1], we may define a Whittaker function
WY (f % ¢») by the Jacquet integral. Recall that the space C2°(G) is endowed with a topology
of an LF space. For the convenience of the reader, we recall the definition of the topology (see
[Tre06, §13] for details). Choose a sequence of compact subsets C; C Cy C --- C C; C --- C G
such that |J; C; = G. We may further assume that for any ¢, C; is contained in the interior
of Ciy1. Let CF (G) be the space of smooth functions on G whose support is contained in Cj.
Then CZ(G) € Cg, (G) and |J; CZ(G) = CZ(G). We equip C(G) with the topology of
uniform convergence of all derivatives. Then Cg(G) becomes a Fréchet space and the topology
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on C¥(G) agrees with the induced topology from C¢¥ (G). We endow C2°(G) with the finest
topology such that the inclusion C (G) — C2°(G) is continuous for all i. In particular, CZ(G) is
open in C2°(@G) for all i. Then C2°(G) becomes an LF space and this topology on C2°(G) does not
depend on the choice of the sequence {C;}. It is easy to see that the action G x C°(G) — CX(G)
given by left (or right) translation is continuous. If K C C2°(G) is a compact subset, then by
definition, we have I C C’gci’(G) for some i. In fact, the same property holds for any bounded
subset of C2°(G) (see [Tre06, Proposition 14.6]).

LEMMA 4.4 (cf. [JacO4, Proposition 9]). Let ¢ € I§(7). Fix x € (a%)* and a compact set K C
C2°(@Q). Then there exist r; > 0 such that for any N > 0 there exists Cy > 0 such that

—7’
i (t)] 7"

P < (po,Ho(t))
WY (tk, f = ¢y)| < Cne H1 1+\az

forallteT', ke K, R\=k and f € K.

Proof. Proposition 9 of [Jac04], together with Casselman’s subrepresentation theorem, tells us
that for a given bounded set B C C2°(G), the desired estimate holds for f = f % -+ % f,, with
fi € B. However, it is not clear whether the Dixmier-Malliavin theorem [DM78] implies that
K C Bx---x B for some B.

To deduce the lemma from Jacquet’s estimates, we resort to a strong factorization. Let Ag
be the image of R in the center of G and put G' = {g € G | |det g| = 1}. Note that G = Ag x G'.
We define an algebra homomorphism pr : C°(G) — C°(G1) by

pr(f)(g) = f(ag) da

Ag

We may assume that 7 is trivial on Ag. If R\ = &, then Ag acts trivially on IS (7)) and

ey /mg:rpr )(z) dz.

Since pr(K) is compact, Remarque 4.10 of [DM78] gives a compact set K1 C C2°(G) and functions
fa,..., fn € C°(G) such that pr(K) = pr(Ky) = pr(f2) * - - - % pr(f,). Thus we can replace K by
K+ fate- % fo. o

We go back to the global setting. We denote by S, the set of archimedean places of F.

LEMMA 4.5. Let ¢ € @/5(G). Fix r > 0, k € (ag)* sufficiently positive and a compact set
K, C C*(Gy) for each v € Sy. Put K = Hvesw Ky. Let . be a fundamental domain for
N'(F)\G'(A). Then there exists so > 0 (depending on r, k and K) such that the integral

/y gl |det gl W (g, £ * é)] dg

is bounded uniformly for o > sg in a compact set, R\ = k and f € K.

Proof. We can assume that for all £ € K the function m — e‘<PP’HP(m)>¢(mk) belongs to an
irreducible summand 7 of &/°(M) and that ¢ = Q),¢, is factorizable. We view W]\d/)[ as an
isomorphism from 7 to the space of Whittaker functions of m. By uniqueness of the Whittaker
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model, we may factorize Wﬂzﬁ, into a product [, Wj\d/’[” under a fixed isomorphism 7 ~ @), 7,. Let
f=1lies,, fo, where f, € K. Then we can decompose WY (f * ¢y) as

WO(fxpn) =05\m) " T W (foxdun) [ W (o) [T W (mon), (4.8)
VESeo VESN S vgS
where S is a sufficiently large finite set of places of F' containing S,, and

Wm = J[ L(—XN+1 mxa))

1<ei<y<t

for m = ®i€[17t] miand A= (A,...,\) € apc = Ct.
We claim that there exists a constant C' > 0 such that

b (A7) = C

for all A € a} such that (RN, oY) > 2 for all o € AY. To see this fix i< jand v &S. Let
{B1,..., B,y and {S,..., 0. } be the Satake parameters of m; , and 7

> respectively. Since m, is

generic and unitary, we have qv 7 < 1Bk, 16]] < q}/ for all k,1. Hence |1 —5i5,q;°| < 1 4 g st
and

1 1
|L(s, My X 7T )| = — — .
nv 1}3 H_ﬁkﬁl/q S| (1+ g §Rs+1)n1n3

The product [],gs(1 + ¢, Rs+1)=1 g absolutely convergent and nonzero for s > 2, bounded
from below uniformly for Rs tending to +oo. This implies the assertion.
By the above, all that is required is that

/ lg[I"[det g|” H ‘Wd) (9vs fo * Pu )| H |W¢U (9v; o) H ’Wwv(gvaﬂ'v,kﬂ dg
VESso VESNSoo vgS

be bounded uniformly for o > sg in a compact set, ®\ = x and f, € K. This integral is bounded
by the product over v of

/ [£])7|det £|7W, (th)e~ 2000 dt di, (4.9)
where
‘Wwv(g7fv*¢v,)\)‘ if v € Soo;
Wo(g) = < [W¥ (g, dun)| if velS\ S,
(W (g, m,0)] ifvds.
For any u € (a))* there exists d > 0 such that 7o) < ||t|¢. Consider the isomorphism
T! — (F))™ given by t — (ai(t), ..., an(t)). Since its inverse is given by
(a1y... ) — diag(ag - ap, 2 ap, ...y Qp),
we have
1l < @ lllaz®)] - lan @), |dett] = |ar(®)|laz(®) - - lan(®)]".

