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Abstract

Following Jacquet, Lapid and Rogawski, we define a regularized period of an
automorphic form on GLn+1 × GLn along the diagonal subgroup GLn and express
it in terms of the Rankin–Selberg integral of Jacquet, Piatetski-Shapiro and Shalika.
This extends the theory of Rankin–Selberg integrals to all automorphic forms on
GLn+1 ×GLn.

1. Introduction

Let F be a number field and A the ring of adeles of F . Let G be a connected reductive algebraic
group over F and G′ a closed subgroup of G over F . Let A (G) and A (G′) denote the spaces
of automorphic forms on G(A) and G′(A), respectively. For ϕ ∈ A (G) and ϕ′ ∈ A (G′), we will
consider the integral ∫

G′(F )\G′(A)
ϕ(g)ϕ′(g) dg. (1.1)

When this integral is convergent, it is called the period of ϕ ⊗ ϕ′ along G′, and often plays a
significant role in the theory of automorphic representations and L-functions.

For example, in the case of a special orthogonal group G = SOn+1 and its subgroup G′ = SOn,
Gross and Prasad [GP92] proposed a conjecture on the nonvanishing of the period in terms of
the central value of a certain automorphic L-function. Further, a more precise conjecture in
[II10] gives an exact formula for the square of the period in terms of L-values and endoscopy.
Also, the Gross–Prasad conjecture has been generalized to other classical groups by Gan, Gross
and Prasad [GGP12]. Their conjecture includes the case of a unitary group G = Un+1 and its
subgroup G′ = Un, a substantial part of which has been proven by Wei Zhang [Zha14a, Zha14b].

In his proof of the Gan–Gross–Prasad conjecture, Wei Zhang developed the theory of the
relative trace formula of Jacquet and Rallis [JR11], which compares

Un\(Un+1 ×Un)/Un

with
ResE/F (GLn)\ResE/F (GLn+1 ×GLn)/(GLn+1 ×GLn).

Here E is the quadratic extension of F which splits the unitary groups. On the other hand,
since Zhang employed a simple trace formula, he could treat only automorphic representations
satisfying certain local conditions. To prove a relation of the period to endoscopy, it is necessary
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to remove these local conditions, which requires one to develop the relative trace formula in
general.

Towards establishing the spectral expansion of the relative trace formula of Jacquet and
Rallis, we will study the period in the case of a general linear group G = GLn+1 and its subgroup
G′ = GLn. If ϕ and ϕ′ are cusp forms, then the integral (1.1) is absolutely convergent and can
be expressed in terms of the central value of the tensor product L-function via the integral
representation of Jacquet, Piatetski-Shapiro and Shalika. The purpose of this paper is to make
sense of (1.1) even when it may not be convergent, and to prove its expression in terms of the
L-value.

We regularize the integral (1.1) following Jacquet, Lapid and Rogawski [JLR99], but unlike
their case, none of the Siegel sets of G′ is contained in any Siegel set of G, so our case is more
complicated. More precisely, we define a mixed truncation operator ΛTm, which carries smooth
functions on G(F )\G(A) of uniform moderate growth to functions on G′(F )\G′(A) of rapid
decay, for a sufficiently regular T ∈ aG0 , by setting

ΛTmϕ(g) =
∑
P

(−1)dim aGP
∑

γ∈P (F )\P (F )WG′(F )

ϕP (γg)τ̂P (HP (γg)− T ).

Here P runs over standard parabolic subgroups of G, W is the Weyl group of G, ϕP is the
constant term of ϕ along P , and we refer to the notation section below for unexplained terms.
This operator is a variant of Arthur’s truncation operator [Art80], which is suitable for studying
the integral (1.1); in the n = 1 case, it was introduced by Jacquet and Chen (see [JC01, § 8.1]).
For ϕ ∈ A (G) and ϕ′ ∈ A (G′), the integral∫

G′(F )\G′(A)
ΛTmϕ(g)ϕ′(g) dg

is absolutely convergent and defines a function in T of the form∑
λ

pλ(T )e〈λ,T 〉.

Here λ runs over a finite subset of (aG0,C)∗ and pλ(T ) is a polynomial in T . When the exponents
of ϕ and ϕ′ satisfy a certain mild restriction (see Definition 3.2 for details), we can define a
regularized period PG′(ϕ⊗ ϕ′) such that

PG′(ϕ⊗ ϕ′) = p0(T ),

where the polynomial p0(T ) attached to λ = 0 turns out to be constant. If ϕ is a cusp form, then
since ΛTmϕ = ϕ, the identity

PG′(ϕ⊗ ϕ′) =

∫
G′(F )\G′(A)

ϕ(g)ϕ′(g) dg

is evident. It turns out that this identity always holds when the right-hand side is absolutely
convergent (see Corollary 3.10). What is special about the general linear groups is that one can
easily construct from a single automorphic form ϕ′ ∈ A (G′) a holomorphic family ϕ′s over C of
automorphic forms on G′(A) by setting ϕ′s(g) := ϕ′(g)|det g|s. It is important to note that the
regularized period PG′(ϕ⊗ ϕ′s) is well-defined for s ∈ C in general position.
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We can compute the meromorphic function s 7→ PG′(ϕ ⊗ ϕ′s) explicitly. Let Wψ(ϕ) and
W ψ̄(ϕ′) be the Whittaker functions of ϕ and ϕ′ defined by

Wψ(g, ϕ) =

∫
N(F )\N(A)

ϕ(ug)ψ(u) du, W ψ̄(g, ϕ′) =

∫
N ′(F )\N ′(A)

ϕ′(ug)ψ(u) du,

where N and N ′ are the subgroups of upper triangular unipotent matrices in G and G′,
respectively, and ψ is a nontrivial character of F\A, which we regard as a generic character
of N(F )\N(A) and N ′(F )\N ′(A). Consider the zeta integral

I(s, ϕ, ϕ′) =

∫
N ′(A)\G′(A)

Wψ(g, ϕ)W ψ̄(g, ϕ′) |det g|s dg,

which is studied by Jacquet, Piatetski-Shapiro and Shalika in [JPS83, JS90, Jac09]. It can be
shown to converge absolutely for the real part of s sufficiently large and uniformly for s in a
compact set by a gauge estimate combined with Franke’s theorem (see [JPS79, §§ 13 and 4.6]).
Then our main result is the following theorem.

Theorem 1.1. For ϕ ∈ A (G) and ϕ′ ∈ A (G′), we have the identity

PG′(ϕ⊗ ϕ′s) = I(s, ϕ, ϕ′).

Theorem 1.1 shows that the functional PG′ is G′(A)-invariant. The regularized period
PG′(ϕ ⊗ ϕ′) turns out to be zero unless both ϕ and ϕ′ are generic, in which case it can be
expressed in terms of the central value of the tensor product L-function. More precisely, assume
that ϕ and ϕ′ belong to automorphic representations π and π′ of G(A) and G′(A), respectively,
induced from irreducible cuspidal automorphic representations of Levi subgroups, and that they
are decomposable. Then we deduce that

PG′(ϕ⊗ ϕ′s) = L

(
s+

1

2
, π × π′

)
·
∏
v

I(s,Wψv
ϕv ,W

ψ̄v
ϕ′v

)

L(s+ 1
2 , πv × π′v)

.

Here L(s, π × π′) is the tensor product L-function and I(s,Wψv
ϕv ,W

ψ̄v
ϕ′v

) is the local zeta integral
of Jacquet, Piatetski-Shapiro and Shalika, defined by

I(s,Wψv
ϕv ,W

ψ̄v
ϕ′v

) =

∫
N ′v\G′v

Wψv
ϕv (g)W ψ̄v

ϕ′v
(g) |det g|s dg.

Corollary 5.7 shows that the functional PG′ does not vanish on π ⊗ π′ if and only if L(1/2,
π × π′) 6= 0.

Let π and π′ be irreducible residual automorphic representations of G(A) and G′(A),
respectively. Assume that π is not one-dimensional. Corollary 5.8 shows that for ϕ ∈ π and
ϕ′ ∈ π′, the integral (1.1) is absolutely convergent and equal to zero.

Theorem 1.1 looks straightforward at first glance, but the proof is rather indirect and relies
on a series of reduction steps. An important ingredient is the fact that any automorphic form is
a linear combination of derivatives of cuspidal Eisenstein series, which allows us to assume that
ϕ is a derivative of a cuspidal Eisenstein series. Franke proved this deep result in [Fra98]. We use
Cauchy’s integral formula and Fubini’s theorem to reduce the computation to the case where ϕ
is a cuspidal Eisenstein series.
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Formally, an automorphic form ϕ has a Fourier expansion of the form

ϕ(g) =

n∑
i=0

∑
γ∈P′i(F )\G′(F )

Wψ
Qi(γg, ϕQi),

where P ′
i is the subgroup of the standard parabolic subgroup of G′ of type (i, n− i) consisting of

matrices whose GLn−i part is upper triangular unipotent, Qi is the standard parabolic subgroup
of G of type (i, n + 1− i), and Wψ

Qi(ϕQi) is the Whittaker function of the GLn+1−i part of the
constant term ϕQi . This is simply an inductive abelian Fourier expansion beginning along the last
column of N (see [Sha74] and Proposition 4.2). If we ignore convergence issues, then a formal
computation yields∫

G′(F )\G′(A)
ϕ(g)ϕ′s(g) dg ‘=’

n∑
i=0

∫
U ′i (A)GLi(F )\G′(A)

Wψ
Qi(g, ϕQi)W

ψ̄
Q′i

(g, ϕ′Q′i
) |det g|s dg,

where Q′i is the standard parabolic subgroup of G′ of type (i, n − i) and U ′
i is the unipotent

radical of the standard parabolic subgroup of G′ of type (i, 1, 1, . . . , 1). The zeroth term in the
right-hand side is I(s, ϕ, ϕ′). For i > 0, the ith term involves an integral of an exponential function
over the multiplicative group of positive real numbers, and hence it is divergent. An integral of
this type should be interpreted as zero for the reason explained by Lapid and Rogawski in [LR03]
(see also [Cas93]). Following [LR03], we compute the absolutely convergent integral∫

G′(F )\G′(A)
θ(g)ϕ′s(g) dg (1.2)

in two ways to circumvent the convergence problems, where θ is a pseudo-Eisenstein series on
G(A) and ϕ′ ∈ A (G′). We may suppose that

θ(g) =

∫
λ∈(aGP,C)∗, <λ=κ

β(λ)E(g, φ, λ) dλ,

where κ ∈ (aGP )∗ is positive enough, β is a Paley–Wiener function on (aGP,C)∗, and E(φ, λ) is a
cuspidal Eisenstein series induced from a parabolic subgroup P of G. On one hand, we transform
(1.2), under some mild restriction on β, into the integral∫

<λ=κ
β(λ)PG′(E(φ, λ)⊗ ϕ′s) dλ

of the regularized periods. On the other hand, we transform (1.2), under another mild restriction
on β, into the integral ∫

<λ=κ
β(λ)I(s, E(φ, λ), ϕ′) dλ

of the zeta integrals by inserting the Fourier expansion of θ. To justify the manipulation, we use
uniform estimates for archimedean Whittaker functions due to Jacquet [Jac04]. Strictly speaking,
we need to consider the convolution f ∗ θ by f ∈ C∞c (G∞) to apply Jacquet’s estimates. There
are sufficiently many β, which allows us to extract the desired identity

PG′(E(φ, λ)⊗ ϕ′s) = I(s, E(φ, λ), ϕ′).

This paper is organized as follows. In § 2 we define the mixed truncation operator ΛTm
and its analogue for parabolic subgroups (and Weyl elements). In § 3 we define the regularized
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period PG′(ϕ ⊗ ϕ′), which exploits these mixed truncation operators, and show that it equals
the coefficient p0(T ) of the zero exponent of the polynomial exponential function defined by the
period of the truncated automorphic form. In § 4 we prove Theorem 1.1, and in § 5 we discuss
some simple consequences thereof.

Notation

For two integers a 6 b, we denote the set {a, a+ 1, . . . , b} by [a, b]. When a > b, we understand
that [a, b] = ∅,

∑b
i=a = 0 and

∏b
i=a = 1. For a complex number z, <z denotes the real part of z.

The same notation will be used for elements of the complexification of a real vector space. For
a finite-dimensional real vector space V , we denote by V ∗ the space of real linear forms on V ,
by V ∗C the space of complex linear forms on V , and by C[V ] the space of polynomial functions
on V .

Let F be a number field with adele ring A. Let G be a connected reductive algebraic group
over F . We write Gv for the localization of G at a place v of F and G∞ for the product of all
the archimedean localizations of G. Throughout this paper, the letters P and Q are reserved for
parabolic subgroups of G defined over F , the letters M and L for their Levi subgroups, and the
letters U and V for their unipotent radicals. Thus

P = MU, Q = LV.

If M appears as a subscript or a superscript, we shall often write P instead of M for the subscript
or superscript. Let Rat(M) be the group of algebraic characters of M defined over F . Put

a∗P = a∗M = Rat(M)⊗Z R, aP = aM = HomZ(Rat(M),R).

The canonical pairing on a∗P × aP is denoted by 〈 , 〉. We define a function HP : M(A)→ aP by
the requirement that

e〈χ,HP (m)〉 = |χ(m)|

for all χ ∈ Rat(M) and m ∈ M(A). Let M(A)1 be the intersection of the kernels of the
homomorphisms |χ|, where χ ranges over Rat(M). Let ZM be the maximal split torus in the
center of M . Choose an isomorphism ZM 'Gl

m, and let AP be the image of (R×+)l in ZM,∞, where
l = dim aP and R ↪→ F ⊗QR is given by x 7→ 1⊗x. Note that M(A) = AP ×M(A)1 and HP

induces an isomorphism AP ' aP . We denote by eX the element in AP such that HP (eX) = X.
Using an Iwasawa decomposition, we extend HP to the left U(A)-invariant, right K-invariant
function on G(A), where K is a fixed good maximal compact subgroup of G(A). Let WM be the
Weyl group of M . Then WM acts naturally on aP and a∗P .

Discrete groups are equipped with the counting measures, unipotent groups U with the Haar
measures giving U(F )\U(A) volume 1, and K with the Haar measure of total volume 1. We
choose Haar measures on M(A) for all Levi subgroups M of G compatibly with respect to the
Iwasawa decomposition. We also have a Haar measure on AP through its isomorphism with aP
once we fix a Haar measure on aP .

Let AP (G) be the space of automorphic forms on U(A)P (F )\G(A), i.e. smooth, K-finite and
z-finite functions of moderate growth, where z is the center of the universal enveloping algebra of
the complexified Lie algebra of G∞. We write A 1

P (G) for the subspace of those φ ∈ AP (G) such
that φ(ag) = e〈ρP ,HP (a)〉φ(g) for all a ∈ AP and g ∈ G(A), where the function e〈ρP ,HP (·)〉 is the
square root of the modulus function of P (A). Let A c

P (G) be the space of cusp forms in A 1
P (G).
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When P = G, we will omit the subscript P . For any smooth function φ on P (F )\G(A) and any
parabolic subgroup Q ⊂ P , the constant term of φ along Q is defined by

φQ(g) =

∫
V (F )\V (A)

φ(vg) dv.

The map φ 7→ φQ sends AP (G) to AQ(G). According to [MW95, § I.3.2], an automorphic form
φ ∈ AP (G) admits a finite decomposition

φ(uamk) =
∑
i

Qi(HP (a))φi(mk)e〈λi+ρP ,HP (a)〉 (1.3)

for u ∈ U(A), a ∈ AP , m ∈ M(A)1 and k ∈ K, where λi ∈ a∗P,C, Qi ∈ C[aP ] and φi ∈ AP (G)
such that φi(ag) = φi(g) for all a ∈ AP and g ∈ G(A). The set of distinct exponents λi occurring
in (1.3) is uniquely determined by φ and is called the set of exponents of φ. When Q ⊂ P , the
exponents of φ along Q are, by definition, the exponents of φQ, and the cuspidal exponents of φ
along Q are the exponents of the cuspidal component of φ along Q; they are denoted by EQ(φ)
and E cusp

Q (φ), respectively.
For each positive integer m, we denote by Gm the general linear group GLm, by Tm the

subgroup of diagonal matrices, by Bm the subgroup of upper triangular matrices, and by Nm

the subgroup of upper triangular matrices with unit diagonal. A parabolic subgroup of Gm is
said to be standard if it contains Bm. A standard Levi subgroup of Gm is the unique Levi factor
containing Tm of a standard parabolic subgroup of Gm. By parabolic and Levi subgroups we shall
always mean standard parabolic and Levi subgroups. All these groups are regarded as algebraic
groups over F . A composition of m is a sequence of positive integers whose sum is m. There is
a bijection between the set of compositions of m and the set of standard parabolic subgroups
of Gm, namely, for each composition n = (n1, . . . , nt) of m, the standard parabolic subgroup
Pn = MnUn of Gm is given by

Mn =


g1

. . .
gt


∣∣∣∣∣∣∣ gi ∈ Gni

 , Un =


1n1 ∗ ∗

. . . ∗
1nt


.

When P = Pn, we set

IP = {n1 + · · ·+ nk | k ∈ [1, t]}.

Let Km be the standard maximal compact subgroup of Gm(A). The Weyl group Wm = WGm is
identified with the symmetric group Sm. We take permutation matrices in Gm as representatives
of elements in Wm. In particular, we have Wm ⊂ Km. We identify the spaces aBm and a∗Bm with
Rm. We fix a positive-definite Wm-invariant scalar product on aBm . This defines a Euclidean
norm ‖ · ‖ on aBm , which in turn determines Haar measures on aBm and its subspaces. We define
a height ‖ · ‖ on Gm(A) by

‖g‖ =
∏
v

‖gv‖, ‖gv‖ = max
i,j∈[1,m]

{|(gv)i,j |, |(g−1
v )i,j |}.

For any smooth function φ on Gm(A), s ∈ C and λ ∈ a∗P,C, we define functions φs and φλ on
Gm(A) by

φs(g) = φ(g)|det g|s, φλ(g) = φ(g)e〈λ,HP (g)〉, g ∈ Gm(A).

670

https://doi.org/10.1112/S0010437X14007362 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007362


Periods of automorphic forms: the case of (GLn+1 ×GLn,GLn)

We fix a positive integer n and write G = Gn+1 and G′ = Gn. When Gm = G, we will omit
the subscript or superscript m, and we adopt the same notation, adding a prime ′ for G′. Thus
B = TN and B′ = T ′N ′ are the Borel subgroups of G and G′, and K and K ′ are the maximal
compact subgroups of G and G′, respectively. For convenience, we will write 0 for any subscript
where our notation would normally call for B. Thus a0 = aB, a′0 = aB′ , a

∗
0 = a∗B, (a′0)∗ = a∗B′ ,

H0 = HB, H ′0 = HB′ , A0 = AB, A′0 = AB′ and so on. We embed G′ into G via the map

g 7→
(
g

1

)
.

Then the associated embedding a′0 ↪→ a0 is given by

(λ1, . . . , λn) 7→ (λ1, . . . , λn, 0).

Let ∆P
0 be the set of simple roots of T in M . If Q is a parabolic subgroup contained in P ,

then we have canonical direct sum decompositions

aQ = aPQ ⊕ aP , a∗Q = (aPQ)∗ ⊕ a∗P .

Let ∆P
Q be the set of linear forms on aQ obtained by restriction of elements in the complement

of ∆Q
0 in ∆P

0 . Then aP is the subspace of aQ annihilated by ∆P
Q. For each α ∈ ∆P

Q, let α∨ be the

projection of β∨ to aPQ, where β is the root in ∆0 whose restriction to aPQ is α. Set (∆∨)PQ = {α∨ |
α ∈ ∆P

Q}. Let ∆̂P
Q be the dual basis of (∆∨)PQ in (aPQ)∗. We define (∆̂∨)PQ to be the basis of aPQ

dual to ∆P
Q. When P = G, we will omit the superscript G. For example, we will write ∆0 = ∆G

0 ,

∆P = ∆G
P , ∆∨P = (∆∨)GP , ∆̂P = ∆̂G

P , ∆̂∨P = (∆̂∨)GP and W = WG. If we put

$∨j =
1

n+ 1
(n+ 1− j, . . . , n+ 1− j︸ ︷︷ ︸

j

,−j, . . . ,−j︸ ︷︷ ︸
n+1−j

),

then ∆̂∨0 = {$∨j | j ∈ [1, n]} and

∆̂∨P = {$∨j | j ∈ IP r {n+ 1}}.

We denote by XQ (respectively XP
Q or XP ) the canonical projection of X ∈ a0 onto aQ0

(respectively aPQ or aP ) given by the decomposition a0 = aQ0 ⊕ aPQ ⊕ aP , and similarly for a∗0.

We extend the linear functionals in ∆P
Q (respectively (∆̂∨)PQ) to elements of a∗0 (respectively a0)

by means of these projections. We write ρ0 ∈ a∗0 for half the sum of the positive roots of T in G

and denote by ρQ0 , ρPQ and ρP its projections onto (aQ0 )∗, (aPQ)∗ and a∗P , respectively.

2. Mixed truncation

For any pair of parabolic subgroups Q ⊂ P , we write τPQ for the characteristic function of the
subset

{X ∈ a0 | 〈α,X〉 > 0 for all α ∈ ∆P
Q}

and τ̂PQ for the characteristic function of the subset

{X ∈ a0 | 〈$,X〉 > 0 for all $ ∈ ∆̂P
Q}.
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When P = G, we will omit the superscript G. Put

a+
0 = {X ∈ a0 | 〈α,X〉 > 0 for all α ∈ ∆0}

and
(a∗P )+ = {Λ ∈ a∗P | 〈Λ, α∨〉 > 0 for all α∨ ∈ ∆∨P }.

Fix a composition n = (n1, . . . , nt) of n + 1 and put P = Pn. For i ∈ [1, n + 1] we define
wi ∈W to be the cyclic permutation

wi = (i, i+ 1, . . . , n+ 1) =

1i−1 0 0
0 0 1
0 1n+1−i 0

 .

For w = wi we define a standard parabolic subgroup Pw = MwUw of G′ by

Pw = w−1Pw ∩G′, Mw = w−1Mw ∩G′, Uw = w−1Uw ∩G′.

If i ∈ [n1 + · · · + nj−1 + 1, n1 + · · · + nj ], then Pw is the standard parabolic subgroup of G′

attached to the composition (n1, . . . , nj−1, nj − 1, nj+1, . . . , nt). We write

Mw = Mw ×Mw, M = wMww
−1 ×Mw,

aPw = aMw ⊕ aMw , aP = waMw ⊕ aMw ,

where

Mw '
∏
k 6=j

Gnk , Gnj−1 'Mw ⊂Mw ' Gnj .

The set MW
G
G′ of reduced representatives for WM\WG/WG′ is given by

MW
G
G′ = {wi | i ∈ IP }.

Let Q be a parabolic subgroup contained in P . When w ∈ MW
G
G′ , we can identify

WL\WM/wWMww−1 with the set LW
M
Mw

of reduced representatives. We can also identify

LW
M
Mw

with L∩Mw
WMw
Mw

. More precisely, if w = wi with i = n1 + · · · + nj and Q = Pm with
m = (m1, . . . ,mr) such that

m1 + · · ·+ma−1 = n1 + · · ·+ nj−1, m1 + · · ·+mb = n1 + · · ·+ nj ,

then

LW
M
Mw

= {(m1 + · · ·+mk,m1 + · · ·+mk + 1, . . . , n1 + · · ·+ nj) ∈ Sn+1 | k ∈ [a, b]}.

We write 0W
M
Mw

in place of TW
M
Mw

. Note that

LW
G
G′ =

⊔
w∈MW

G
G′

LW
M
Mw

w. (2.1)

Let w ∈ LW
G
G′ . Then QwM = w−1Qw∩Mw is a parabolic subgroup of Mw. We can view aMw and

a∗Mw
as subspaces of aLw and a∗Lw , respectively. Put

aMw
Lw

= {X ∈ aLw | 〈λ,X〉 = 0 for λ ∈ a∗Mw
}.

Then aLw = aMw
Lw
⊕ aMw . Notice that waMw

Lw
is not a subspace of aPQ in general.
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Let T ∈ a+
0 be a truncation parameter. Recall that for any smooth function φ on P (F )\G(A),

Arthur’s truncation of φ was defined in [Art80] to be

ΛT,Pφ(g) =
∑
Q⊂P

(−1)dim aPQ
∑

γ∈Q(F )\P (F )

φQ(γg)τ̂PQ (HQ(γg)− T ).

We define a mixed truncation of a smooth function ϕ on G(F )\G(A), which is a function on
G′(F )\G′(A), by

ΛTmϕ(g) =
∑
P

(−1)dim aGP
∑

w∈MW
G
G′

∑
γ∈Pw(F )\G′(F )

ϕP (wγg)τ̂P (HP (wγg)− T )

for g ∈ G′(A). It is noteworthy that

ΛTmϕ(g) =
∑
P

(−1)dim aGP
∑

γ∈P (F )\P (F )WG′(F )

ϕP (γg)τ̂P (HP (γg)− T ).

Note that ΛTmϕ depends only on the image of T in the intersection (aG0 )+ of a+
0 with aG0 . For

w ∈ MW
G
G′ , a wth mixed truncation of a smooth function φ on P (F )\G(A) is a function on

Uw(A)Mw(F )\G′(A) defined by

ΛT,Pm,wφ(g) =
∑
Q⊂P

(−1)dim aPQ
∑

ξ∈LW
M
Mw

∑
δ∈QξwM (F )\Mw(F )

φQ(ξwδg)τ̂PQ (HQ(ξwδg)− T ).

Remark 2.1. In the formula for the wth mixed truncation operator, the sum over δ is really over
a finite set which depends on g but is independent of φ (see [Art78, Lemma 5.1]).

Langlands’ combinatorial lemma asserts that

∑
Q⊂R⊂P

(−1)dim aRQ τ̂RQ τ
P
R =

{
1 if P = Q,

0 otherwise
(2.2)

for any pair of parabolic subgroups Q ⊂ P . For any H,X ∈ a0 put

ΓPQ(H,X) =
∑

Q⊂R⊂P
(−1)dim aPRτRQ (H)τ̂PR (H −X).

Langlands’ lemma gives the formulae

τ̂PQ (H −X) =
∑

Q⊂R⊂P
(−1)dim aPR τ̂RQ (H)ΓPR(H,X), (2.3)

τPQ (H −X) =
∑

Q⊂R⊂P
ΓRQ(H −X,−X)τPR (H). (2.4)

Lemma 2.2.

(i) If ϕ is a smooth function on G(F )\G(A), then for g ∈ G′(A),

ϕ(g) =
∑
P

∑
w∈MW

G
G′

∑
γ∈Pw(F )\G′(F )

ΛT,Pm,wϕ(γg)τP (HP (wγg)− T ).
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(ii) If φ is a smooth function on P (F )\G(A) and w ∈ MW
G
G′ , then for g ∈ G′(A),

ΛT+T ′,P
m,w φ(g) =

∑
Q⊂P

∑
ξ∈LW

M
Mw

∑
δ∈QξwM (F )\Mw(F )

ΛT,Qm,ξwφ(δg)ΓPQ(HQ(ξwδg)− T, T ′).

Proof. Substituting the definition of ΛT,Pm,wϕ into the right-hand side of the formula in (i), we see
that it is equal to∑

P

∑
w∈MW

G
G′

∑
γ∈Pw(F )\G′(F )

∑
Q⊂P

(−1)dim aPQ
∑

ξ∈LW
M
Mw

∑
δ∈QξwM (F )\Mw(F )

ϕQ(ξwδγg)τ̂PQ (HQ(ξwδγg)− T )τP (HP (wγg)− T ).

Using (2.1) and observing that

QξwM = Qξw ∩Mw, τP (HP (wγg)− T ) = τP (HQ(ξwδγg)− T ),

we combine the sum over w, γ, ξ and δ into the double sum over LW
G
G′ and Qξw(F )\G′(F ) to

write this as the sum over Q, w ∈ LW
G
G′ and γ ∈ Qw(F )\G′(F ) of∑

P⊃Q
(−1)dim aPQϕQ(wγg)τ̂PQ (HQ(wγg)− T )τP (HP (wγg)− T ).

Assertion (i) now follows from (2.2).
Assertion (ii) is a formal consequence of (2.3). 2

Let SP = ωAP0 (t0)K be a Siegel set of G(A) relative to a parabolic subgroup P , where
ω ⊂ N(A)T (A)1 is compact, t0 ∈ a0 is negative enough and

AP0 (t0) = {a ∈ A0 | 〈α,H0(a)− t0〉 > 0 for all α ∈ ∆P
0 }.

We also take a Siegel set SP ′ = ω′AP
′

0 (t′0)K ′ of G′(A). We fix ω, ω′, t0 and t′0 so that G(A) =
P (F )SP and G′(A) = P ′(F )SP ′ for all P and P ′. We write

S = SG, S′ = SG′ , A0(t0) = AG0 (t0), A′0(t′0) = AG
′

0 (t′0).

Since wiN
′w−1
i ⊂ N , we may take ω so that wiω

′w−1
i ⊂ ω for all i ∈ [1, n+ 1]. Put

A′0(t′0)(i) = {a ∈ A′0(t′0) | wiaw−1
i ∈ A0(t0)}.

For a suitable choice of t0 and t′0, we have

A′0(t′0) =

n+1⋃
i=1

A′0(t′0)(i). (2.5)

From now on, we require that T be a suitably regular point in a+
0 . Put

SP
6T = {g ∈ SP | 〈$,H0(g)− T 〉 6 0 for all $ ∈ ∆̂P

0 }.

Let FP ( · , T ) be the characteristic function of P (F )SP
6T .
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Lemma 2.3. For a parabolic subgroup P of G, w ∈ MW
G
G′ and g ∈ G′(A),∑

Q⊂P

∑
ξ∈LW

M
Mw

∑
δ∈QξwM (F )\Mw(F )

FQ(ξwδg, T )τPQ (HQ(ξwδg)− T ) = 1.

Proof. Using the decomposition Pw = MwUw, we may write the inner sum as the sum over

Qξw(F )\Pw(F ). There is δ ∈ Pw(F ) such that δg ∈ SPw . From (2.5) one can find an element

ξ ∈ 0W
M
Mw

such that ξwδg ∈ SP . We apply [Art78, Lemma 6.3] with Q = B, Λ ∈ (a∗0)+ and

H = H0(ξwδg)− T to find a parabolic subgroup Q ⊂ P satisfying the following conditions:

– 〈$,H0(ξwδg)− T 〉 6 0 for all $ ∈ ∆̂Q
0 ;

– 〈α,H0(ξwδg)− T 〉 > 0 for all α ∈ ∆P
Q.

It follows that

FQ(ξwδg, T )τPQ (HQ(ξwδg)− T ) = 1.

Since FQ and HQ are left Q(F )-invariant, we may assume that ξ ∈ LW
M
Mw

after translating ξ by

an element in WL if necessary. Thus the given sum is at least 1. Lemma 6.4 of [Art78] asserts

that for any x ∈ G(A),∑
Q⊂P

∑
δ∈QM (F )\M(F )

FQ(δx, T )τPQ (HQ(δx)− T ) = 1,

where we have put QM = Q ∩M . The double sum over ξ and δ can be combined into a single

sum over QM (F )\QM (F ) LW
M
Mw

wMw(F ), so the given sum is at most 1. 2

To simplify notation, we put

Mw(A)′ = Mw(A)1 ×Mw(A).

Lemma 2.4. If φ is a smooth function on P (F )\G(A) such that it and its derivatives have

uniform moderate growth, then for any λ ∈ (a′0)∗, there exists a constant C > 0 such that for all

g ∈ SPw ∩Mw(A)′ and k ∈ K ′,

|ΛT,Pm,wφ(gk)| 6 Ce〈λ,H
′
0(g)〉.

Proof. If we set

ψ(m1,m2) = φ(m1wm2), m1 ∈Mw(A), m2 ∈Mw(A),

then for m1 ∈Mw(A) and m2 ∈Mw(A),

ΛT,Pm,wφ(m1m2) = (ΛT,Mw
m ⊗ ΛT,Mw)ψ(m1,m2),

where we apply the mixed truncation to the first variable and Arthur’s truncation to the second

variable. We may therefore assume that P = G. Although it only remains to check that each step

of the argument in [Art80] applies, we shall go over the proof, keeping track of the dependence

on T in view of our later application.
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Let g ∈ S′. We multiply the summand corresponding to P and w in the definition of ΛTmφ(g)
by the left-hand side of Lemma 2.3. Then ΛTmφ(g) equals∑

P

(−1)dim aGP
∑

w∈MW
G
G′

∑
γ∈Pw(F )\G′(F )

∑
Q⊂P

∑
ξ∈LW

M
Mw

∑
δ∈QξwM (F )\Mw(F )

FQ(ξwδγg, T )τPQ (HQ(ξwδγg)− T )φP (wγg)τ̂P (HP (wγg)− T )

=
∑
P

∑
Q⊂P

(−1)dim aGP
∑

w∈LW
G
G′

∑
γ∈Qw(F )\G′(F )

FQ(wγg, T )φP (wγg)τPQ (HQ(wγg)− T )τ̂P (HP (wγg)− T ).