If v € S, then by Lemma 4.4 there exist r;, R > 0 such that for any NV > 0 there exists Cy > 0
such that (4.9) is bounded by

o [ T o) et (1 + o)) ™ i

711—
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for all R\ = k and f, € K,. If ic > r; + R for all ¢, then we may choose N > 0 so that this
integral is convergent, uniformly for o in a compact set. If v € S \ S, then by (4.4) and (4.6)
there exist R > 0 and ® € S(F}}) such that (4.9) is bounded by

/T, [Tl |@(ar (), ..., an(t))] dt

v =1

for all RA = k. If ic > R for all 4, then this integral is convergent, uniformly for ¢ in a compact
set. If v ¢ S, then by (4.7) there exist rg, R > 0 which do not depend on v such that (4.9) is
bounded by

[ TLles(l o™ (o)......cn(0) at

v =1

for all R\ = k, where @ is the characteristic function of o). If ic > rog + R+ 1 for all i, then the
product of this integral over v & S is convergent, uniformly for ¢ in a compact set. o

LEMMA 4.6. Let i € Ip \ {n + 1}, ¢ € PW(pyy and ¢’ € &/(G'). Let f € C*(Gx) be a
decomposable function. If s > 0, then

/ WY (9. f * Fo)#ilo)] dg
(ZINP)(F)\G(A)

is convergent.

Proof. In order to save space, we write G in place of Gp11—; and denote by .#, .4 and
& fundamental domains for #Z'(F)\.Z"(A), (N N A4;)(F)\Np+1-i(A) and N,,—;(F)\Gn—i(A),
respectively. Let J be the element in W"+1=% such that (w%i)_1 = diag(1;,J). We denote by
K the standard maximal compact subgroup of G. For an adele point g € G(A), we denote

its infinite part by go and its finite part by gs. Observe first that for m € .Z'(A), g € G(A) and
ke K,

wll Jrren- ool o)
:/ﬂ/mFd) Km Jug> kx] (@) do b (u) du
:/m/w/w/&F¢ [(ma Jugb> hkf] f4% (b) da db dh i (u) du,

where we define fi"}j € C(Gxo) by

ffoﬁ (b) = e_2<pP1’HPi(a)>‘det b‘l/ f [ko_olv <a b) h] dv, b€ G,

for a € A, and h, ks € Ku. Put 0 = Rs and
¢"(9) = / ' (ug)| du.
U (F)\U;(A)
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The integral equals

LLLAC Yl Jeres
L L LA e

6_2<pP{’HPiI (m)) |det g|" dm dg dk

x /W/m/w/ é,OFQ5 Km“ Jugb> h/-cf} FE(b) da db dh ) (u) du| dm dg dk,
which is bounded by
S L, ], mharaidermpidetariaet ol
X /w /oo Fy [(m Jugb) hkf} 35 (b) dbp(u) du| da dh dm dg dk

for some constants ¢, > 0 which do not depend on o. Since f:",j is identically zero for a outside
some compact subset of ./ , it suffices to show that the integral

/y/%||m’7"||9‘|7“detm|a|detg\g /W/qus[(m Jugb>]f(b)db(u)du

is bounded uniformly for decomposable functions f € C°(Gs) in a compact set.
Put P = MU = PN G. We may assume that

dm dg

P(A) [(m g)} — BONB(m)W(g)ePrsHe(m)+HE(9)

for some 3 € PW((ag’C)*), b€ (M) and ¥ € Z5(G). We may further assume that for all
k € K, 11_; the function m — e~ (P HP(M) @ (mE) belongs to an irreducible summand of .27¢(M).
For any \ € (agc)* we write A = A; + Ao, where A\; € (a%c)* and \g € (agc)*. Fix k € (a)*
sufficiently positive. Then

F¢[<m )]:¢<m>mg> / BNt HlemITHe @) )
9 RA=r

=d(m)¥(g) /w\ _ B((le(m) + HPi(g))G,)\g)eO‘Q’HP(g» d\s

= #(m) [ AR () + Hr (0)% 22, (9) D,

where we put

B(X1,A2) = /m B(A + Ap)eMtereX gy Xy €af, N € (af;f(c)*.
1=K1

For each v € Sw, let Ag, be the image of R in the center of G,, and put G} = {g € G, | |det g| =
1}. Put Ag = HveSoo Ag, and géo = HveSoo GL. Then G, = Ag,, x GL and
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m _
/,// /Oo Fy K Jugbﬂ £(b) dbob(w) du
=am) [ ] B )+ Hi (g0 A (Tugh) £ (8) da b ) d

—atm) [ [ ][ AR m) + Hi(g0)® A (Jugh) fu5) dAa da db ) du,
N JGL JAg,, I RA=kK2
where we define f, € C°(GL) by f.(b) = f(ab). Thus the integral is bounded by
L] [ imirlalridesmioidet gieiom)3((tte (m) + Hp (g0)% )
7 Jo S g, IR =2

X

/ / Wy, (Jugb) fo(b) dbap(u) du| dXg da dm dg.
N JGL

There is a compact subset C' of Ag_ (depending on a given compact set = C C°(Go) of
decomposable functions) such that f, is identically zero for all f € Z unless a € C. We can
take 8 € S(a%,) and Bz € S((ajic)*) such that [3(X1 + Hp,(a)%, A2)| < [B1(X1)B2(A2)]| for all
a € C. Therefore, it suffices to show that the integral

/ / / [l lg I |det m|” det g7 (m) B (F, (m) + Hp,(9)))Ba(Ao)|
S M I RN=k2

X

/ / @y, (Jugb) f(b) dbvp(u) du| dho dm dg
v Jgy,

is bounded uniformly for decomposable functions f € C°(GL)) in a compact set. _
For g € G(A), let a, be the unique element in Ag, satisfying |det ay| = |det g|/("*1=9). Then
HPi(g)G = HPi(ag;l)G and

/,,/ I ||"|det m|?|@(m) By ((Hp, (m) + Hp,(9))%)| dm
< C’H%H’“\detag!"/ lm||"|det m|7|®(m) 61 (Hp, (m)<)| dm
M

<c”llgllT/Idetgl""/("“_i)/ la|"|det a|”|B1 (Hp,(a))| da

A i

for some constants ¢/, ¢, 7’ > 0 which do not depend on o. Since the last integral is convergent,
it remains to show that the integral

/ 1Ba(Ao) / gl det g o/ (1=
RAo=kro B

/ / W, (Jugh) £(b) db(u) du| dg ds
N JGL

is bounded uniformly for decomposable functions f € C°(GL)) in a compact set, which reduces
to Lemma, 4.5. i

We conclude this subsection by completing our proof of Corollary 4.3. It remains to prove
that for each ¢ and o, the sum

S [ W e, onl0g) dA

VE(ZINTP)(F)\G'(F)
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converges absolutely, uniformly on compact subsets of G(A). We will write °P; = (°P); and
°P! = (°P)! for brevity. Since the function

X N [ [M(o,\)d(N)]or(eXg)dX, X € aop

is compactly supported modulo ag, uniformly for ¢ € G(A) with Hop(g) = 0, we can take a

subset X' C aop, whose projection to ugpi is compact and such that the support of the function

X — [f * WY(M(c, \)p(N),aN)](eXg) dX, X € aop,
RA=k

is contained in X for all g € G(A) with Hop,(g) = 0. Fix a compact subset C' C G(A) and choose
T € aop, so that X
{X —Hop(kh) - T | X € X,k € K,h € C} CCop,

where Cop, is the cone defining 7op,. By [Art78, Lemma 5.1], the set of y € °P;(F)\G(F) such
that 7op,(Hop,(y) —T) = 1 is finite. Choose a finite subset I' C G'(F') so that

P{(F)L ={y € G'(F) | fop,(Hop,(v) = T) = 1}.

If
/m [+ WY (M (0, \g (M), o)) (k) dA £ 0

for v € G'(F) and h € C, then Hop,(vh) € X. Since
H"Pz‘ (Vh) = H"Pi (’7) + H”Pi(k(fY)h)ﬂ

where k(y) € K is a K-part of the Iwasawa decomposition of 7, we have Hop,(y) — T € éapi and
hence v € 7P/(F)I. It therefore suffices to show that the sum

S w0 ()]

YENp—i(FN\Gp—i(F

converges absolutely, uniformly on compact subsets of G(A).
For each h € G, we have

[f = WY (M(a, N)p(N), o X)) (gh) = [fn * W] (M (0, ) (N), o M)](g),

where fj,(z) = f(h~'z). Since the map (f,h) — f3, is continuous, the subset {f; | h € Cs} C
C°(Gw) is compact for any compact subset Co C Goo. We have thus reduced to showing the
absolute convergence of the sum above with g = 1,41, uniformly for decomposable functions
f € C°(Gw) in a compact set. We may assume that ¢(\) = B(\)¢ for some § € PW((a%C)*)
and ¢ € /5(G). We may further assume that for all k € K the function m > e~ PP HPm) ¢(mk)
belongs to an irreducible summand 7 ~ ), 7, of &“(M) and that ¢ = &), ¢, is factorizable.
For each v and )\ € a}c we define the representation m,) of M, on the same space by
Toa(m) = eNHPM)r (m). We realize the local induced representation IIC;;”(M,A) on a space
Hp(my) (independent of \) of m,-valued functions on K, and decompose M (o, \) into a product
of local intertwining operators M, (c,\) : Hp(m,) — Hop(om,). We denote by “u, the subspace
of the Lie algebra of the L-group of U consisting of all those root spaces whose roots are sent to
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the negative roots under o and by rY the contragredient of the adjoint action r, of the L-group
of M on “u,. Then

M(o,Aw(A):B(A)f 22# (®M (0, )0 ) (®¢>@o)

véS

for a sufficiently large finite set S of places of F' containing S, where gb;’O is a K,-fixed element
in Hop(om,) used to define the restricted tensor product ISh(omy) ~ @, Hop(om).

As in the proof of Lemma 4.5, we can show that the function A — L%(0, 7y, 7Y)/L% (1,75, 7Y)
is holomorphic and bounded on a vertical strip containing A = k. By Cauchy’s integral formula,
all its derivatives are also bounded on R\ = k. If v € S, then since ¢, is K,-finite, there
exists a finite set of K,-types §, independent of A such that any K,-type occurring in the
K,-span of M, (o, A\)¢, belongs to §, for all A\. Hence, noting that Hop(om,) is admissible, we
can write My (0, \)¢, as a finite sum 3, cy,;(A)¢y, ; for some functions ¢, ;(A) in A and K,-finite
elements czS in Hop(om,). We may assume that the <Z5 are linearly independent. Then ¢, ()
is holomorphlc in the region of absolute convergence of M (0, A). We shall show that ¢, ;j(\) and
all its derivatives are bounded on R\ = k. If v € § \ S, then this is clear since there exists
a lattice A, C (a%)* such that M,(o, A + v/—=1Xg) = M,(c,\) for all Ay € A,. Suppose that
v € Seo. Fixing an inner product on om,, we equip Hop(om,) with the inner product (-,-) given
by integration over K, the norm || - || associated to (-,-), and the supremum norm | - [|~. Note
that || - [| <[ - [|ec- For each j, we can find a K,-finite element ¢ ; in Hop(om,) such that

CU’j()\) = (Mv(07 )‘)(bvy ¢Z,j)'

Hence
|co, i M| < 1My (0, N ulllldy 411 < 1My (0, A dollooll oo

by the Cauchy—Schwarz inequality. On the other hand, it follows from [Wal92, Lemma 10.1.11]
that || M,(o, \)éy||co is bounded on a vertical strip containing RA = k. By Cauchy’s integral
formula again, ¢, j(A) and all its derivatives are also bounded on R\ = &.