For a given pair of parabolic subgroups Q ⊂ P , we can write

τPQ τ̂P =
∑
R⊃P

σRQ,

where

σRQ =
∑
S⊃R

(−1)dim aSRτSQτ̂S .

We apply this identity to the product of the functions τPQ and τ̂P which occurs in the expansion

above. The function ΛTmφ(g) becomes the sum over pairs Q ⊂ P , elements w ∈ LW
G
G′ and

γ ∈ Qw(F )\G′(F ) of the product

FQ(wγg, T )σPQ(HQ(wγg)− T )φQ,P (wγg),

where we put

φQ,P (x) =
∑

Q⊂R⊂P
(−1)dim aGRφR(x), x ∈ G(A).

For the moment, we fix Q ⊂ P , w, γ and g. We regard γ as an element in G′(F ) which we
are free to left-multiply by an element in Qw(F ). Then we can assume that

γg = n∗n∗mak,

where k ∈ K ′, n∗, n∗ and m belong to fixed compact fundamental domains in Uw(A),
(Mw ∩N ′)(A) and T ′(A)1, and a ∈ A′0 with

σPQ(H0(wa)− T ) 6= 0, 〈β,H0(wa)− t0〉 > 0, 〈$,H0(wa)− T 〉 6 0

for all β ∈ ∆Q
0 and all $ ∈ ∆̂Q

0 . Let {$∨α | α ∈ ∆P
Q} (respectively {$β | β ∈ ∆Q

0 }) stand for

the basis of aPQ (respectively of (aQ0 )∗) which is dual to ∆P
Q (respectively to (∆∨)Q0 ). We can

decompose the vector H0(wa)G as

H0(wa)G =
∑
α∈∆P

Q

tα$
∨
α +H∗ −

∑
β∈∆Q

0

rββ
∨ + T,

where tα and rβ are real numbers and H∗ is a vector in aGP . Note that rβ = −〈$β, H0(wa)−T 〉 is

nonnegative for all β ∈ ∆Q
0 . By [Art78, Corollary 6.2], tα > 0 for all α ∈ ∆P

Q, and H∗ belongs to
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a compact subset whose volume can be bounded by some polynomial, say
∏
α∈∆P

Q
pα(tα). Recall

that 〈α, β∨〉 6 0 for all α 6= β in ∆0. Each root δ ∈ ∆P
0 r ∆Q

0 satisfies

〈δ,H0(wa)〉 = tα −
∑
β∈∆Q

0

rβ〈δ, β∨〉+ 〈δ, T 〉 > 0,

where α is the projection of δ onto a∗Q. Thus the projection of H0(wa) onto aP0 belongs to

a translate of the positive chamber, and hence a−1n∗a remains in a fixed compact subset
independently of T . Then

φQ,P (wγg) = φQ,P (wn∗mak) = φQ,P (wac),

where c = a−1n∗mak belongs to a fixed compact subset of G′(A) independent of T . We write
waw−1 = a0a1a2, where a0 ∈ AG, a1 ∈ AQ∩G(A)1 and a2 ∈ A0∩L(A)1. Note that ‖a0‖ 6 ‖a1a2‖.
For each positive integer m, the argument of [Art80, pp. 93–95] gives a constant cm(φ) such that
|φQ,P (wac)| is bounded by

cm(φ)
∑
I

e−3m〈βI ,H0(a1)〉
∫
NI(F )\NI(A)

|R(Ad(wc)−1Ad(a2)−1Y 3m
I )φ(uwac)| du,

where βI is a positive sum of the roots in ∆P
Q, NI is a subgroup of V , YI is a left invariant

differential operator on (M ∩V )∞ and R is the regular representation of G(A). We can choose a
finite set of left invariant differential operators {Xi} on G∞ such that Ad(wc)−1Ad(a2)−1Y 3m

I is
a linear combination of {Xi} for any Q ⊂ P , w, I, c and a2. Since the projection of H0(a2) onto
aP0 belongs to a translate of the positive chamber, the coefficients are bounded independently of
c, a2 and T .

Set d(T ) = min{〈α, T 〉 | α ∈ ∆0}. We shall let T vary over suitably regular points such that
d(T ) > ε0‖T‖ for some fixed positive number ε0. Corollary 6.2 of [Art78], referred to above,
concludes that ‖a1‖ is bounded by a fixed power of e〈βI ,H0(a1)〉. Note that

eε0‖T‖ 6 ed(T ) 6 e〈βI ,T 〉 6 e〈βI ,H0(a1)〉.

Therefore ‖γg‖ = ‖n∗ac‖ is bounded by a constant multiple of a fixed power of e〈βI ,H0(a1)〉. By
the assumption on φ, we can take m so that∑

I

∑
i

e−m〈βI ,H0(a1)〉
∫
NI(F )\NI(A)

|R(Xi)φ(uwac)| du

is bounded for all Q ⊂ P and w. There is a constant c such that ‖x‖ 6 c‖γx‖ for all γ ∈ G′(F )
and x ∈ S′ (see [MW95, § I.2.2]). It follows that for any N1 > 0 there exists C1 > 0 such that

|φQ,P (wγg)| 6 C1‖g‖−N1

for all γ ∈ G′(F ) and g ∈ S′ with FQ(wγg, T )σPQ(HQ(wγg)− T ) = 1.
On the other hand,∑

δ∈Q(F )\G(F )

FQ(δx, T )σPQ(HQ(δx)− T ) 6 C2‖x‖N2 , x ∈ G(A)1,

for some constants C2 > 0 and N2 > 0 (see [Art80, pp. 96–97]). Since the summand takes values
0 or 1, a similar estimate holds for the sum over LW

G
G′ and Qw(F )\G′(F ). There exist c′, t, t′ > 0
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such that c′‖a‖t‖x‖t′ 6 ‖ax‖ for all a ∈ AG and x ∈ G(A)1. Therefore, for any N3 > 0 there
exists C3 > 0 such that

|ΛTmφ(g)| 6 C3‖g‖−N3 .

For a given λ ∈ (a′0)∗, we can take C4 > 0 and N4 > 0 such that e−〈λ,H
′
0(g)〉 6 C4‖g‖N4 . We

obtain the desired estimate by taking N3 = N4. 2

Remark 2.5. If φ is an automorphic form, then we have proven that the rate of rapid decrease
of ΛT,Pm,wφ is majorized in terms of the rate of slow increase of finitely many derivatives of φ and
hence in terms of the exponents of finitely many derivatives of φ. If φ(λ) is an analytic family
of automorphic forms, then its exponents vary analytically, and hence, for any µ ∈ (a′0)∗, there
is a locally bounded function c(λ) such that for all g ∈ SPw ∩Mw(A)′ and k ∈ K ′,

|ΛT,Pm,wφ(λ)(gk)| 6 c(λ)e〈µ,H
′
0(g)〉.

3. Periods of automorphic forms on GLn+1 × GLn

3.1 Integrals over cones
The regularization of the period integral is based on a regularization of integrals of polynomial
exponential functions over cones in vector spaces. We recall its basic properties and refer the
reader to [JLR99, § II] for additional explanation.

Let V be a finite-dimensional real vector space. A polynomial exponential function on V is
a function of the form

f(X) =
r∑
i=1

pi(X)e〈λi,X〉,

where λi ∈ V ∗C and pi ∈ C[V ]. The decomposition above is unique if the λi are distinct and pi 6= 0
for all i. We call λi the exponents of f . We denote the characteristic function of a subset Y of V
by τY .

For w = wi ∈ 0W
G
G′ , we define a C-linear map prw : a∗0,C→ (aG0,C)∗ by

prw(λ1, . . . , λn+1) =

(
λ1, . . . , λi−1, λi −

n+1∑
j=1

λj , λi+1, . . . , λn+1

)
.

Let P be a parabolic subgroup of G. For λ ∈ a∗0,C, we denote the restriction of prw(λ) to aP by

ηwP (λ). Note that the map λ 7→ ηwP (wλ) restricts to an isomorphism a∗Mw,C ' (aGP,C)∗. Fix c ∈ a′0.
For any polynomial exponential function f on a′0, we define a polynomial exponential function
fwc on aGP by

fwc ((wX)G) = f(X + c)

for X ∈ aMw . Since

〈ηwP (wλ), (wX)G〉 = 〈λ,X〉, λ ∈ a∗0,C, X ∈ aMw ,

if the exponents of the restriction of f to aMw are λi, then the exponents of fwc are ηwP (wλi).
Put tP = dim aGP . Let C be a subset of a0 of the form

C = {X ∈ a0 | 〈µj , X〉 > 0 for all j ∈ [1, tP ]},
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where {µj}tPj=1 is a basis of (aGP )∗. Let {ej}tPj=1 be the corresponding dual basis of aGP . Fix T ∈ a0.
The #-integral ∫ #

aMw+c
f(X)τC(wX − T ) dX =

∫ #

aGP

fwc (X)τC(X − T + wc) dX

is discussed in [JLR99]. It exists if and only if 〈ηwP (wλi), ej〉 6= 0 for all i, j. The ordinary integral∫
aMw+c

f(X)τC(wX − T ) dX

converges if and only if <〈ηwP (wλi), ej〉 < 0 for all i, j. In this case it coincides with the #-integral.
The function

T 7→
∫ #

aMw+c
f(X)τC(wX − T ) dX

is a polynomial exponential function on a0 whose exponents are ηwP (wλi). The function

c 7→
∫ #

aMw+c
f(X)τC(wX − T ) dX

is a polynomial exponential function on a′0 whose exponents are given by

c 7→ 〈wλi − ηwP (wλi), wc〉, c ∈ a′0.

For λ ∈ a∗0,C we deduce the explicit formula∫ #

aMw+c
e〈λ,X〉τC(wX − T ) dX = (−1)tP v(e1, . . . , etP )

e〈λ,c〉e〈η
w
P (wλ),T−wc〉∏tP

j=1〈ηwP (wλ), ej〉
(3.1)

from [JLR99, (15)], where v(e1, . . . , etP ) is the volume of the parallelotope formed by {ej}tPj=1.

Let Q be a parabolic subgroup contained in P and g a compactly supported function on aPQ.
In [JLR99] the domain of the #-integral is extended to functions of the form

h(Y ) = g(Y P
Q )τC(Y ), Y ∈ a0,

which we call functions of type (C). If f is a polynomial exponential function on a′0 and
f(Y )h(wY − T ) is #-integrable over aLw + c, then∫ #

aLw+c
f(Y )h(wY − T ) dY =

∫
aMw
Lw

+c
g((wY − T )PQ)

∫ #

aMw

f(X + Y )τC(w(X + Y )− T ) dX dY.

(3.2)

This identity follows by definition and analytic continuation. Note that the map Y 7→ (wY )PQ
restricts to an isomorphism of aMw

Lw
onto aPQ.

Lemma 3.1. Let Q be a parabolic subgroup of G, w ∈ LW
G
G′ , c ∈ a′0, f a polynomial exponential

function on a′0 and C a cone in aGQ. For each parabolic subgroup P with P ⊃ Q, let gP be a

function on aPQ and CP a cone in aGP , and set hP (X) = gP (XP
Q)τCP (X) for X ∈ a0. Assume that

τC(X) =
∑
P⊃Q

aPhP (X)

for some constants aP and that either
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– gP is compactly supported and CP ⊂ C for every P ; or
– gP is the characteristic function of a cone CPQ in aPQ and CPQ × CP ⊂ C for every P .

Assume further that f(X)hP (wX − T ) is #-integrable over aLw + c for every P . Then
f(X)τC(wX − T ) is #-integrable over aLw + c and∫ #

aLw+c
f(X)τC(wX − T ) dX =

∑
P⊃Q

aP

∫ #

aLw+c
f(X)hP (wX − T ) dX.

Proof. The proof is the same as that of Lemma 6 in [JLR99]. 2

3.2 Regularization of the period integral
A regularization of the period integral was introduced in [JLR99, LR03] for the Galois case. We
will observe that the construction carries over to the context of this paper.

Let P be a parabolic subgroup of G and w ∈ MW
G
G′ . Automorphic forms φ ∈ AP (G) and

φ′ ∈ APw(G′) have decompositions of type (1.3), namely,

φ(uamk) =
∑
i

Qi(HP (a))φi(mk)e〈λi+ρP ,HP (a)〉,

φ′(u′a′m′k′) =
∑
j

Q′j(HPw(a′))φ′j(m
′k′)e〈λ

′
j+ρPw ,HPw (a′)〉 (3.3)

for

u ∈ U(A), a ∈ AP , m ∈M(A)1, k ∈ K,
u′ ∈ Uw(A), a′ ∈ APw , m′ ∈Mw(A)1, k′ ∈ K ′.

We define Qij ∈ C[a′0] by

Qij(X) = Qi((wX)P )Q′j(XPw), X ∈ a′0.

Let g = ueXmk be an Iwasawa decomposition of g ∈ G′(A) relative to Pw with X ∈ aMw and
m ∈Mw(A)′. Since HP (wm) ∈ aMw is the projection of HPw(m) = wHPw(m) ∈ aMw onto aP for
any m ∈Mw(A)′, if we set

X(m) = X +H ′0(m), Λij = λi + wλ′j ,

then
ΛT,Pm,wφ(g)φ′(g) =

∑
i,j

Qij(X(m))ΛT,Pm,wφi(mk)φ′j(mk)e〈Λij+ρP+wρPw ,wX(m)〉.

Let τk be a function on aGP of type (C) which depends continuously on k ∈ K ′.
For parabolic subgroups Q ⊂ P of G and w ∈ LW

G
G′ , we put

%PQ,w = ρPQ − wρ
Pw
Qw
.

When P = G, we write %Q,w in place of %GQ,w. Note that when P = Pn with n = (n1, . . . , nt) and
w = wi with i = n1 + · · ·+ nj ,

%P,w = ρ0 − ρP0 − w(ρ′0 − ρ
Pw
0 )

= ( 1
2 , . . . ,

1
2︸ ︷︷ ︸

n1+···+nj−1

, 0, . . . , 0︸ ︷︷ ︸
nj−1

, 1
2(nj+1 + · · ·+ nt − n1 − · · · − nj−1),−1

2 , . . . ,−
1
2︸ ︷︷ ︸

nj+1+···+nt

) ∈ a∗0.
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For λ ∈ a∗0,C and λ′ ∈ (a′0,C)∗, we define κP,w(λ, λ′) ∈ a∗Mw,C by demanding that

〈κP,w(λ, λ′), Y 〉 = 〈λ+ wλ′ + %P,w − ηwP (λ+ wλ′ + %P,w), Y 〉

for Y ∈ aMw . Assume that the #-integrals∫ #

aMw+HPw (m)
Qij(X)e〈Λij+%P,w,wX〉τk(wX − T ) dX

exist for all i, j and k. Then this integral is equal to a function of the form

e〈η
w
P (Λij+%P,w),T 〉e〈κP,w(λi,λ

′
j),HPw (m)〉pijk(HPw(m), T ),

where pijk ∈ C[aMw ⊕ a0] depends continuously on k ∈ K ′. We define the #-integral∫ #

Pw(F )\G′(A)
ΛT,Pm,wφ(g)φ′(g)τk(HP (wg)− T ) dg

as ∑
i,j

e〈η
w
P (Λij+%P,w),T 〉

∫
K′

∫
Mw(F )\Mw(A)′

pijk(HPw(m), T )e〈κP,w(λi,λ
′
j),HPw (m)〉

×ΛT,Pm,wφi(mk)φ′j(mk) dm dk.

Lemma 2.4 and Remark 3.5 guarantee the convergence of this integral.

Definition 3.2. Let A (G×G′)∗ be the space of pairs (ϕ,ϕ′) ∈ A (G)⊕A (G′) which satisfy

〈prw(λ+ wλ′) + %P,w, $
∨〉 6= 0

for any proper parabolic subgroup P of G and

w ∈ MW
G
G′ , λ ∈ EP (ϕ), λ′ ∈ EPw(ϕ′), $∨ ∈ ∆̂∨P .

When (ϕ,ϕ′) ∈ A (G×G′)∗, all the #-integrals

PG′,T
P,w (ϕ⊗ ϕ′) =

∫ #

Pw(F )\G′(A)
ΛT,Pm,wϕ(g)ϕ′Pw(g)τP (HP (wg)− T ) dg

exist and a regularized period PG′(ϕ⊗ ϕ′) is defined as the sum∑
P

∑
w∈MW

G
G′

PG′,T
P,w (ϕ⊗ ϕ′).