Thus, after replacing () if necessary and rewriting P as P, etc., we have reduced to
showing the absolute convergence of the sum

L renal(s )]

uniformly for f € KC, where i € Ip \ {n + 1}, € (a%)* with k% € (a Q’)* sufficiently positive,
d(A) = B(N\) g with B(N) € S((ag,(c)*) and ¢ € Z5(G), and K C C°(G) is a compact subset of
decomposable functions. We retain the notation in the proof of Lemma 4.6. There we observe
that

[FWY (6(N), A)] [(1 gﬂ =B(A)/ﬂ/m/m/ &@ K“ Jugb) h] 1 p(b) dadbdhip(u) du

for g € G(A). Since K is compact, there exists a compact subset of G, which contains the support
of any f € K, so that f!, is identically zero for all f € K and h € K if a is outside some compact

subset of ... Since ¢ is K-finite and the subset {f(}h | feK,ae #,he Ko} CCOP(Goo)

YENn—i (FN\G
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is compact, it suffices to show that for any compact subset 2 C .#Z% and any compact subset
E C C°(Go) of decomposable functions, the sum

a _
/m:H /JV - BN)dx [( meﬂ F(b) dbip(u) du dA
is bounded uniformly for a € Q2 and f € Z. We may assume that
g

for some ® € °(.#") and ¥ € 5(G). We may further assume that for all k € K,,+1_; the
function m — e~ PP HP(M) @ (mk) belongs to an irreducible summand of «7¢(M). Then the
computation in the proof of Lemma 4.6 yields

/m:ﬂ //V o, T [(a me>] F(b) dbep(u) du dA
- /S‘%AQ:@ /f/ /Agoo /géo ®(a)B((Hp,(a) + Hp,(2))%, X)W, (Jub) f£2(b) db dz p(u) du d e

VGNn—i(F)\Gn—i(F)

for v € G,,—;(F). There is a compact subset ' C Ag__ such that f is identically zero for all f € =
unless z € . We can take 3’ € S((agfc)*) such that [®(a)B((Hp,(a) + Hp,(2))%, A2)| < B'(\2)
for all @ € Q and z € . Then the absolute value of the integral above is bounded by

/ B'(A2)
RAo=kro Agoo

for all a € Q and f € =. Since the subset {f, | f € Z,2 € Ag,,} C CX(GL,) is compact, it suffices
to show that for any compact subset Z! C C°(GL) of decomposable functions, the sum

2
(F)\Gn—i(F)

dz dXa

/ / Wy, (Juyb) f(b) db () du
v JgL,

/ / @y, (Juyb) f(b) dbap(u) du
N JGL

'YENn—i

is bounded uniformly for R\s = k2 and f € Z!. Choose a compact neighborhood # of 1,_; in
Grn—i(A) whose translates by G,_;(F') do not meet it. Since kg is sufficiently positive in (ag)*,
the proof of Lemma 4.5 gives a function £ on N,,_;(A)\Gp—;(A) such that

'/JV /ggo Uy, (Jugb) f(b) dbep(u) du| < &(gx)

for g € G,_i(A), x € ¥, RA\y = ko, and f € Z!, and such that the integral

/ £(g)ldet gl° dg
ani(F)\ani(A)

converges for sufficiently large s € R. More precisely, we apply the argument to C°(GL)
rather than to Cg°(G ), noting that Ag_ acts trivially on ¥y,. The uniform convergence of
the sum above now follows from [JPS79, proof of Proposition 12.2]. This completes the proof of
Corollary 4.3.
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4.4 Periods of pseudo-Eisenstein series
Let f € C2°(Goo). When ¢(A) € #/5(G) depends holomorphically on A € a} -, we define fx ¢()) €
“p(G) by
(f % d(AN)a = [ * d(A)a
for A € a} ¢, where we recall that ¢(A)(g) = d(N)(9)eMP@) for g € G(A).

LEMMA 4.7. Let ¢ € PW(pyy and ¢’ € o/ (G"). Let f € C2°(G) be a decomposable function.
Fix s € C with Rs large enough. Put

K] 18 G s
Si=|(—s,...,—s8 - € (ap. .
2 ( ’ ’ J”I’L‘Fl*l’ 77’l+11) (Qz,(C)

i n+1—i

Fori € [0,n] and o € , W§, we write °P; = (°P);, °P] = (°P); and %#' = °M N G; for brevity.

K3
Assume that ¢(o~'\) vanishes to a higher order on the affine subspaces

B, + si+ (aopic)”

fori € [L,n], o € o Wi and X' € &pi ('), where 3 is the restriction of popr — pop, — X' t0 8.
Then

Lo 0@ dg = [ T o))
G'(F)\G'(A) RA=r

Proof. To simplify notation, we put F;,(g,0\) = [f * W?(M(cr, A)d(A),0N)](g). Corollary 4.3,
together with Lemmas 4.5 and 4.6, tells us that

/ (f *00)(9)¢(9) dg
G'(F)\G'(A)

>y

i=0o0€, I/VC

Z Z / / Fio(9.0)Wy (9. 0hpr ) dv dg.
'NoP)(F)\G' (A VG(aUGP’C)*,ﬂ?u:Un i

/ Fio(g.0))¢.(9) dX dg
NTP)(F)\G' (A) JRA=r

Note that we can apply Lemma 4.6 to M (o, A)¢(A) by the argument about intertwining operators
at the end of §4.3. The function ¢/, has a decomposition of the form

o [ (™ ) #] = S @utten e [ ()4,

uweU/(A), me(h), heGni(A), keK', pe(aSh ), QueClap]

where

and ¢/, € oop/(G') is an eigenfunction under a. i satisfyin
“w P, g /A ymg

200 p1 —pop, — i, X
¢L(€Xg):€<ppi pop; —H >¢L(g)
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for X € aq:. Fix i € [1,n], 0 € , Wf; and pu. We write the corresponding summand as

Jehs oo L Jon B[ (" )2
! n Z(A \Gn ’L(A 7’ U%Z aaﬁl Rrv=ck

X QM(XG)WS. [eX (m h> k, sb;,s] e 2P\ det b dv dX dm dh dk.
Put g = (m h )k We can use Fourier inversion for the inner integration to obtain

2p0pr —pop; —ph—Si, X N —2(popr, X
/ EJ(GXQ,V)QM(XG)€< P P! pop; —H—S >WS/_(Q,¢‘/LL,S)6 (p P! ) dv dX
a Rv=0k g

o Ht

:Ww g? M: / \/% 1,0- 6 g, )QM( ) PUP+H+517 >dl/dX
Cl V=0OK

:Ww (9> Bs /% (DyeF 0 )(eX g, v)ertrtsXl gy g x
V=—0OK

C(

op (DuFig)(g, o+ si +v) dv,

op;
9P;

TP — i
E(asp'c)*, Rv=(0kK)op

[
W50 [

where D), is a differential operator with constant coefficients on (agpi c)" and D« F; ; is defined
by
(Dﬂ 'Fi,a)(ga V)€*<V+PUP7H0P(Q)> — DN [Fi,a(gy V)€*<U+pUP,H0'P(g)>:|'

Thus the inner integration vanishes by assumption, and only the zeroth term contributes. Since
Lemma 4.5 allows us to interchange the inner integral with the outer integral, our proof is
complete. o

For ¢’ € o7 (G'), let D = D, be the set of elements A € (a%)* N (pp + (a}) ") satisfying
(oA + pry,(w\) + 0Qw,@’) # 0

for all proper parabolic subgroups Q of G, w € ;W§, o € [W§, X € &, (¢) and @w" € Aé
Whenever ¢ € &/5(G) and R\ € D, the Eisenstein series E(¢, \) converges absolutely and the
regularized period P (E(p,\) ® ¢') is well-defined.

LEMMA 4.8. If ¢ € o/5(G) and ¢’ € o/ (G'), then PY (E(¢p,\) ® ¢') is bounded on {\ | R\ € D}
for any compact set D C ©.

Proof. Since

ALS = > ALYEC(M(0, N, 0N)
oe, Wi,
by (4.1), we get
PETEe N o = Y [ AT, Mo 6, N, (010l Halwg) ) ds.
o e, QUG (4)

Expand ¢, ~as in (3.3). Then Pg:g(E(qb, A) ® ¢') is the sum over o and j of

/ / AT EQ(mk, M(o, )6, (o) @), (mk) f; (e, (m). T) dm dk,
K’ J Ly (F)\Lw(A)
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where
# A N X
fi(tg, (m). T) = | Q}(X)elVa N ko0 X) 1o (X _ T) dX.
aL,, +HQ,, (m)

Recall that tg = dim ag. By the calculations in [JLR99, §1I] and §3.1, there exist a positive
integer N and a polynomial p;(Hg, (m),T) on (agvc)* of degree at most tg(/N — 1) such that
[i(Hg, (m),T) is of the form

e (@A wN;+00,0),T) o (£Q,uw(0AN}) H,, (M)
~ Pi(Hg, (m), T)(A).

aveay (o +pry, (wAf) + 0w, @)

This expression is bounded for RA € D. We have seen how to estimate truncated Eisenstein series
in Remark 2.5, where we can take c¢(\) independently of I\ for A in the domain of absolute
convergence. o

LEMMA 4.9. Let ¢ € PWpy) and o' € o/(G'). If ¢()\) vanishes to a higher order on the
hyperplanes
(oX + pry,(w\) + 09w, @') =0

for all proper parabolic subgroups QQ of G, w € LWg/, oe Wi, N ey, (¢) and w¥ € AY,
then for € (a%)* in the realm of absolute convergence of the Eisenstein series,

/ 04(9)¢ (9) dg :/ P (E(6(M\), ) @ ¢') dA.
GI(F)\G!(A) R

Proof. The proof is nearly identical, word for word, to that of Lemma 9.1.1 in [LRO3]. By
definition,

/ 05(9)¢'(9) dg:/ / E(g,0(X),N)¢'(g9) dX dg.
G'(F)\G'(A) G'(F\G'(A) JRA=x

From Lemma 2.2(i), we can write this as the sum over @ and w € ;WS of

/ / ST AZQ Blyg, 6(\), N (9)mo(Ho(wrg) — T) dA dg,
GIING'(A) TRA=K S e, (F)\G'(F)

provided that this expression converges for all @ and w. Since only finitely many v contribute
for a given g in view of Remark 2.1, we may bring the sum over Q,,(F)\G'(F) outside the inner
integral and combine it with the outer integration to obtain

/ / AT B(g, 6(\), N (9)70 (Ho (wg) — T) dA dg.
Qu(F)\G'(A) JR A=K

Again, the convergence of the latter as an iterated integral will justify all the manipulations.
From the proof of Lemma 4.8, we conclude that the integral

#
[ AL E9(g, M0, ) (N), 0N el (0)7a(Holwg) ~T) dgdx  (4.10)
Ra=r J Qu (F)\G'(A)
converges. Our task is to show that for each o € ; W7}, the integral

/ / AZQ (g, M (0, \)o(\), o\ (0)ra (Ho(wg) — T) dhdg  (4.11)
Qw(F)\G’(A) RA=kK
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converges and equals (4.10). We denote by RT(Z)s, G) the set of elements in Rat(Z),) obtained
by decomposing the Lie algebra of U under the adjoint action of Z;. Let D, C (ag(c)* be the
set of A satisfying the following two properties:

— R\, aY) >0 for all « € RT(Zy;, G) such that ca < 0;
~ (oMY is sufficiently positive in (agp)*.
These properties guarantee that both M (o, \)¢(\) and E€ (M (o, \)$(A), o \) converge absolutely
for A € D,. Since 0o > 0 for all o € AOQ, if RA = k, then A € D,,.