It is worth emphasizing that this definition is based on Lemma 2.2(i).

Proposition 3.3. PG′ is well-defined and is independent of T .

Proof. We use Lemma 2.2(ii) to write PG′,T+T ′

P,w (ϕ⊗ ϕ′) as∫ #

Pw(F )\G′(A)

∑
Q⊂P

∑
ξ∈LW

M
Mw

∑
δ∈QξwM (F )\Mw(F )

ΛT,Qm,ξwϕ(δg)ϕ′Pw(δg)

×ΓPQ(HQ(ξwδg)− T, T ′)τP (HP (wg)− T − T ′) dg.

We take the sum over Q and ξ outside the integral, which will be justified by the absolute
convergence of each integral, as explained below. Expand ϕP and ϕ′Pw as in (3.3). Let g = ueXmk′

be an Iwasawa decomposition of g ∈ G′(A) relative to Pw with X ∈ aMw and m ∈ Mw(A)′.
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Since ΓPQ(Y,Z) depend only on the projections of Y and Z onto aPQ, we may write the #-integral
of the sum over δ as the integral over k′ ∈ K ′ and sum over i, j of∫

QξwM (F )\Mw(A)′
ΛT,Qm,ξwφi(mk

′)φ′j(mk
′)ΓPQ(HQ(ξwm)− T, T ′)

×
∫ #

aMw+H′0(m)
Qij(X)e〈Λij+%P,w,wX〉τP (wX − T − T ′) dX dm.

Since ΓPQ(X − T, T ′) is a compactly supported function of X ∈ aPQ, each term is separately

integrable over QξwM (F )\Mw(A)′ by Lemma 2.4; hence we may take the sum over Q and ξ outside
the integral. Choose a decomposition of type (1.3) for (φi)Q and (φ′j)Qξw :

(φi)Q(uamk′) =
∑
k

qik(HQ(a))φik(mk
′)e〈λik+ρPQ,HQ(a)〉,

(φ′j)Qξw(u′a′m′k′′) =
∑
l

q′jl(HQξw(a′))φ′jl(m
′k′′)e

〈λ′jl+ρ
Pw
Qξw

,HQξw (a′)〉
(3.4)

for

u ∈ V (A), a ∈ AQ, m ∈ L(A)1, k′ ∈ K,
u′ ∈ Vξw(A), a′ ∈ AQξw , m′ ∈ Lξw(A)1, k′′ ∈ K ′,

where
λik ∈ (aPQ,C)∗, λ′jl ∈ (aPwQξw,C)∗, qik ∈ C[aPQ], q′jl ∈ C[aPwQξw ].

We put
Λijkl = λik + ξwλ′jl, Qijkl(X) = qik((ξwX)PQ)q′jl(X

Pw
Qξw

), X ∈ a′0.

Using the Iwasawa decomposition of Mw(A) relative to QξwM , we can express the integral over

QξwM (F )\Mw(A)′ as the integral over m′ ∈ Lξw(F )\Lξw(A)′ and sum over k, l of

ΛT,Qm,ξwφik(m
′k′)φ′jl(m

′k′)

∫ #

aMw
Lξw

+H′0(m′)
Qijkl(Y )e〈Λ

ij
kl+%

P
Q,ξw,ξwY 〉ΓPQ(ξwY − T, T ′)

×
∫ #

aMw+Y
Qij(X)e〈Λij+%P,w,wX〉τP (wX − T − T ′) dX dY,

where we have absorbed the integral over k′′ into the integral over k′ ∈ K ′. We may combine
the #-integrals over aMw

Lξw
and aMw into a #-integral over aLξw by (3.2), and we obtain the triple

integral∫
K′

∫
Lξw(F )\Lξw(A)′

ΛT,Qm,ξwφik(m
′k′)φ′jl(m

′k′)

∫ #

aLξw+H′0(m′)
Qijkl(X)Qij(X)e〈λi+λik+ρQ,ξwX〉

×e〈λ
′
j+λ

′
jl−ρQξw ,X〉ΓPQ(ξwX − T, T ′)τP (wX − T − T ′) dX dm′ dk′.

We conclude that∫ #

Pw(F )\G′(A)

∑
δ∈QξwM (F )\Mw(F )

ΛT,Qm,ξwϕ(δg)ϕ′Pw(δg)ΓPQ(HQ(ξwδg)− T, T ′)τP (HP (wg)− T − T ′) dg
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is equal to the #-integral over Qξw(F )\G′(A) of

ΛT,Qm,ξwϕ(g)ϕ′Qξw(g)ΓPQ(HQ(ξwg)− T, T ′)τP (HP (wg)− T − T ′).

Summing this over all Q ⊂ P , w ∈ MW
G
G′ and ξ ∈ LW

M
Mw

, we see that∑
P

∑
w∈MW

G
G′

PG′,T+T ′

P,w (ϕ⊗ ϕ′)

=
∑
Q

∑
P⊃Q

∑
w∈LW

G
G′

∫ #

Qw(F )\G′(A)
ΛT,Qm,wϕ(g)ϕ′Qw(g)ΓPQ(HQ(wg)− T, T ′)τP (HP (wg)− T − T ′) dg.

The cone defining τP is the positive Weyl chamber CP in aP and is contained in the positive Weyl
chamber CQ of aQ. We may apply Lemma 3.1 to take the sum over P inside the #-integral. The
relation (2.4) applied to P = G, H = HQ(wg)− T − T ′ and X = −T ′ shows that the right-hand
side equals ∑

Q

∑
w∈LW

G
G′

PG′,T
Q,w (ϕ⊗ ϕ′). 2

Let m = (m1, . . . ,mr) be a composition of n. For the parabolic subgroup Q = Pm of G′ and
w = wi ∈ 0W

G
G′ , we define the parabolic subgroup Q(w) of G by Q(w) = Pm(w), where

m(w) = (m1, . . . ,mj−1,mj + 1,mj+1, . . . ,mr)

if i ∈ [m1 + · · ·+mj−1 + 2,m1 + · · ·+mj ], and

m(w) = (m1, . . . ,mj , 1,mj+1, . . . ,mr)

if i = m1 + · · ·+mj + 1.

Proposition 3.4. If (ϕ,ϕ′) ∈ A (G)⊕A (G′) satisfies

<〈prw(λ+ wλ′) + ρP − wρQ, $∨〉 < 0

for all parabolic subgroups P of G and Q of G′, w ∈ 0W
G
G′ , λ ∈ E cusp

P (ϕ), λ′ ∈ E cusp
Q (ϕ′) and

$∨ ∈ ∆̂∨P ∩ ∆̂∨Q(w), then (ϕ,ϕ′) ∈ A (G×G′)∗, ϕ(g)ϕ′(g) is integrable over G′(F )\G′(A), and

PG′(ϕ⊗ ϕ′) =

∫
G′(F )\G′(A)

ϕ(g)ϕ′(g) dg.

Proof. By Lemma 2.2(i), if the integrals∫
Pw(F )\G′(A)

ΛT,Pm,wϕ(g)ϕ′(g)τP (HP (wg)− T ) dg (3.5)

are absolutely convergent for all P and w ∈ MW
G
G′ , then ϕ(g)ϕ′(g) is integrable overG′(F )\G′(A).

Fix P , w ∈ MW
G
G′ and ξ ∈ 0W

M
Mw

. Put β = ξw and take i ∈ [1, n+ 1] such that β = wi. In order

for (3.5) to be absolutely convergent, it suffices to find elements µ1 ∈ (aP0 )∗ and µ2 ∈ (a′0)∗ such
that the integrals∫

A′0(t′0)(i)
e〈<λ1+ρP+µ1,βH′0(a)〉e〈<λ2+ρQ+µQ2 −2ρ′0,H

′
0(a)〉(1 + ‖H ′0(a)‖)d da

683

https://doi.org/10.1112/S0010437X14007362 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007362


A. Ichino and S. Yamana

are convergent for all parabolic subgroups Q of G′, λ1 ∈ EP (ϕ) and λ2 ∈ E cusp
Q (ϕ′) in view

of Lemma 2.4, (2.5) and [MW95, Lemma I.4.1]. Thus it amounts to the same to prove the

convergence of the integral∫
a′0

e〈<(λ1+βλ2)+µ1+βµQ2 +ρP+β(ρQ−2ρ′0),βX〉τB(βX − t0)(1 + ‖X‖)d dX,

which is easily seen to be equivalent to showing that

<〈prβ(λ1 + βλ2) + µ1 + βµQ2 + ρP + β(ρQ − 2ρ′0), $∨〉 < 0

for all $∨ ∈ ∆̂∨0 . If $∨ ∈ ∆̂∨P r ∆̂∨Q(β), then 〈µ1, $
∨〉 = 0 and we can choose µ2 ∈ (a′0)∗ so that

〈βµQ2 , $∨〉 is very negative and the condition above is satisfied. The condition for $∨ /∈ ∆̂∨P is

fulfilled if µ1 ∈ (aP0 )∗ is sufficiently regular (depending on µ2) in the negative Weyl chamber. As

shown in [MW95, p. 50], there exist a parabolic subgroup R ⊂ P and %1 ∈ E cusp
R (ϕ) such that

λ1 coincides with the restriction of %1 to aP . Let $∨ ∈ ∆̂∨P ∩ ∆̂∨Q(β). Then

〈µ1, $
∨〉 = 〈βµQ2 , $

∨〉 = 〈ρP − ρR, $∨〉 = 〈β(ρQ − ρ′0), $∨〉 = 0.

Since ∆̂∨P ⊂ ∆̂∨R,

<〈prβ(λ1 + βλ2) + ρP + β(ρQ − 2ρ′0), $∨〉 = <〈prβ(%1 + βλ2) + ρR − βρQ, $∨〉 < 0

by assumption. Thus (3.5) is absolutely convergent, so that it is equal to PG′,T
P,w (ϕ⊗ϕ′). Summing

this over all P and w ∈ MW
G
G′ , we obtain the desired equality.

For each λ′ ∈ EPw(ϕ′), there exist a parabolic subgroup Q ⊂ Pw and %′ ∈ E cusp
Q (ϕ′) such that

λ′ is equal to the restriction of %′ to aPw . If $∨ ∈ ∆̂∨P , then since $∨ ∈ ∆̂∨R ∩ ∆̂∨Q(w),

<〈prw(λ1 + wλ′) + %P,w, $
∨〉 = <〈prw(%1 + w%′) + ρR − wρQ, $∨〉 < 0.

Thus (ϕ,ϕ′) belongs to A (G×G′)∗. 2

Remark 3.5. The proof above confirms that if ϕ : G(F )\G(A) → C is rapidly decreasing and

ϕ′ : G′(F )\G′(A)→ C is slowly increasing, then ϕ(g)ϕ′(g) is integrable over G′(F )\G′(A).

Proposition 3.6. If ϕ(λ) and ϕ′(λ′) are analytic families of automorphic forms and if O is the

set of all triplets (λ, λ′, s) such that (ϕ(λ), ϕ′(λ′)s) ∈ A (G × G′)∗, then O is a nonempty open

set and (λ, λ′, s) 7→ PG′(ϕ(λ)⊗ ϕ′(λ′)s) is an analytic function on O.

Proof. If we put e = (1, 1, . . . , 1) ∈ a∗G, then for s ∈ C,

〈prwi(se), $∨j 〉 =

{
js if j < i,

(j − n− 1)s if j > i.

It follows that for any fixed λ and λ′, the pair (ϕ(λ), ϕ′(λ′)s) belongs to A (G×G′)∗ for generic

values of the parameter s. Remark 2.5 concludes that the integral PG′,T
P,w (ϕ(λ) ⊗ ϕ′(λ′)s) is

uniformly convergent for λ, λ′ and s in compact subsets, which completes the proof. 2
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3.3 Periods of truncated automorphic forms
Proposition 3.7. (i) For ϕ ∈ A (G) and ϕ′ ∈ A (G′) the function

T 7→
∫
G′(F )\G′(A)

ΛTmϕ(g)ϕ′(g) dg,

defined for T ∈ (aG0 )+ sufficiently positive, is a polynomial exponential function
∑

λ pλ(T )e〈λ,T 〉.
The exponents may be taken from the set⋃

P

⋃
w∈MW

G
G′

{ηwP (λ+ wλ′ + %P,w) | λ ∈ EP (ϕ), λ′ ∈ EPw(ϕ′)}.

(ii) If (ϕ,ϕ′) ∈ A (G×G′)∗, then PG′(ϕ⊗ ϕ′) = p0(T ). In particular, the right-hand side is
constant.

Proof. The argument parallels that in the proof of Proposition 8.4.1 of [LR03]. Because of the
importance of this result for us, we reproduce the proof here. Since ΓP (X−T, T ′) is a compactly
supported function of X ∈ aGP , Lemma 2.4 enables us to integrate the equality in Lemma 2.2(ii)
against ϕ′ over G′(F )\G′(A). Then we get∫

G′(F )\G′(A)
ΛT+T ′
m ϕ(g)ϕ′(g) dg

=
∑
P

∑
w∈MW

G
G′

∫
Pw(F )\G′(A)

ΛT,Pm,wϕ(g)ϕ′(g)ΓP (HP (wg)− T, T ′) dg

=
∑
P

∑
w∈MW

G
G′

∫
Uw(A)Mw(F )\G′(A)

ΛT,Pm,wϕ(g)ϕ′Pw(g)ΓP (HP (wg)− T, T ′) dg.

Expand ϕP and ϕ′Pw as in (3.3). The inner integral is equal to the integral over Mw(F )\Mw(A)′×
K ′ and sum over i, j of

ΛT,Pm,wφi(mk)φ′j(mk)

∫ #

aMw+HPw (m)
Qij(X)e〈Λij+%P,w,wX〉ΓP (wX − T, T ′) dX.

Lemma 2.2 of [Art81] implies that the #-integral is a polynomial exponential function in T ′

whose exponents are {ηwQ(Λij + %P,w)}Q⊃P , which proves (i).

Observe that PG′,T
P,w (ϕ⊗ ϕ′) is a polynomial exponential function in T by applying (i) to M .

The zero exponent does not appear in all terms P 6= G by assumption. Since the regularized
period does not depend on T , it is equal to the coefficient of the zero exponent in the term
P = G. 2

Set d(T ) = min{〈α, T 〉 | α ∈ ∆0}.
Proposition 3.8 (cf. [Art85, Theorem 3.1]). Let ϕ be a smooth function on G(F )\G(A) such
that it and its derivatives have uniform moderate growth and let ϕ′ be a function of moderate
growth on G′(F )\G′(A). Then for each positive integer m there is a constant Cm independent
of T such that ∫

G′(F )\G′(A)
|ΛTmϕ(g)ϕ′(g)− ϕ(g)ϕ′(g)FG(g, T )| dg 6 Cme

−md(T ),

where T varies over suitably regular points such that d(T ) > ε0‖T‖ for some fixed positive
number ε0.
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Proof. We will freely use the notation and the discussion of Lemma 2.4. Lemma 6.1 of [Art78]

implies that σQQ is zero unless Q = G. Thus ΛTmϕ(g) − ϕ(g)FG(g, T ) is equal to the sum over

pairs Q ( P , elements w ∈ LW
G
G′ and γ ∈ Qw(F )\G′(F ) of the product

FQ(wγg, T )σPQ(HQ(wγg)− T )ϕQ,P (wγg).

By the assumption on ϕ and ϕ′, we can take m so that∑
I

∑
i

e−m〈βI ,H0(a1)〉|ϕ′(n∗ac)|
∫
NI(F )\NI(A)

|R(Xi)ϕ(uwac)| du

is bounded independently of T for all Q ( P and w. It follows that

|ΛTmϕ(g)ϕ′(g)− ϕ(g)ϕ′(g)FG(g, T )|

is bounded by a constant multiple of the sum over Q ( P , w, I and γ of

FQ(wγg, T )σPQ(HQ(wγg)− T )e−2m〈βI ,H0(wγg)〉.

Thus the integral ∫
G′(F )\G′(A)

|ΛTmϕ(g)ϕ′(g)− ϕ(g)ϕ′(g)FG(g, T )| dg

is bounded by a constant multiple of the sum over Q ( P , w and I of∫
Lw(F )\Lw(A)′

∫
aLw+HQw (m)

FQ(wm,T )σPQ(wX − T )e−2m〈βI ,wX〉 dX dm.

Observe that∫
aLw+HQw (m)

σPQ(wX − T )e−2m〈βI ,wX〉 dX =

∫
aGQ

σPQ(X − T )e−2m〈βI ,X〉 dX

6 e−2m〈βI ,T 〉
∏
α∈∆P

Q

∫ ∞
0

pα(t)e−2mt〈βI ,$∨α〉 dt.