We show that there exists \; € (a%)* of the form A\; = o~} ( A2 + A3) with Ay € (aUQP)* and
A3 € (ag)* such that if RA = Ay, then A € D, and the #-integral in (4.10) and the integral

/ AT E9(g, M (0, N)p(N), o\ ¢ (9) 0 (Ho (wg) — T) dg
Qu(F)\G'(A)

converge absolutely. To prove this, we fix Ay € (af,gp)* regular enough in the positive Weyl

chamber. If & € R (Zy, G) is such that ca < 0, then o ¢ (a,QP)* since o0 € [ W, If A3 € (ag)*
is sufficiently regular in the negative Weyl chamber (depending on \2), then

(R, ) = (6NN, 0a") = (A2, (0a")?) + (A3, (0a")g) >0,
and since all coweights in Aé are nonnegative linear combinations of coroots in Aé,
R(oA +prg(BXN) + po — Bpr, ") = (A3 + prg(BRN) + pg — Bpr, @w”) <0

for all parabolic subgroups R of G/, B € (W&, XN € &5°P(¢/) and w" € Aé The proof of
Proposition 3.4 confirms that the integrals are absolutely convergent.

Since ¢(\) vanishes on the hyperplane singularities of the #-integral, we may shift the contour
of integration in (4.10) to ®A = A;. The shift of contour takes place inside the domain D,. Thus
(4.10) is equal to the absolutely convergent integral

/ / AT EQ(g, M (0, N$(A), o\ (9)ro(Ho(wg) — T) dg dA.
A=\, w(F)\G'(A)

We may therefore interchange the order of integration. We are now free to shift the contour of
the inner integration back to ’RA = k to obtain (4.11), as required, which also shows that (4.11)
converges as an iterated integral. o

4.5 Regularized periods of cuspidal Eisenstein series

LEMMA 4.10. Let D be a tempered distribution on a FEuclidean space V' whose Fourier transform
D is given by integration against a bounded function A. Suppose that (D, f) = 0 whenever f has
a zero of order higher than m; on each of finitely many prescribed affine hyperplanes \; + V; ¢
of V&. Then D = 0.

Proof. Take a nonzero polynomial function h which has a zero of order m; on A\; + V; c. Since
(D, $h) = 0 by assumption, we get (Ah, ¢) = (A, ¢h) = 0 for all ¢ € PW(V{). This implies that
Ah is identically zero, and hence so is A. O

We are ready to prove Lemma 4.1. Recall that e = (1,1,...,1) € af,. Fix a point x € D and
choose o € R so that if Ao € aj ¢ satisfies RA\g = k + oe, then PY (E(6, M) ® ¢') is well-defined
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and I(¢,¢’, Ao) converges absolutely. Fix such an element A\g. We write \g = \; + se, where
Al € (ag,c)* and s € C. Note that

PY(E(¢, %) @ ¢') = PY(E(d, M) ® ¢L), 1(6,¢', X0) = 1($, ¢y M)

We are taking for granted the extension of Lemma 4.9 to the convolution sections f * ¢, for
right and left Ko-finite functions f € C°(Goo). If B € PW((a$%)*) satisfies the conditions of
Lemmas 4.7 and 4.9, then these lemmas yield

/ BOVPY (E(f %6, ) ® o) dA = / BOVI(S % 6.0, A) dA
RA=kK

RA=k

for all ¢ € &/5(G) and right and left K. o-finite decomposable functions f € C°(Gu).
Lemmas 4.5, 4.8 and 4.10 give rise to the equality

PY(B(f xd, M) @ ¢)) = I(f * ¢, ¢4, M)

Theorem 1 of [Har66] gives a right and left K.-finite decomposable function f belonging to
C°(Goo) such that f* ¢y, = ¢y,. It follows that

PY(E(¢, M) ® @) = I(¢, ¢, Mo).

Since P& (E(¢, \) @ ¢') possesses a meromorphic continuation to a’ -, so does I(¢, ¢, \). Hence
the equality holds for generic values of the parameter A, which proves Lemma 4.1.

4.6 Regularized periods of general automorphic forms

Fix P, ¢ € &5(G) and X' = (\],..., ;) € ap. We can find a holomorphic function d(X), not
identically zero, such that for every g € G(A)7 the function d(\)E(g, ¢, A) is holomorphic at .
Put F(\) = d(A\)E(¢, A). Consider its Taylor expansion at A = X,

Flg )= > Fulg,N)[Ju— Ak

k=(k1,....k¢) =

—

The coefficients Fi(\') are automorphic forms on G(A). Let &(G) be the space of automorphic
forms generated by these functions as we let P, ¢, N, d()\) and k vary. Franke has demonstrated
the following result for all reductive groups.

THEOREM 4.11 (Franke [Frad8]). «/(G) = &(G).

The reader can consult [Wal97] for a survey of his work. Theorem 1.1 therefore follows from
the lemma below.

LEmMA 4.12. With notation as above, we have the identity
P (F(N) @ ¢l) = 1(s, Fi(X), &)
as a meromorphic function in s.

Proof. Fix a point s9 € C and a neighborhood €2 of )\ satisfying the following conditions:

—  the integral I(sg, FI(\),¢") converges absolutely and uniformly for A € €;
- (F(\),¢,,) € & (G xG")* for A € Q.
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The period P& (F,(X) ® ¢,) equals the zero coefficient of the polynomial exponential function

/ AL Fi(g. )¢l (9) dg
G'(F)\G'(A)

in T' by Proposition 3.7(ii). We can write the coefficient Fj()\’) as a Cauchy integral

ot / F())
S V=D e e T (= AR

where I'; is a sufficiently small positively oriented circle about A, in the complex plane such
that I'y x -+ x I'y C €. This integral can be interchanged with the mixed truncation operator in
view of Remark 2.1. Furthermore, we can justify the interchange of the Cauchy integral with the
period integral by invoking Fubini’s theorem. The arguments are the same as those introduced
by Arthur in [Art82, pp. 47-48]. Therefore the integral is equal to

F(\) M-+ dg,

Sy NP
@rv=1)! Jr,  Jr, Jornarm) TTiey (A — Xkt 7%

Proposition 3.7(ii) and Lemma 4.1 tell us that for A € Q, the zero coefficient of

(9) dg dAr--- d.