The integral ∫
Lw(F )\Lw(A)′

FQ(wm,T ) dm

is certainly bounded by a constant multiple of a fixed power of e‖T‖. This completes our proof,
as the factor e−2m〈βI ,T 〉 is bounded by e−2md(T ). 2

We write C∗− = {
∑

α∈∆0
xαα | xα 6 0} for the closed negative Weyl chamber.

Lemma 3.9. Let

f(T ) = p0(T ) +

k∑
i=1

pi(T )e〈λi,T 〉

be a polynomial exponential function on aG0 , where 0, λ1, . . . , λk ∈ (aG0,C)∗ are distinct and pi(T ) 6=
0 for i ∈ [1, k]. Then the following conditions are equivalent:

(a) f(T ) converges as T →∞ in (aG0 )+;

(b) p0(T ) is constant and <λi ∈ C∗− r {0} for all i.

If these conditions are fulfilled, then f(T ) converges to p0(T ) as T →∞ in (aG0 )+.
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Proof. Clearly, (b) implies (a). Now we derive (b) from (a). We may assume that k > 1 and
that f(T ) converges to 0 as T → ∞ in (aG0 )+. Note that f(tδ) converges as t → ∞ for all
δ =

∑
α δα$

∨
α ∈ aG0 with δα > 0. Thus the statement immediately reduces to the case of aG0 = R.

We may assume that <λ1 > <λi for all i ∈ [2, k]. If <λ1 > 0, then f(T ) is asymptotic to∑
<λi=<λ1

pi(T )eλiT

as T → ∞, which reduces the statement to the case where <λi = 0 for all i. Put λ′i =
(2π
√
−1)−1λi. Considering the terms of maximal degree, we can reduce the statement to the

case where p0, p1, . . . , pk are constant. We may assume that λ′1, . . . , λ
′
l are rational and that

λ′l+1, . . . , λ
′
k are irrational. Since g(T ) = p0 +

∑l
i=1 pie

λiT is periodic, we have l < k by (a). We
fix irrational numbers µ1, . . . , µr, which are linearly independent over Q, such that

λ′i =
r∑
j=1

aijµj , aij ∈ Z, i ∈ [l + 1, k].

We fix real numbers d1, . . . , dr satisfying the following conditions:

– cm = g(m) +
∑k

i=l+1 pie
2π
√
−1

∑
j aijdj 6= 0 for all m ∈ Z;

– g(m) +
∑k

i=l+1 pie
−2π
√
−1

∑
j aijdj 6= 0 for all m ∈ Z.

Note that the set {g(m) | m ∈ Z} is finite. For any ε > 0, Weyl’s equidistribution theorem gives

an integer m such that |m| is arbitrarily large and |e2π
√
−1µjm − e2π

√
−1dj | < ε for all j ∈ [1, r].

At the cost of replacing dj by −dj , we may assume that m is positive. Then

f(m) = g(m) +

k∑
i=l+1

pie
2π
√
−1

∑
j aijµjm

is very close to cm 6= 0, which is a contradiction. 2

Corollary 3.10 (cf. [Lap11, Lemma 9]). If ϕ⊗ϕ′ ∈ A (G×G′) is integrable over G′(F )\G′(A),
then ∫

G′(F )\G′(A)
ϕ(g)ϕ′(g) dg = p0(T ),

where p0(T ) is as in Proposition 3.7(i).

Proof. The integral ∫
G′(F )\G′(A)

ΛTmϕ(g)ϕ′(g) dg

converges to the left-hand side as T →∞ in (aG0 )+ by Proposition 3.8, while it converges to the
right-hand side by Lemma 3.9. 2

4. Proof of Theorem 1.1

4.1 Eisenstein series on GLm

Let P = MU and Q = LV be parabolic subgroups of Gm. The longest element in WM is denoted
by wM0 . When Q ⊃ P , we put wLM = wL0w

M
0 . We write W (M,L) for the set of elements σ ∈Wm of

minimal length in σWM such that σMσ−1 = L. We say that Q is associated to P if W (M,L) is
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not empty. Set W (M) =
⋃
LW (M,L). Explicitly, an element in W (M) is represented by a unique

permutation matrix that shuffles the diagonal blocks of M without causing any internal change
within each block. For σ ∈ W (M), put σM = σMσ−1, denote by σP the standard parabolic
subgroup of Gm whose Levi subgroup is σM , and denote by σU the unipotent radical of σP . Let

LWM be the set of elements σ ∈ Wm such that σα > 0 for all α ∈ ∆P
0 and σ−1α > 0 for all

α ∈ ∆Q
0 . Let LW

c
M be the set of elements σ ∈ LWM such that σM ⊂ L.

For φ ∈ A c
P (Gm), λ ∈ a∗P,C and Q ⊃ P , the Eisenstein series

EQ(g, φ, λ) =
∑

γ∈P (F )\Q(F )

φλ(γg)

converges absolutely if 〈<λQ − ρQP , α∨〉 > 0 for all α∨ ∈ (∆∨)QP . When Q = Gm, we also write

w0, wM and E(φ, λ) instead of wGm0 , wGmM and EGm(φ, λ), respectively. Alongside, we define the
intertwining operator M(σ, λ) for σ ∈W (M) by

M(σ, λ)φ(g) = e−〈σλ,HσP (g)〉
∫

(σU∩σUσ−1)(A)\σU(A)
φ(σ−1ug)e〈λ,HP (σ−1ug)〉 du.

These admit the meromorphic continuation to a∗P,C. The constant term of E(φ, λ) along Q is
given by

EQ(φ, λ) =
∑

σ∈LW
c
M

EQ(M(σ, λ)φ, σλ) (4.1)

(see [MW95, § II.1.7]).
We fix once and for all a nontrivial additive character ψ : F\A → C× and extend it to a

character of Nm(A) trivial on Nm(F ) by setting

ψ(u) = ψ(u1,2 + · · ·+ um−1,m)

for u ∈ Nm(A). Its restriction to any subgroup of Nm(A) is also denoted by ψ. For a smooth
function f on Nm(F )\Gm(A), we put

Wψ(g, f) =

∫
Nm(F )\Nm(A)

f(ug)ψ(u) du.

For any Levi subgroup M , put
←−
M = w0Mw0. For φ ∈ A c

P (Gm) and λ ∈ a∗P,C, the integral

Wψ(g, φ, λ) = Wψ(g, φλ) =

∫
(Nm∩

←−
M)(F )\Nm(A)

φλ(w−1
M ug)ψ(u) du

factors through a nondegenerate Fourier coefficient

Wψ
M (g, φ) =

∫
(Nm∩M)(F )\(Nm∩M)(A)

φ(ug)ψ(u) du

of the inducing data. We have the following identity of meromorphic functions on a∗P,C:

Wψ(E(φ, λ)) = Wψ(φ, λ). (4.2)

For φ ∈ A c
P (G), ϕ′ ∈ A (G′) and a point λ ∈ a∗P,C at which Wψ(φ, λ) is analytic, the integral

I(φ, ϕ′s, λ) =

∫
N ′(A)\G′(A)

Wψ(g, φ, λ)W ψ̄(g, ϕ′s) dg
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is absolutely convergent for <s sufficiently large (depending on λ) (see [JPS79, § 13]). This is a
generalization of the integral studied extensively by Jacquet, Piatetski-Shapiro and Shalika in
[JPS79, JPS83, JS90, Jac09]. Since I(φ, ϕ′, λ) converges absolutely uniformly for λ in a compact
set in the domain of convergence of the integral (see [Jac09, Proposition 3.3]), it is holomorphic
for λ in that domain.

The proof of Theorem 1.1 begins with the following special case.

Lemma 4.1. If φ ∈ A c
P (G) and ϕ′ ∈ A (G′), then for λ ∈ a∗P,C in general position,

PG′(E(φ, λ)⊗ ϕ′) = I(φ, ϕ′, λ).

4.2 Fourier expansions of pseudo-Eisenstein series
For i ∈ [0,m] we regard Gi and Gm−i as subgroups of Gm through the natural embedding

(g1, g2) 7→
(
g1

g2

)
.

When Q = P(i,m−i) and φ is a smooth function on Q(F )\Gm(A), put

Wψ
Q(g, φ) =

∫
Nm−i(F )\Nm−i(A)

φ

[(
1i

u

)
g

]
ψ(u) du, g ∈ Gm(A).

For i ∈ [0, n] we define the subgroup Pi of G by

Pi =

{(
g y

u

) ∣∣∣∣ g ∈ Gi, u ∈ Nn+1−i, y ∈ Mi,n+1−i

}
.

Let Qi = LiVi be the parabolic subgroup of G attached to the composition (i, n+ 1− i). We put

P ′
i = Pi ∩G′, Q′i = L′iV ′i = Qi ∩G′.

Proposition 4.2. Let φ be a smooth function on Pn(F )\G(A). If the series

n∑
i=0

∑
γ∈P′i(F )\G′(F )

Wψ
Qi(γg, φQi)

converges absolutely, uniformly on compact subsets of G(A), then it is equal to φ(g).

Proof. Following the proof of Theorem 5.3 in [Sha74], we get

φ(g) =
∑

γ∈P′n−1(F )\G′(F )

Pφ(γg) + φQn(g),

where

Pφ(g) =

∫
Fn\An

φ

[(
1n y

1

)
g

]
ψ(yn) dy.

We fix g and consider the function fg on G′(A) given by fg(g
′) = Pφ(g′g). Since fg is a smooth

function on P ′
n−1(F )\G′(A), we may assume that

fg(g
′) =

n−1∑
i=0

∑
δ∈(P′i∩Gn−1)(F )\Gn−1(F )

Wψ
Q′i

(δg′, fg,Q′i)
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by induction. Since

Wψ
Q′i

(g′, fg,Q′i)

=

∫
Nn−i(F )\Nn−i(A)

fg,Q′i

[(
1i 0
0 u

)
g′
]
ψ(u) du

=

∫
Nn−i(F )\Nn−i(A)

∫
Mi,n−i(F )\Mi,n−i(A)

fg

[(
1i v
0 1n−i

)(
1i 0
0 u

)
g′
]
ψ(u) dv du

=

∫
Nn−i(F )\Nn−i(A)

∫
Mi,n−i(F )\Mi,n−i(A)

∫
Fn\An

φ

1i vu
u

y

1

 g′g

ψ(yn)ψ(u) dy dv du

= Wψ
Qi(g

′g, φQi),

the series in the right-hand side converges absolutely by assumption. Substituting the above into
the expression for φ, we get

φ(g) =
∑

γ∈P′n−1(F )\G′(F )

fg(γ) + φQn(g)

=
∑

γ∈P′n−1(F )\G′(F )

n−1∑
i=0

∑
δ∈(P′i∩Gn−1)(F )\Gn−1(F )

Wψ
Qi(δγg, φQi) +Wψ

Qn(g, φQn)

=
n∑
i=0

∑
γ∈P′i(F )\G′(F )

Wψ
Qi(γg, φQi)

as claimed. 2

For a finite-dimensional real vector space V , let PW(V ∗C ) be the Paley–Wiener space of
functions on V ∗C obtained as Fourier transforms of compactly supported smooth functions on V .
Fix a finite-dimensional subspace V of A c

P (G). Let PW(P,V) be the space of V-valued entire

functions on (aGP,C)∗ of Paley–Wiener type. We may identify PW(P,V) with PW((aGP,C)∗) ⊗ V.

For φ ∈ PW(P,V) and any fixed κ ∈ (aGP )∗, we define a function Fφ on AGU(A)M(F )\G(A),
compactly supported in HP (g), by

Fφ(g) =

∫
λ∈(aGP,C)∗, <λ=κ

φ(λ)(g)e〈λ,HP (g)〉 dλ

and define the pseudo-Eisenstein series θφ by

θφ(g) =
∑

γ∈P (F )\G(F )

Fφ(γg).

The sum is actually over a finite set depending on g (see [Art78, Lemma 5.1] and the argument
at the end of § 4.3), θφ is rapidly decreasing, and

θφ(g) =

∫
<λ=κ

E(g, φ(λ), λ) dλ (4.3)

for any κ in the region of convergence of the Eisenstein series (see [MW95, § II.1]).
When P ⊂ Qi for i ∈ [0, n], put M i = M ∩Gi. Let Pi = MiUi be the parabolic subgroup of

G whose Levi subgroup Mi is M i ×Gn+1−i and let P ′i = M ′iU
′
i be the parabolic subgroup of G′
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whose Levi subgroup M ′i is M i ×Gn−i. Define a Levi subgroup Mi of Gn+1−i by

Mi =

{
g ∈ Gn+1−i

∣∣∣∣ (1i tg

)
∈M

}
,

where tg = w0
tgw0 is the ‘second transpose’ of g about the second diagonal. For φ ∈ AP (G) and

λ ∈ a∗P,C we put

Wψ
i (g, φ, λ) = Wψ

i (g, φλ) =

∫
(N∩Mi)(F )\Nn+1−i(A)

φλ

[
(wMi

M )−1

(
1i

u

)
g

]
ψ(u) du.

Corollary 4.3. Let φ ∈ PW(P,V) and let f ∈ C∞c (G∞) be a decomposable function. Then

(f ∗ θφ)(g) =
n∑
i=0

∑
σ∈LiW

c
M

∑
γ∈(P′i∩σP )(F )\G′(F )

∫
<λ=κ

[f ∗Wψ
i (M(σ, λ)φ(λ), σλ)](γg) dλ,

where ∗ denotes convolution (see § 4.3 below for details) and the sum converges absolutely,

uniformly on compact subsets of G(A).

Proof. By (4.1) and (4.3),

θφ,Qi(g) =

∫
<λ=κ

∑
σ∈LiW

c
M

EQi(g,M(σ, λ)φ(λ), σλ) dλ.

Formally, Proposition 4.2 gives

(f ∗ θφ)(g) =

n∑
i=0

∑
γ∈P′i(F )\G′(F )

∑
σ∈LiW

c
M

∫
<λ=κ

[f ∗Wψ
Qi(E

Qi(M(σ, λ)φ(λ), σλ))](γg) dλ.

The corollary can be deduced from this and (4.2). To justify the manipulation, we will prove the

absolute convergence at the end of the next subsection. 2

4.3 Uniform estimates for Jacquet integrals

In the first half of this subsection, we switch to a local setting. Thus F = Fv is a local field. If

F is nonarchimedean, we denote by o = ov the integer ring of F and by q = qv the cardinality of

the residue field of F .

Fix a composition n = (n1, . . . , nt) of n + 1 and put P = Pn. For an irreducible unitary

representation π of M and λ ∈ a∗P,C, let πλ be the representation of M given by πλ(m) =

e〈λ,HP (m)〉π(m). We denote by IGP (πλ) the corresponding induced representation of G. Suppose

that π is generic and fix an isomorphism Wψ
M from π to the space of Whittaker functions of

π. For φ ∈ IGP (π) and λ ∈ a∗P,C we may define a Whittaker function Wψ(φλ) of IGP (πλ) by the

holomorphic continuation of the Jacquet integral

Wψ(g, φλ) =

∫
←−
U
Wψ
M (1, φλ(w−1

M ug))ψ(u) du,

where
←−
U = U←−n with ←−n = (nt, . . . , n1).
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First assume that F is nonarchimedean. Fix φ and choose an open compact subgroup K0 of

G so that φ is K0-invariant. We have Wψ(gk, φλ) = Wψ(g, φλ) for all g ∈ G, k ∈K0 and λ ∈ a∗P,C,

and thus there exists a constant c which does not depend on λ such that

Wψ(g, φλ) = 0 (4.4)

unless 〈α,H0(g)〉 6 c for all α ∈ ∆0. By a gauge estimate (see [JPS79, Proposition 2.3.6]),

|Wψ
M (m,φ(k))| 6 Ce〈µ,H0(m)〉

for all m ∈ M and k ∈ K, for some C > 0 and µ ∈ a∗0. It follows that |Wψ
M (1, φλ(g))| 6

Ce〈<λ+µ+ρP ,H0(g)〉 and hence

|Wψ(g, φλ)| 6 C

∫
←−
U
e〈<λ+µ+ρP ,H0(w−1

M ug)〉 du. (4.5)

If κ ∈ (aGP )∗ is sufficiently positive and <λ = κ, then this integral is convergent and defines an

element in IGB (ewM (κ+µ−ρP0 )). Combining (4.4) and (4.5), we can take C ′ > 0 and µ′ ∈ a∗0 such

that

|Wψ(g, φλ)| 6 C ′e〈µ
′,H0(g)〉 (4.6)

for all g ∈ G and <λ = κ.
Now suppose that ψ is of order zero and π is unramified. We denote by Wψ(πλ) the K-

invariant Whittaker function of IGP (πλ) such that Wψ(1, πλ) = 1. For i ∈ [1, n] we define αi ∈
Rat(T ) by

αi(t) = tit
−1
i+1, t = diag(t1, . . . , tn+1) ∈ T.