/ AnF(9,)) 4 (9) dg
G/(F)\G'(A)
is equal to
P (F(N) ® ¢y,) = I(s0, F(N), ¢).
It follows that PC (Fj,(\) ® ¢, is equal to
1 / 1
(2mv/—1)t Jp, 1y [T (N — N)kit!

X / WY (g, F(\)W¥(g,¢")|det g[*° dg dA; - - d.
N'(A\G(A)

The absolute convergence ensures that we can interchange the Cauchy integral with the integral
over N'(A)\G'(A) and with the integral defining the Whittaker function. This gives the result. O

5. Odds and ends
The following corollary can be derived as a direct consequence of Theorem 1.1.

COROLLARY 5.1. The regularized period does not depend on the choices of B, T, K and K’.
Moreover, it defines a G'(A)-invariant linear functional on <7 (G x G')*.

Remark 5.2. One can prove Corollary 5.1 without recourse to Theorem 1.1 by using exactly the
same argument as in the proof of Theorem 9(i) of [JLR99].

COROLLARY 5.3. Let ¢ € &/(G) and ¢' € «/(G"). Define ¢ € o/ (G) by ¢(g) = p(lg~!) for
g € G(A) and define ¢' € o/ (G') by ¢'(¢') = ¢'(%g'™!) for ¢’ € G'(A). Then I(s, ¢, ') possesses
a meromorphic continuation to the whole complex plane and satisfies the functional equation

I(_Sv P, 95/) = I(S’ 2 SO/)'
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Proof. We write AZL p for the mixed truncation to indicate the dependence on the choice of B.
For any parabolic subgroup P of G, put P = {!g | g € P}. Observe that

¢r(9) =ew('s"), Hp(x)=—-Hp(z™"), 7p(X)=7p(-X).
It follows that
Al p@lg) = A pe(fg ).
We can deduce the stated identity from Proposition 3.7 and Corollary 5.1. o
For ¢ € Z5(G), ¢’ € 5/(G'), A € apc and X' € apy ¢, we set

(6,8, A N) = / W (g, 6, YW (g, &, X') dg.
N'(A)\G'(A)

COROLLARY 5.4. Let ¢ € @/5(G) and ¢ € /5, (G').
(i) We have
PY(E(g, ) @ E(¢, X)) = (¢, ¢/, A, X).
(i) 1(¢,¢', A, \') extends to a meromorphic function on ap ¢ % apr -
(iii) For w € W (M) and w' € W(M'),

I(M(w, N)¢, M(w', N)¢', wA, w'X) = I(¢,¢', A, X').

Proof. Assertion (i) follows from Theorem 1.1 and (4.2). By Proposition 3.6 the stated properties
of I(¢,¢', N\, \') are inherited from the relevant properties of the Eisenstein series. o

Let P be a parabolic subgroup of G,,,. We denote by I1L(M) the set of irreducible summands
of &/¢(M). For a representation 7 of M (A) and X € a}, let my be the representation of M (A)

on the space of 7 given by m\(m)v = eMHP r(m)y. Put
M.(M) = {my | 7 € TIL(M), X € vV—1a%}.

For m € II}(M) we write &% (G,,) for the subspace of functions ¢ € @5(G,,) such that for all
k € K,, the function m > e~ {?PHr(M)g(mk) belongs to the space of 7. For w € IIL(M) and
A € ap, we denote by Igm (my) the representation of G,,(A) given by right translations on the
space

The modulus function of P(A) is built into the definition in order for the representation I g’” (7))
to be unitary whenever the inducing representation is unitary, which is to say, whenever A belongs

to v—1lap.
When 7 = Qe mi € (M) and ¢ € 5 (Gm), we define a normalized Eisenstein series
by
E* (¢, ) =b(A\,mE(¢, ), bA\m)= [ LOu—XN+1mxn)).
1<i<j<t
Put
Cp={\€apc| (RN, a¥) >0 for all ¥ € A}).
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PROPOSITION 5.5. Let m € II.(M) and ¢ € o5 (Gp,).

(i) WY¥(E*(¢,\)) is holomorphic on C}.
(ii) If A € Cp, then W¥(E*(¢,))) can be made nonzero at A = A for a suitable choice of
¢ € A5(Gm).
(iii) E*(¢, \) is holomorphic on v/—1a%.

Proof. We may assume that ¢ = &), ¢, is decomposable. As in (4.8) we can decompose W¥ (¢, )
into an Euler product

WY (g,6,0) = [[W" (90, 0, N, g € Gm(A).

v

For given ¢ and g, let S be a finite set of places of F' containing all the archimedean places such
that for v ¢ S, m, is unramified, 1, has conductor o0,, ¢, is K, ,-invariant, W;ff(l, ¢y) =1 and
v € Ky ». Then

WY (E* (¢, ) = ] oA 7) W (go, ¢, A),

veS
where we define b(\, 7,) by taking the local L-factors in place of the global L-functions in the
definition of b(A, ). Since m, is unitary and generic, b(\, m,) is holomorphic on C}. The local
Whittaker function W¥(¢,, \) is known to extend to an entire function on a’ PC Wthh can made
nonzero at A = A by choosing ¢, to be supported in a small neighborhood modulo P, inside
Pywy) N o

To prove the last statement, we may suppose that 7 € TIL(M). Put T = {1 <i < j <t |
m; ~ m;}. Since the poles of E*(¢, \) on v/—1a} are among those of b(\, 7) and since E(¢, \) is
concentrated on parabolic subgroups associated to P, it suffices to show that for all parabolic
subgroups () associated to P,
Eq(e.A) [T i=2)™"

(1,5)ex
is holomorphic on v/—1a%. Since A; — A; (i < j) are distinct prime elements in the ring of
power series C[[A1, ..., \]], we need only check the holomorphy of (\; — A;) "1 Eg(¢, \) near the
imaginary axis for all (7,j) € . Fix (i, jo) € T. Identifying W (M) with &, we put

W(M, L)o = {0 € W(M, L) | o(io) < o(jo)}-

Let o be the transposition interchanging ig and jo. Since W (M, L) is a disjoint union of W (M
L)y and W (M, L)ooo, the formula (4.1) for the constant term yields

EQ<¢7 /\) = Z (M(Uv )‘)¢)0)\ + Z (M(U, JO)\)M(UO7>\)¢)UO'Q)\'

c€W (M,L)o €W (M,L)o

Taking limy, . M(og,A\) = —1 into account (see [MWR89, I1.1(4)]), we get the required result.
20 J0
O

LEMMA 5.6. If ¢ € Z5(G), ¢ € 5(G), X\ € vV—1a}, and X' € \/—1a},, then the pair of
normalized cuspidal Eisenstein series (E*(¢,\), E*(¢/, X)) belongs to </ (G x G')*.