Assume further that q > n + 1. Since π is generic and unitary, it follows from [JPS79,

Proposition 2.4.1] that for any κ ∈ (aGP )∗ there exists r > 0 which depends on κ but not on

F or π such that

|Wψ(t, πλ)| 6 |α1(t) · · ·αn(t)|−rΦ(α1(t), . . . , αn(t)) (4.7)

for all t ∈ T and <λ = κ, where Φ is the characteristic function of on.

Next, assume that F is archimedean. For φ ∈ IGP (π), λ ∈ a∗P,C and f ∈ C∞c (G), we define an

element f ∗ φλ in IGP (πλ) by

(f ∗ φλ)(g) =

∫
G
φλ(gx)f(x) dx,

which we call a convolution section. By [Jac04, Lemma 1], we may define a Whittaker function

Wψ(f ∗ φλ) by the Jacquet integral. Recall that the space C∞c (G) is endowed with a topology

of an LF space. For the convenience of the reader, we recall the definition of the topology (see

[Trè06, § 13] for details). Choose a sequence of compact subsets C1 ⊂ C2 ⊂ · · · ⊂ Ci ⊂ · · · ⊂ G

such that
⋃
iCi = G. We may further assume that for any i, Ci is contained in the interior

of Ci+1. Let C∞Ci(G) be the space of smooth functions on G whose support is contained in Ci.

Then C∞Ci(G) ⊂ C∞Ci+1
(G) and

⋃
iC
∞
Ci

(G) = C∞c (G). We equip C∞Ci(G) with the topology of

uniform convergence of all derivatives. Then C∞Ci(G) becomes a Fréchet space and the topology
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on C∞Ci(G) agrees with the induced topology from C∞Ci+1
(G). We endow C∞c (G) with the finest

topology such that the inclusion C∞Ci(G)→ C∞c (G) is continuous for all i. In particular, C∞Ci(G) is

open in C∞c (G) for all i. Then C∞c (G) becomes an LF space and this topology on C∞c (G) does not

depend on the choice of the sequence {Ci}. It is easy to see that the action G×C∞c (G)→ C∞c (G)

given by left (or right) translation is continuous. If K ⊂ C∞c (G) is a compact subset, then by

definition, we have K ⊂ C∞Ci(G) for some i. In fact, the same property holds for any bounded

subset of C∞c (G) (see [Trè06, Proposition 14.6]).

Lemma 4.4 (cf. [Jac04, Proposition 9]). Let φ ∈ IGP (π). Fix κ ∈ (aGP )∗ and a compact set K ⊂
C∞c (G). Then there exist ri > 0 such that for any N > 0 there exists CN > 0 such that

|Wψ(tk, f ∗ φλ)| 6 CNe
〈ρ0,H0(t)〉

n∏
i=1

|αi(t)|−ri
(1 + |αi(t)|)N

for all t ∈ T ′, k ∈ K, <λ = κ and f ∈ K.

Proof. Proposition 9 of [Jac04], together with Casselman’s subrepresentation theorem, tells us

that for a given bounded set B ⊂ C∞c (G), the desired estimate holds for f = f1 ∗ · · · ∗ fn with

fi ∈ B. However, it is not clear whether the Dixmier–Malliavin theorem [DM78] implies that

K ⊂ B ∗ · · · ∗ B for some B.
To deduce the lemma from Jacquet’s estimates, we resort to a strong factorization. Let AG

be the image of R×+ in the center of G and put G1 = {g ∈ G | |det g| = 1}. Note that G = AG×G1.
We define an algebra homomorphism pr : C∞c (G)→ C∞c (G1) by

pr(f)(g) =

∫
AG

f(ag) da.

We may assume that π is trivial on AG. If <λ = κ, then AG acts trivially on IGP (πλ) and

(f ∗ φλ)(g) =

∫
G1

φλ(gx)pr(f)(x) dx.

Since pr(K) is compact, Remarque 4.10 of [DM78] gives a compact set K1 ⊂ C∞c (G) and functions

f2, . . . , fn ∈ C∞c (G) such that pr(K) = pr(K1) ∗ pr(f2) ∗ · · · ∗ pr(fn). Thus we can replace K by

K1 ∗ f2 ∗ · · · ∗ fn. 2

We go back to the global setting. We denote by S∞ the set of archimedean places of F .

Lemma 4.5. Let φ ∈ A c
P (G). Fix r > 0, κ ∈ (aGP )∗ sufficiently positive and a compact set

Kv ⊂ C∞c (Gv) for each v ∈ S∞. Put K =
∏
v∈S∞ Kv. Let S be a fundamental domain for

N ′(F )\G′(A). Then there exists s0 > 0 (depending on r, κ and K) such that the integral∫
S
‖g‖r|det g|σ|Wψ(g, f ∗ φλ)| dg

is bounded uniformly for σ > s0 in a compact set, <λ = κ and f ∈ K.

Proof. We can assume that for all k ∈ K the function m 7→ e−〈ρP ,HP (m)〉φ(mk) belongs to an

irreducible summand π of A c(M) and that φ =
⊗

vφv is factorizable. We view Wψ
M as an

isomorphism from π to the space of Whittaker functions of π. By uniqueness of the Whittaker
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model, we may factorize Wψ
M into a product

∏
vW

ψv
M under a fixed isomorphism π '

⊗
vπv. Let

f =
∏
v∈S∞ fv, where fv ∈ Kv. Then we can decompose Wψ(f ∗ φλ) as

Wψ(f ∗ φλ) = bS(λ, π)−1
∏
v∈S∞

Wψv(fv ∗ φv,λ)
∏

v∈SrS∞

Wψv(φv,λ)
∏
v 6∈S

Wψv(πv,λ), (4.8)

where S is a sufficiently large finite set of places of F containing S∞ and

bS(λ, π) =
∏

16i<j6t

LS(λi − λj + 1, πi × π∨j )

for π =
⊗

i∈[1,t] πi and λ = (λ1, . . . , λt) ∈ a∗P,C ' Ct.
We claim that there exists a constant C > 0 such that

|bS(λ, π)| > C

for all λ ∈ a∗P,C such that 〈<λ, α∨〉 > 2 for all α∨ ∈ ∆∨P . To see this, fix i < j and v 6∈ S. Let
{β1, . . . , βni} and {β′1, . . . , β′nj} be the Satake parameters of πi,v and π∨j,v, respectively. Since πv is

generic and unitary, we have q
−1/2
v < |βk|, |β′l| < q

1/2
v for all k, l. Hence |1−βkβ′lq−sv | < 1+q−<s+1

v

and

|L(s, πi,v × π∨j,v)| =
∏
k,l

1

|1− βkβ′lq
−s
v |

>
1

(1 + q−<s+1
v )ninj

.

The product
∏
v 6∈S(1 + q−<s+1

v )−1 is absolutely convergent and nonzero for <s > 2, bounded
from below uniformly for <s tending to +∞. This implies the assertion.

By the above, all that is required is that∫
S
‖g‖r|det g|σ

∏
v∈S∞

|Wψv(gv, fv ∗ φv,λ)|
∏

v∈SrS∞

|Wψv(gv, φv,λ)|
∏
v 6∈S
|Wψv(gv, πv,λ)| dg

be bounded uniformly for σ > s0 in a compact set, <λ = κ and fv ∈ Kv. This integral is bounded
by the product over v of ∫

T ′v×K′v
‖t‖r|det t|σWv(tk)e−〈2ρ

′
0,H
′
0(t)〉 dt dk, (4.9)

where

Wv(g) =


|Wψv(g, fv ∗ φv,λ)| if v ∈ S∞,

|Wψv(g, φv,λ)| if v ∈ S r S∞,

|Wψv(g, πv,λ)| if v 6∈ S.

For any µ ∈ (a′0)∗ there exists d > 0 such that e〈µ,H
′
0(t)〉 6 ‖t‖d. Consider the isomorphism

T ′v → (F×v )n given by t 7→ (α1(t), . . . , αn(t)). Since its inverse is given by

(α1, . . . , αn) 7→ diag(α1 · · ·αn, α2 · · ·αn, . . . , αn),

we have
‖t‖ 6 ‖α1(t)‖‖α2(t)‖ · · · ‖αn(t)‖, |det t| = |α1(t)||α2(t)|2 · · · |αn(t)|n.

If v ∈ S∞, then by Lemma 4.4 there exist ri, R > 0 such that for any N > 0 there exists CN > 0
such that (4.9) is bounded by

CN

∫
T ′v

n∏
i=1

‖αi(t)‖R|αi(t)|iσ−ri(1 + |αi(t)|)−N dt

694

https://doi.org/10.1112/S0010437X14007362 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007362


Periods of automorphic forms: the case of (GLn+1 ×GLn,GLn)

for all <λ = κ and fv ∈ Kv. If iσ > ri + R for all i, then we may choose N � 0 so that this

integral is convergent, uniformly for σ in a compact set. If v ∈ S r S∞, then by (4.4) and (4.6)

there exist R > 0 and Φ ∈ S(Fnv ) such that (4.9) is bounded by∫
T ′v

n∏
i=1

‖αi(t)‖R|αi(t)|iσ|Φ(α1(t), . . . , αn(t))| dt

for all <λ = κ. If iσ > R for all i, then this integral is convergent, uniformly for σ in a compact

set. If v /∈ S, then by (4.7) there exist r0, R > 0 which do not depend on v such that (4.9) is

bounded by ∫
T ′v

n∏
i=1

‖αi(t)‖R|αi(t)|iσ−r0Φ(α1(t), . . . , αn(t)) dt

for all <λ = κ, where Φ is the characteristic function of onv . If iσ > r0 +R+ 1 for all i, then the

product of this integral over v 6∈ S is convergent, uniformly for σ in a compact set. 2

Lemma 4.6. Let i ∈ IP r {n + 1}, φ ∈ PW(P,V) and ϕ′ ∈ A (G′). Let f ∈ C∞c (G∞) be a

decomposable function. If <s� 0, then∫
(P′i∩P )(F )\G′(A)

|Wψ
i (g, f ∗ Fφ)ϕ′s(g)| dg

is convergent.

Proof. In order to save space, we write G in place of Gn+1−i and denote by M , N and
S fundamental domains for M i(F )\M i(A), (N ∩Mi)(F )\Nn+1−i(A) and Nn−i(F )\Gn−i(A),
respectively. Let J be the element in Wn+1−i such that (wMi

M )−1 = diag(1i, J). We denote by
K∞ the standard maximal compact subgroup of G∞. For an adele point g ∈ G(A), we denote
its infinite part by g∞ and its finite part by gf . Observe first that for m ∈M i(A), g ∈ G(A) and
k ∈ K,

Wψ
i

[(
m

g

)
k, f ∗ Fφ

]
=

∫
N

(f ∗ Fφ)

[(
m

Jug

)
k

]
ψ(u) du

=

∫
N

∫
G∞

Fφ

[(
m

Jug

)
kx

]
f(x) dxψ(u) du

=

∫
N

∫
K∞

∫
G∞

∫
M i
∞

Fφ

[(
ma

Jugb

)
hkf

]
fk∞a,h (b) da db dhψ(u) du,

where we define fk∞a,h ∈ C
∞
c (G∞) by

fk∞a,h (b) = e−2〈ρPi ,HPi (a)〉|det b|i
∫
Ui,∞

f

[
k−1
∞ v

(
a

b

)
h

]
dv, b ∈ G∞,

for a ∈M i
∞ and h, k∞ ∈ K∞. Put σ = <s and

ϕ′′(g) =

∫
U ′i(F )\U ′i(A)

|ϕ′(ug)| du.
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The integral equals∫
K′

∫
S

∫
M
ϕ′′σ

[(
m

g

)
k

] ∣∣∣∣Wψ
i

[(
m

g

)
k, f ∗ Fφ

]∣∣∣∣ e−2〈ρP ′
i
,HP ′

i
(m)〉|det g|i dm dg dk

=

∫
K′

∫
S

∫
M
ϕ′′σ

[(
m

g

)
k

]
e
−2〈ρP ′

i
,HP ′

i
(m)〉|det g|i

×
∣∣∣∣∫

N

∫
K∞

∫
G∞

∫
M i
∞

Fφ

[(
ma

Jugb

)
hkf

]
fk∞a,h (b) da db dhψ(u) du

∣∣∣∣ dm dg dk,

which is bounded by

c

∫
K′

∫
S

∫
M

∫
K∞

∫
M i
∞

‖m‖r‖a‖r‖g‖r|detm|σ|det a|−σ|det g|σ

×
∣∣∣∣∫

N

∫
G∞

Fφ

[(
m

Jugb

)
hkf

]
fk∞a,h (b) db ψ(u) du

∣∣∣∣ da dh dm dg dk

for some constants c, r > 0 which do not depend on σ. Since fk∞a,h is identically zero for a outside

some compact subset of M i
∞, it suffices to show that the integral∫

S

∫
M
‖m‖r‖g‖r|detm|σ|det g|σ

∣∣∣∣∫
N

∫
G∞

Fφ

[(
m

Jugb

)]
f(b) db ψ(u) du

∣∣∣∣ dm dg

is bounded uniformly for decomposable functions f ∈ C∞c (G∞) in a compact set.

Put P =MU = P ∩ G. We may assume that

φ(λ)

[(
m

g

)]
= β(λ)Φ(m)Ψ(g)e〈ρPi ,HP (m)+HP (g)〉

for some β ∈ PW((aGP,C)∗), Φ ∈ A c(M i) and Ψ ∈ A c
P(G). We may further assume that for all

k ∈Kn+1−i the function m 7→ e−〈ρP ,HP (m)〉Ψ(mk) belongs to an irreducible summand of A c(M).
For any λ ∈ (aGP,C)∗ we write λ = λ1 + λ2, where λ1 ∈ (aGPi,C)∗ and λ2 ∈ (aPiP,C)∗. Fix κ ∈ (aGP )∗

sufficiently positive. Then

Fφ

[(
m

g

)]
= Φ(m)Ψ(g)

∫
<λ=κ

β(λ)e〈λ+ρPi ,HP (m)+HP (g)〉 dλ

= Φ(m)Ψ(g)

∫
<λ2=κ2

β̂((HPi(m) +HPi(g))G, λ2)e〈λ2,HP (g)〉 dλ2

= Φ(m)

∫
<λ2=κ2

β̂((HPi(m) +HPi(g))G, λ2)Ψλ2(g) dλ2,

where we put

β̂(X1, λ2) =

∫
<λ1=κ1

β(λ1 + λ2)e〈λ1+ρPi ,X1〉 dλ1, X1 ∈ aGPi , λ2 ∈ (aPiP,C)∗.

For each v ∈ S∞, let AGv be the image of R×+ in the center of Gv, and put G1
v = {g ∈ Gv | |det g| =

1}. Put AG∞ =
∏
v∈S∞ AGv and G1

∞ =
∏
v∈S∞ G

1
v . Then G∞ = AG∞ × G1

∞ and
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N

∫
G∞

Fφ

[(
m

Jugb

)]
f(b) db ψ(u) du

= Φ(m)

∫
N

∫
G∞

∫
<λ2=κ2

β̂((HPi(m) +HPi(gb))
G, λ2)Ψλ2(Jugb)f(b) dλ2 db ψ(u) du

= Φ(m)

∫
N

∫
G1∞

∫
AG∞

∫
<λ2=κ2

β̂((HPi(m) +HPi(ga))G, λ2)Ψλ2(Jugb)fa(b) dλ2 da db ψ(u) du,

where we define fa ∈ C∞c (G1
∞) by fa(b) = f(ab). Thus the integral is bounded by∫

S

∫
M

∫
AG∞

∫
<λ2=κ2

‖m‖r‖g‖r|detm|σ|det g|σ|Φ(m)β̂((HPi(m) +HPi(ga))G, λ2)|

×
∣∣∣∣∫

N

∫
G1∞

Ψλ2(Jugb)fa(b) db ψ(u) du

∣∣∣∣ dλ2 da dm dg.

There is a compact subset C of AG∞ (depending on a given compact set Ξ ⊂ C∞c (G∞) of
decomposable functions) such that fa is identically zero for all f ∈ Ξ unless a ∈ C. We can
take β̂1 ∈ S(aGPi) and β2 ∈ S((aPiP,C)∗) such that |β̂(X1 + HPi(a)G, λ2)| 6 |β̂1(X1)β2(λ2)| for all
a ∈ C. Therefore, it suffices to show that the integral∫

S

∫
M

∫
<λ2=κ2

‖m‖r‖g‖r|detm|σ|det g|σ|Φ(m)β̂1((HPi(m) +HPi(g))G)β2(λ2)|

×
∣∣∣∣∫

N

∫
G1∞

Ψλ2(Jugb)f(b) db ψ(u) du

∣∣∣∣ dλ2 dm dg

is bounded uniformly for decomposable functions f ∈ C∞c (G1
∞) in a compact set.

For g ∈ G(A), let ag be the unique element in AGi satisfying |det ag| = |det g|i/(n+1−i). Then
HPi(g)G = HPi(a

−1
g )G and∫
M
‖m‖r|detm|σ|Φ(m)β̂1((HPi(m) +HPi(g))G)| dm

6 c′‖ag‖r|det ag|σ
∫

M
‖m‖r|detm|σ|Φ(m)β̂1(HPi(m)G)| dm

6 c′′‖g‖r′ |det g|iσ/(n+1−i)
∫
AMi

‖a‖r|det a|σ|β̂1(HPi(a)G)| da

for some constants c′, c′′, r′ > 0 which do not depend on σ. Since the last integral is convergent,
it remains to show that the integral∫

<λ2=κ2

|β2(λ2)|
∫

S
‖g‖r+r′ |det g|(n+1)σ/(n+1−i)

∣∣∣∣∫
N

∫
G1∞

Ψλ2(Jugb)f(b) db ψ(u) du

∣∣∣∣ dg dλ2

is bounded uniformly for decomposable functions f ∈ C∞c (G1
∞) in a compact set, which reduces

to Lemma 4.5. 2

We conclude this subsection by completing our proof of Corollary 4.3. It remains to prove
that for each i and σ, the sum∑

γ∈(P′i∩σP )(F )\G′(F )

∫
<λ=κ

[f ∗Wψ
i (M(σ, λ)φ(λ), σλ)](γg) dλ
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converges absolutely, uniformly on compact subsets of G(A). We will write σPi = (σP )i and
σP ′i = (σP )′i for brevity. Since the function

X 7→
∫
<λ=κ

f ∗ [M(σ, λ)φ(λ)]σλ(eXg) dλ, X ∈ aσP

is compactly supported modulo aG, uniformly for g ∈ G(A) with HσP (g) = 0, we can take a
subset X ⊂ aσPi whose projection to aGσPi is compact and such that the support of the function

X 7→
∫
<λ=κ

[f ∗Wψ
i (M(σ, λ)φ(λ), σλ)](eXg) dλ, X ∈ aσPi

is contained in X for all g ∈ G(A) with HσPi(g) = 0. Fix a compact subset C ⊂ G(A) and choose
T ∈ aσPi so that

{X −HσPi(kh)− T | X ∈ X , k ∈ K,h ∈ C} ⊂ ĈσPi ,

where ĈσPi is the cone defining τ̂σPi . By [Art78, Lemma 5.1], the set of γ ∈ σPi(F )\G(F ) such
that τ̂σPi(HσPi(γ)− T ) = 1 is finite. Choose a finite subset Γ ⊂ G′(F ) so that

σP ′i (F )Γ = {γ ∈ G′(F ) | τ̂σPi(HσPi(γ)− T ) = 1}.

If ∫
<λ=κ

[f ∗Wψ
i (M(σ, λ)φ(λ), σλ)](γh) dλ 6= 0

for γ ∈ G′(F ) and h ∈ C, then HσPi(γh) ∈ X . Since

HσPi(γh) = HσPi(γ) +HσPi(k(γ)h),

where k(γ) ∈ K is a K-part of the Iwasawa decomposition of γ, we have HσPi(γ)− T ∈ ĈσPi and
hence γ ∈ σP ′i (F )Γ. It therefore suffices to show that the sum∑

γ∈Nn−i(F )\Gn−i(F )

∫
<λ=κ

[f ∗Wψ
i (M(σ, λ)φ(λ), σλ)]

[(
1i

γ

)
g

]
dλ

converges absolutely, uniformly on compact subsets of G(A).
For each h ∈ G∞, we have

[f ∗Wψ
i (M(σ, λ)φ(λ), σλ)](gh) = [fh ∗Wψ

i (M(σ, λ)φ(λ), σλ)](g),

where fh(x) = f(h−1x). Since the map (f, h) 7→ fh is continuous, the subset {fh | h ∈ C∞} ⊂
C∞c (G∞) is compact for any compact subset C∞ ⊂ G∞. We have thus reduced to showing the
absolute convergence of the sum above with g = 1n+1, uniformly for decomposable functions
f ∈ C∞c (G∞) in a compact set. We may assume that φ(λ) = β(λ)φ for some β ∈ PW((aGP,C)∗)

and φ ∈ A c
P (G). We may further assume that for all k ∈K the function m 7→ e−〈ρP ,HP (m)〉φ(mk)

belongs to an irreducible summand π '
⊗

v πv of A c(M) and that φ =
⊗

v φv is factorizable.
For each v and λ ∈ a∗P,C we define the representation πv,λ of Mv on the same space by

πv,λ(m) = e〈λ,HP (m)〉πv(m). We realize the local induced representation IGvPv (πv,λ) on a space
HP (πv) (independent of λ) of πv-valued functions on Kv, and decompose M(σ, λ) into a product
of local intertwining operators Mv(σ, λ) : HP (πv)→ HσP (σπv). We denote by Luσ the subspace
of the Lie algebra of the L-group of U consisting of all those root spaces whose roots are sent to
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the negative roots under σ and by r∨σ the contragredient of the adjoint action rσ of the L-group

of M on Luσ. Then

M(σ, λ)φ(λ) = β(λ)
LS(0, πλ, r

∨
σ )

LS(1, πλ, r∨σ )

(⊗
v∈S

Mv(σ, λ)φv

)
⊗
(⊗
v/∈S

φ′v,0

)

for a sufficiently large finite set S of places of F containing S∞, where φ′v,0 is a Kv-fixed element

in HσP (σπv) used to define the restricted tensor product IGσP (σπλ) '
⊗

vHσP (σπv).

As in the proof of Lemma 4.5, we can show that the function λ 7→ LS(0, πλ, r
∨
σ )/LS(1, πλ, r

∨
σ )

is holomorphic and bounded on a vertical strip containing <λ = κ. By Cauchy’s integral formula,

all its derivatives are also bounded on <λ = κ. If v ∈ S, then since φv is Kv-finite, there

exists a finite set of Kv-types Fv independent of λ such that any Kv-type occurring in the

Kv-span of Mv(σ, λ)φv belongs to Fv for all λ. Hence, noting that HσP (σπv) is admissible, we

can write Mv(σ, λ)φv as a finite sum
∑

j cv,j(λ)φ′v,j for some functions cv,j(λ) in λ and Kv-finite

elements φ′v,j in HσP (σπv). We may assume that the φ′v,j are linearly independent. Then cv,j(λ)

is holomorphic in the region of absolute convergence of Mv(σ, λ). We shall show that cv,j(λ) and

all its derivatives are bounded on <λ = κ. If v ∈ S r S∞, then this is clear since there exists

a lattice Λv ⊂ (aGP )∗ such that Mv(σ, λ +
√
−1λ0) = Mv(σ, λ) for all λ0 ∈ Λv. Suppose that

v ∈ S∞. Fixing an inner product on σπv, we equip HσP (σπv) with the inner product (·, ·) given

by integration over Kv, the norm ‖ · ‖ associated to (·, ·), and the supremum norm ‖ · ‖∞. Note

that ‖ · ‖ 6 ‖ · ‖∞. For each j, we can find a Kv-finite element φ′′v,j in HσP (σπv) such that

cv,j(λ) = (Mv(σ, λ)φv, φ
′′
v,j).

Hence

|cv,j(λ)| 6 ‖Mv(σ, λ)φv‖‖φ′′v,j‖ 6 ‖Mv(σ, λ)φv‖∞‖φ′′v,j‖∞

by the Cauchy–Schwarz inequality. On the other hand, it follows from [Wal92, Lemma 10.1.11]

that ‖Mv(σ, λ)φv‖∞ is bounded on a vertical strip containing <λ = κ. By Cauchy’s integral

formula again, cv,j(λ) and all its derivatives are also bounded on <λ = κ.

Thus, after replacing β(λ) if necessary and rewriting σP as P , etc., we have reduced to

showing the absolute convergence of the sum∑
γ∈Nn−i(F )\Gn−i(F )

∫
<λ=κ

[f ∗Wψ
i (φ(λ), λ)]

[(
1i

γ

)]
dλ,

uniformly for f ∈ K, where i ∈ IP r {n + 1}, κ ∈ (aGP )∗ with κQi ∈ (aQiP )∗ sufficiently positive,

φ(λ) = β(λ)φ with β(λ) ∈ S((aGP,C)∗) and φ ∈ A c
P (G), and K ⊂ C∞c (G∞) is a compact subset of

decomposable functions. We retain the notation in the proof of Lemma 4.6. There we observe

that

[f∗Wψ
i (φ(λ), λ)]

[(
1i

g

)]
= β(λ)

∫
N

∫
K∞

∫
G∞

∫
M i
∞

φλ

[(
a

Jugb

)
h

]
f1
a,h(b) da db dhψ(u) du

for g ∈ G(A). Since K is compact, there exists a compact subset of G∞ which contains the support

of any f ∈ K, so that f1
a,h is identically zero for all f ∈ K and h ∈K∞ if a is outside some compact

subset of M i
∞. Since φ is K∞-finite and the subset {f1

a,h | f ∈ K, a ∈M i
∞, h ∈ K∞} ⊂ C∞c (G∞)
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is compact, it suffices to show that for any compact subset Ω ⊂ M i
∞ and any compact subset

Ξ ⊂ C∞c (G∞) of decomposable functions, the sum∑
γ∈Nn−i(F )\Gn−i(F )

∣∣∣∣∫
<λ=κ

∫
N

∫
G∞

β(λ)φλ

[(
a

Juγb

)]
f(b) db ψ(u) du dλ

∣∣∣∣
is bounded uniformly for a ∈ Ω and f ∈ Ξ. We may assume that

φ

[(
m

g

)]
= Φ(m)Ψ(g)e〈ρPi ,HP (m)+HP (g)〉

for some Φ ∈ A c(M i) and Ψ ∈ A c
P(G). We may further assume that for all k ∈ Kn+1−i the

function m 7→ e−〈ρP ,HP (m)〉Ψ(mk) belongs to an irreducible summand of A c(M). Then the
computation in the proof of Lemma 4.6 yields∫

<λ=κ

∫
N

∫
G∞

β(λ)φλ

[(
a

Juγb

)]
f(b) db ψ(u) du dλ

=

∫
<λ2=κ2

∫
N

∫
AG∞

∫
G1∞

Φ(a)β̂((HPi(a) +HPi(z))
G, λ2)Ψλ2(Juγb)fz(b) db dz ψ(u) du dλ2

for γ ∈ Gn−i(F ). There is a compact subset Ω′ ⊂ AG∞ such that fz is identically zero for all f ∈ Ξ
unless z ∈ Ω′. We can take β′ ∈ S((aPiP,C)∗) such that |Φ(a)β̂((HPi(a) + HPi(z))

G, λ2)| 6 β′(λ2)
for all a ∈ Ω and z ∈ Ω′. Then the absolute value of the integral above is bounded by∫

<λ2=κ2

∫
AG∞

β′(λ2)

∣∣∣∣∫
N

∫
G1∞

Ψλ2(Juγb)fz(b) db ψ(u) du

∣∣∣∣ dz dλ2

for all a ∈ Ω and f ∈ Ξ. Since the subset {fz | f ∈ Ξ, z ∈ AG∞} ⊂ C∞c (G1
∞) is compact, it suffices

to show that for any compact subset Ξ1 ⊂ C∞c (G1
∞) of decomposable functions, the sum∑

γ∈Nn−i(F )\Gn−i(F )

∣∣∣∣∫
N

∫
G1∞

Ψλ2(Juγb)f(b) db ψ(u) du

∣∣∣∣
is bounded uniformly for <λ2 = κ2 and f ∈ Ξ1. Choose a compact neighborhood V of 1n−i in
Gn−i(A) whose translates by Gn−i(F ) do not meet it. Since κ2 is sufficiently positive in (aPiP )∗,
the proof of Lemma 4.5 gives a function ξ on Nn−i(A)\Gn−i(A) such that∣∣∣∣∫

N

∫
G1∞

Ψλ2(Jugb)f(b) db ψ(u) du

∣∣∣∣ 6 ξ(gx)

for g ∈ Gn−i(A), x ∈ V , <λ2 = κ2, and f ∈ Ξ1, and such that the integral∫
Nn−i(F )\Gn−i(A)

ξ(g)|det g|s dg

converges for sufficiently large s ∈ R. More precisely, we apply the argument to C∞c (G1
∞)

rather than to C∞c (G∞), noting that AG∞ acts trivially on Ψλ2 . The uniform convergence of
the sum above now follows from [JPS79, proof of Proposition 12.2]. This completes the proof of
Corollary 4.3.
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4.4 Periods of pseudo-Eisenstein series
Let f ∈ C∞c (G∞). When φ(λ) ∈A c

P (G) depends holomorphically on λ ∈ a∗P,C, we define f? φ(λ) ∈
A c
P (G) by

(f ? φ(λ))λ = f ∗ φ(λ)λ

for λ ∈ a∗P,C, where we recall that φ(λ)λ(g) = φ(λ)(g)e〈λ,HP (g)〉 for g ∈ G(A).

Lemma 4.7. Let φ ∈ PW(P,V) and ϕ′ ∈ A (G′). Let f ∈ C∞c (G∞) be a decomposable function.
Fix s ∈ C with <s large enough. Put

si =

(
−s, . . . ,−s︸ ︷︷ ︸

i

,
is

n+ 1− i
, . . . ,

is

n+ 1− i︸ ︷︷ ︸
n+1−i

)
∈ (aGQi,C)∗.

For i ∈ [0, n] and σ ∈ LiW
c
M we write σPi = (σP )i,

σP ′i = (σP )′i and σM i = σM ∩Gi for brevity.

Assume that φ(σ−1λ) vanishes to a higher order on the affine subspaces

βGσPi + si + (a
σPi
σP,C)∗

for i ∈ [1, n], σ ∈ LiW
c
M and λ′ ∈ EσP ′i (ϕ

′), where β is the restriction of ρσP ′i − ρσPi − λ
′ to aσM i .

Then ∫
G′(F )\G′(A)

(f ∗ θφ)(g)ϕ′s(g) dg =

∫
<λ=κ

I(f ? φ(λ), ϕ′s, λ) dλ.

Proof. To simplify notation, we put Fi,σ(g, σλ) = [f ∗Wψ
i (M(σ, λ)φ(λ), σλ)](g). Corollary 4.3,

together with Lemmas 4.5 and 4.6, tells us that∫
G′(F )\G′(A)

(f ∗ θφ)(g)ϕ′s(g) dg

=
n∑
i=0

∑
σ∈LiW

c
M

∫
(P′i∩σP )(F )\G′(A)

∫
<λ=κ

Fi,σ(g, σλ)ϕ′s(g) dλ dg

=
n∑
i=0

∑
σ∈LiW

c
M

∫
(P′i∩σP )(F )\G′(A)

∫
ν∈(aGσP,C)∗,<ν=σκ

Fi,σ(g, ν)W ψ̄
Q′i

(g, ϕ′σP ′i ,s
) dν dg.

Note that we can apply Lemma 4.6 to M(σ, λ)φ(λ) by the argument about intertwining operators
at the end of § 4.3. The function ϕ′σP ′i

has a decomposition of the form

ϕ′σP ′i

[
u

(
m

h

)
k

]
=
∑
µ

Qµ(HσP ′i
(m)G)φ′µ

[(
m

h

)
k

]
,

where

u ∈ σU ′i(A), m ∈ σM i(A), h ∈ Gn−i(A), k ∈ K ′, µ ∈ (aGσPi,C)∗, Qµ ∈ C[aGσPi ]

and φ′µ ∈ AσP ′i
(G′) is an eigenfunction under aσM i satisfying

φ′µ(eXg) = e
〈2ρσP ′

i
−ρσPi−µ,X〉φ′µ(g)
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for X ∈ aσM i . Fix i ∈ [1, n], σ ∈ LiW
c
M and µ. We write the corresponding summand as∫

K′

∫
Nn−i(A)\Gn−i(A)

∫
σM i(F )\σM i(A)1

∫
aσMi

∫
<ν=σκ

Fi,σ

[
eX
(
m

h

)
k, ν

]
×Qµ(XG)W ψ̄

Q′i

[
eX
(
m

h

)
k, φ′µ,s

]
e
−2〈ρσP ′

i
,X〉|deth|i dν dX dm dh dk.