Proof. Since the real parts of the exponents of E(¢,\) and E(¢', ') are zero and since (0Q,w,
wV) #0 for all Q, w € ,WE and w" € Aé, the lemma follows. O
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For irreducible automorphic representations m ~ @), m, and ' ~ @, 7, of G(A) and G'(A)
respectively, the basic analytic properties of the tensor product L-function

s7r><7r HLS?TUXTF

have been established through the works [JPS83, MW89, CP04]. The infinite product converges
absolutely in some right half-plane, continues to a meromorphic function on the whole complex
plane and satisfies a functional equation. Let m = ;¢ 4 € Ile(M) and 7' = @)y 7 €

I1.(M’). Since w and 7’ are unitary, the induced representations I (r) and IS, (') are irreducible
(see [Ber84, Vog86]). Since

L(s, I§(m) x IS/ (m HHLS?TZXT('

the L-function L(s, IG () x IS (7')) is holomorphic away from the lines Rs = 0, 1.

COROLLARY 5.7. If m € II.(M) and n" € I1.(M’), then the following conditions are equivalent:
~  there are functions ¢ € /F(G) and ¢/ € </F, (G') such that P (E*(¢,0) @ E*(¢/,0)) # 0;
— L(1/2,IG () x IS (7)) # 0.

Proof. Put ¢ = E*(¢,0) and ¢’ = E*(¢,0). Provided that ¢ and ¢’ are factorizable, we have an
Euler factorization

Py Py
1 , I(S,W(p ,W/)

N G be ’ v Py
I(s,0,¢") —L<5+27 Ip(m) > Ip: (m )) HL(er%,Ig(m) x I (m,))

The right-hand side is a finite product. The local L-factor coincides with the ‘g.c.d.” of the local
zeta integrals (see [JPS83, CP04]). That is, the ratio

I(s,Wge, W)
L(s+ 3,18(m) x I§/(m)))

is not only entire for all ¢, and ¢!, but also nonzero at each fixed point s € C for a suitable
choice of ¢, and ¢/, from which we can infer the corollary. o

We write I14(G,,) for the set of irreducible summands of the discrete spectrum of Gy,.

COROLLARY 5.8. Let 7 € II4(G), ©" € II4(G'), ¢ € m and ¢’ € ©'. Exclude the case where 7 is
one-dimensional. Then the integral

/ ©(9)¥'(g9) dg
G'(F)\G'(A)

is absolutely convergent. It is zero unless w € II.(G) and 7" € II.(G").

Remark 5.9. If 7 is one-dimensional, then the period integral obviously diverges.

Proof. The classification of the discrete spectrum of G, was established by Moeglin and
Waldspurger in [MW89]. The representations in I1;(G,,) are parametrized by pairs (¢, o) where ¢
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divides m and o € II.(G), /¢). Let Q be the parabolic subgroup of G, attached to the composition

(m/t,...,m/t). Put
A= (t—17t—3,“"1—t>'
2 2 2

The representation Igm (0’%) has a unique irreducible quotient, which belongs to I14(G,,). For
pel gm (0®!), the square-integrable automorphic form E_;(¢) is defined to be the limit

t—1
Ba(0) = iy |E(0.%) CYSPYER ).
Let n+1=dm and n = d'm’. Assume that m > 1. Let P (respectively P’) be the parabolic
subgroup of G (respectively of G’) attached to the composition (m,...,m) (respectively (m/,
..,m")). Note that pp = mA, and ppr = m/Ag. Let p € Uo(Gy), p € Te(Gpr), ¢ € 15 (p%7)
and ¢ € IS (p®?). We can assume that ¢ = E_1(¢) and ¢/ = E_i(¢'). By [Jac84], E_i(¢})
(respectively E_1(¢')) is concentrated on P (respectively on P’), and its only cuspidal exponent
has real part —A, (respectively —Ay). Put

ei=(1,...,1,0,...,0), i€[l,n].
7 n+1—1

Ifwe  W§ and @) € AY N A},(w), then i is divisible by m and

(L=m "pp — (L+m' Nwppr, e;)
(T=m"po — (1 4+ m' Hwpj, e;)
(T=m"po — (1 4+n"Hwpp, e:).

<—Ad — U}Ad/ + pp — wppr, w;/>

N

Sincem>landm<i<n+1—m,

(1—m—1)i(n+2—2j)—(1+n—1)i(n+1—2j):—<;+i>(n+1—i)i+<1+i>z‘<o
and

i i—1

1-m™H> (n+2-2j)—(1+nHD (n+1-2j)= (1;+1;i>(n+1i)<0.

J=1 J=1

Thus Proposition 3.4 can be applied to prove the convergence.

At this stage, we can derive the last statement as a direct corollary of Theorem 1.1,
noting that the representations occurring in the residual spectrum are not generic. From the
representation-theoretic point of view we can argue as follows. The period integral

R — e ©(9)¢(9)|det g|* dy

varies analytically in s and defines an element of the space Homgr (s (m @ ©’ @ |det |*,C) for s
near the imaginary axis. Note that if d > 1, then none of the local components of 7 is generic.
Therefore, if dd’ > 1, then there does not exist any such invariant functional for generic values
s by [JPS83, Lemma 2.11], so that the function s — P& (p ® ¢.) must vanish identically. O
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