Put g =
(
m
h

)
k. We can use Fourier inversion for the inner integration to obtain∫

aσMi

∫
<ν=σκ

Fi,σ(eXg, ν)Qµ(XG)e
〈2ρσP ′

i
−ρσPi−µ−si,X〉W ψ̄

Q′i
(g, φ′µ,s)e

−2〈ρσP ′
i
,X〉

dν dX

= W ψ̄
Q′i

(g, φ′µ,s)

∫
aGσPi

∫
<ν=σκ

Fi,σ(eXg, ν)Qµ(X)e−〈ρσPi+µ+si,X〉 dν dX

= W ψ̄
Q′i

(g, φ′µ,s)

∫
aGσPi

∫
<ν=σκ

(Dµ •Fi,σ)(eXg, ν)e−〈ρσPi+µ+si,X〉 dν dX

= W ψ̄
Q′i

(g, φ′µ,s)

∫
ν∈(a

σPi
σP,C)∗, <ν=(σκ)

σPi
σP

(Dµ •Fi,σ)(g, µ+ si + ν) dν,

where Dµ is a differential operator with constant coefficients on (aGσPi,C)∗ and Dµ •Fi,σ is defined
by

(Dµ •Fi,σ)(g, ν)e−〈ν+ρσP ,HσP (g)〉 = Dµ[Fi,σ(g, ν)e−〈ν+ρσP ,HσP (g)〉].

Thus the inner integration vanishes by assumption, and only the zeroth term contributes. Since
Lemma 4.5 allows us to interchange the inner integral with the outer integral, our proof is
complete. 2

For ϕ′ ∈ A (G′), let D = Dϕ′ be the set of elements Λ ∈ (aGP )∗ ∩ (ρP + (a∗P )+) satisfying

〈σΛ + prw(wλ′) + %Q,w, $
∨〉 6= 0

for all proper parabolic subgroups Q of G, w ∈ LW
G
G′ , σ ∈ LW

c
M , λ′ ∈ EQw(ϕ′) and $∨ ∈ ∆̂∨Q.

Whenever φ ∈ A c
P (G) and <λ ∈ D, the Eisenstein series E(φ, λ) converges absolutely and the

regularized period PG′(E(φ, λ)⊗ ϕ′) is well-defined.

Lemma 4.8. If φ ∈ A c
P (G) and ϕ′ ∈ A (G′), then PG′(E(φ, λ)⊗ϕ′) is bounded on {λ | <λ ∈ D}

for any compact set D ⊂ D.

Proof. Since

ΛT,Qm,wE(φ, λ) =
∑

σ∈LW
c
M

ΛT,Qm,wE
Q(M(σ, λ)φ, σλ)

by (4.1), we get

PG′,T
Q,w (E(φ, λ)⊗ ϕ′) =

∑
σ∈LW

c
M

∫ #

Qw(F )\G′(A)
ΛT,Qm,wE

Q(g,M(σ, λ)φ, σλ)ϕ′Qw(g)τQ(HQ(wg)− T ) dg.

Expand ϕ′Qw as in (3.3). Then PG′,T
Q,w (E(φ, λ)⊗ ϕ′) is the sum over σ and j of∫

K′

∫
Lw(F )\Lw(A)′

ΛT,Qm,wE
Q(mk,M(σ, λ)φ, (σλ)Q)φ′j(mk)fj(HQw(m), T ) dm dk,
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where

fj(HQw(m), T ) =

∫ #

aLw+HQw (m)
Q′j(X)e〈(σλ)Q+wλ′j+%Q,w,wX〉τQ(wX − T ) dX.

Recall that tQ = dim aGQ. By the calculations in [JLR99, § II] and § 3.1, there exist a positive

integer N and a polynomial pj(HQw(m), T ) on (aGQ,C)∗ of degree at most tQ(N − 1) such that
fj(HQw(m), T ) is of the form

e〈η
w
Q(σλ+wλ′j+%Q,w),T 〉e〈κQ,w(σλ,λ′j),HQw (m)〉∏
$∨∈∆̂∨Q

〈σλ+ prw(wλ′j) + %Q,w, $∨〉N
pj(HQw(m), T )(λ).

This expression is bounded for <λ ∈ D. We have seen how to estimate truncated Eisenstein series
in Remark 2.5, where we can take c(λ) independently of =λ for λ in the domain of absolute
convergence. 2

Lemma 4.9. Let φ ∈ PW(P,V) and ϕ′ ∈ A (G′). If φ(λ) vanishes to a higher order on the
hyperplanes

〈σλ+ prw(wλ′) + %Q,w, $
∨〉 = 0

for all proper parabolic subgroups Q of G, w ∈ LW
G
G′ , σ ∈ LW

c
M , λ′ ∈ EQw(ϕ′) and $∨ ∈ ∆̂∨Q,

then for κ ∈ (aGP )∗ in the realm of absolute convergence of the Eisenstein series,∫
G′(F )\G′(A)

θφ(g)ϕ′(g) dg =

∫
<λ=κ

PG′(E(φ(λ), λ)⊗ ϕ′) dλ.

Proof. The proof is nearly identical, word for word, to that of Lemma 9.1.1 in [LR03]. By
definition, ∫

G′(F )\G′(A)
θφ(g)ϕ′(g) dg =

∫
G′(F )\G′(A)

∫
<λ=κ

E(g, φ(λ), λ)ϕ′(g) dλ dg.

From Lemma 2.2(i), we can write this as the sum over Q and w ∈ LW
G
G′ of∫

G′(F )\G′(A)

∫
<λ=κ

∑
γ∈Qw(F )\G′(F )

ΛT,Qm,w E(γg, φ(λ), λ)ϕ′(g)τQ(HQ(wγg)− T ) dλ dg,

provided that this expression converges for all Q and w. Since only finitely many γ contribute
for a given g in view of Remark 2.1, we may bring the sum over Qw(F )\G′(F ) outside the inner
integral and combine it with the outer integration to obtain∫

Qw(F )\G′(A)

∫
<λ=κ

ΛT,Qm,wE(g, φ(λ), λ)ϕ′(g)τQ(HQ(wg)− T ) dλ dg.

Again, the convergence of the latter as an iterated integral will justify all the manipulations.
From the proof of Lemma 4.8, we conclude that the integral∫
<λ=κ

∫ #

Qw(F )\G′(A)
ΛT,Qm,wE

Q(g,M(σ, λ)φ(λ), σλ)ϕ′Qw(g)τQ(HQ(wg)− T ) dg dλ (4.10)

converges. Our task is to show that for each σ ∈ LW
c
M , the integral∫

Qw(F )\G′(A)

∫
<λ=κ

ΛT,Qm,wE
Q(g,M(σ, λ)φ(λ), σλ)ϕ′(g)τQ(HQ(wg)− T ) dλ dg (4.11)
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converges and equals (4.10). We denote by R+(ZM , G) the set of elements in Rat(ZM ) obtained
by decomposing the Lie algebra of U under the adjoint action of ZM . Let Dσ ⊂ (aGP,C)∗ be the
set of λ satisfying the following two properties:

– 〈<λ, α∨〉 � 0 for all α ∈ R+(ZM , G) such that σα < 0;

– <(σλ)Q is sufficiently positive in (aQσP )∗.

These properties guarantee that both M(σ, λ)φ(λ) and EQ(M(σ, λ)φ(λ), σλ) converge absolutely

for λ ∈ Dσ. Since σ−1α > 0 for all α ∈ ∆Q
0 , if <λ = κ, then λ ∈ Dσ.

We show that there exists λ1 ∈ (aGP )∗ of the form λ1 = σ−1(λ2 + λ3) with λ2 ∈ (aQσP )∗ and
λ3 ∈ (aGQ)∗ such that if <λ = λ1, then λ ∈ Dσ and the #-integral in (4.10) and the integral∫

Qw(F )\G′(A)
ΛT,Qm,wE

Q(g,M(σ, λ)φ(λ), σλ)ϕ′(g)τQ(HQ(wg)− T ) dg

converge absolutely. To prove this, we fix λ2 ∈ (aQσP )∗ regular enough in the positive Weyl

chamber. If α ∈ R+(ZM , G) is such that σα < 0, then σα /∈ (aQσP )∗ since σ ∈ LW
c
M . If λ3 ∈ (aGQ)∗

is sufficiently regular in the negative Weyl chamber (depending on λ2), then

〈<λ, α∨〉 = 〈σ<λ, σα∨〉 = 〈λ2, (σα
∨)Q〉+ 〈λ3, (σα

∨)Q〉 � 0,

and since all coweights in ∆̂∨Q are nonnegative linear combinations of coroots in ∆∨Q,

<〈σλ+ prβ(βλ′) + ρQ − βρR, $∨〉 = 〈λ3 + prβ(β<λ′) + ρQ − βρR, $∨〉 < 0

for all parabolic subgroups R of G′, β ∈ 0W
G
G′ , λ

′ ∈ E cusp
R (ϕ′) and $∨ ∈ ∆̂∨Q. The proof of

Proposition 3.4 confirms that the integrals are absolutely convergent.
Since φ(λ) vanishes on the hyperplane singularities of the #-integral, we may shift the contour

of integration in (4.10) to <λ = λ1. The shift of contour takes place inside the domain Dσ. Thus
(4.10) is equal to the absolutely convergent integral∫

<λ=λ1

∫
Qw(F )\G′(A)

ΛT,Qm,wE
Q(g,M(σ, λ)φ(λ), σλ)ϕ′(g)τQ(HQ(wg)− T ) dg dλ.

We may therefore interchange the order of integration. We are now free to shift the contour of
the inner integration back to <λ = κ to obtain (4.11), as required, which also shows that (4.11)
converges as an iterated integral. 2

4.5 Regularized periods of cuspidal Eisenstein series
Lemma 4.10. Let D be a tempered distribution on a Euclidean space V whose Fourier transform
D̂ is given by integration against a bounded function A. Suppose that (D, f) = 0 whenever f̂ has
a zero of order higher than mi on each of finitely many prescribed affine hyperplanes λi + Vi,C
of V ∗C . Then D = 0.

Proof. Take a nonzero polynomial function h which has a zero of order mi on λi + Vi,C. Since

(D̂, φh) = 0 by assumption, we get (Ah, φ) = (A, φh) = 0 for all φ ∈ PW(V ∗C ). This implies that
Ah is identically zero, and hence so is A. 2

We are ready to prove Lemma 4.1. Recall that e = (1, 1, . . . , 1) ∈ a∗G. Fix a point κ ∈Dϕ′ and

choose σ ∈ R so that if λ0 ∈ a∗P,C satisfies <λ0 = κ+ σe, then PG′(E(φ, λ0)⊗ϕ′) is well-defined
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and I(φ, ϕ′, λ0) converges absolutely. Fix such an element λ0. We write λ0 = λ1 + se, where
λ1 ∈ (aGP,C)∗ and s ∈ C. Note that

PG′(E(φ, λ0)⊗ ϕ′) = PG′(E(φ, λ1)⊗ ϕ′s), I(φ, ϕ′, λ0) = I(φ, ϕ′s, λ1).

We are taking for granted the extension of Lemma 4.9 to the convolution sections f ∗ φλ for
right and left K∞-finite functions f ∈ C∞c (G∞). If β ∈ PW((aGP,C)∗) satisfies the conditions of
Lemmas 4.7 and 4.9, then these lemmas yield∫

<λ=κ
β(λ)PG′(E(f ? φ, λ)⊗ ϕ′s) dλ =

∫
<λ=κ

β(λ)I(f ? φ, ϕ′s, λ) dλ

for all φ ∈ A c
P (G) and right and left K∞-finite decomposable functions f ∈ C∞c (G∞).

Lemmas 4.5, 4.8 and 4.10 give rise to the equality

PG′(E(f ? φ, λ1)⊗ ϕ′s) = I(f ? φ, ϕ′s, λ1).

Theorem 1 of [Har66] gives a right and left K∞-finite decomposable function f belonging to
C∞c (G∞) such that f ∗ φλ1 = φλ1 . It follows that

PG′(E(φ, λ0)⊗ ϕ′) = I(φ, ϕ′, λ0).

Since PG′(E(φ, λ)⊗ϕ′) possesses a meromorphic continuation to a∗P,C, so does I(φ, ϕ′, λ). Hence
the equality holds for generic values of the parameter λ, which proves Lemma 4.1.

4.6 Regularized periods of general automorphic forms
Fix P , φ ∈ A c

P (G) and λ′ = (λ′1, . . . , λ
′
t) ∈ a∗P,C. We can find a holomorphic function d(λ), not

identically zero, such that for every g ∈ G(A) the function d(λ)E(g, φ, λ) is holomorphic at λ′.
Put F (λ) = d(λ)E(φ, λ). Consider its Taylor expansion at λ = λ′,

F (g, λ) =
∑

k=(k1,...,kt)

Fk(g, λ
′)

t∏
i=1

(λi − λ′i)ki .

The coefficients Fk(λ
′) are automorphic forms on G(A). Let E (G) be the space of automorphic

forms generated by these functions as we let P , φ, λ′, d(λ) and k vary. Franke has demonstrated
the following result for all reductive groups.

Theorem 4.11 (Franke [Fra98]). A (G) = E (G).

The reader can consult [Wal97] for a survey of his work. Theorem 1.1 therefore follows from
the lemma below.

Lemma 4.12. With notation as above, we have the identity

PG′(Fk(λ
′)⊗ ϕ′s) = I(s, Fk(λ

′), ϕ′)

as a meromorphic function in s.

Proof. Fix a point s0 ∈ C and a neighborhood Ω of λ′ satisfying the following conditions:

– the integral I(s0, F (λ), ϕ′) converges absolutely and uniformly for λ ∈ Ω;
– (F (λ), ϕ′s0) ∈ A (G×G′)∗ for λ ∈ Ω.
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The period PG′(Fk(λ
′)⊗ ϕ′s0) equals the zero coefficient of the polynomial exponential function∫

G′(F )\G′(A)
ΛTmFk(g, λ

′)ϕ′s0(g) dg

in T by Proposition 3.7(ii). We can write the coefficient Fk(λ
′) as a Cauchy integral

Fk(λ
′) =

1

(2π
√
−1)t

∫
Γ1

· · ·
∫

Γt

F (λ)∏t
i=1(λi − λ′i)ki+1

dλ1 · · · dλt,

where Γi is a sufficiently small positively oriented circle about λ′i in the complex plane such
that Γ1× · · · ×Γt ⊂ Ω. This integral can be interchanged with the mixed truncation operator in
view of Remark 2.1. Furthermore, we can justify the interchange of the Cauchy integral with the
period integral by invoking Fubini’s theorem. The arguments are the same as those introduced
by Arthur in [Art82, pp. 47–48]. Therefore the integral is equal to

1

(2π
√
−1)t

∫
Γ1

· · ·
∫

Γt

∫
G′(F )\G′(A)

ΛTmF (g, λ)∏t
i=1(λi − λ′i)ki+1

ϕ′s0(g) dg dλ1 · · · dλt.

Proposition 3.7(ii) and Lemma 4.1 tell us that for λ ∈ Ω, the zero coefficient of∫
G′(F )\G′(A)

ΛTmF (g, λ)ϕ′s0(g) dg

is equal to
PG′(F (λ)⊗ ϕ′s0) = I(s0, F (λ), ϕ′).

It follows that PG′(Fk(λ
′)⊗ ϕ′s0) is equal to

1

(2π
√
−1)t

∫
Γ1

· · ·
∫

Γt

1∏t
i=1(λi − λ′i)ki+1

×
∫
N ′(A)\G′(A)

Wψ(g, F (λ))W ψ̄(g, ϕ′)|det g|s0 dg dλ1 · · · dλt.

The absolute convergence ensures that we can interchange the Cauchy integral with the integral
overN ′(A)\G′(A) and with the integral defining the Whittaker function. This gives the result. 2

5. Odds and ends

The following corollary can be derived as a direct consequence of Theorem 1.1.

Corollary 5.1. The regularized period does not depend on the choices of B, T , K and K ′.
Moreover, it defines a G′(A)-invariant linear functional on A (G×G′)∗.

Remark 5.2. One can prove Corollary 5.1 without recourse to Theorem 1.1 by using exactly the
same argument as in the proof of Theorem 9(i) of [JLR99].

Corollary 5.3. Let ϕ ∈ A (G) and ϕ′ ∈ A (G′). Define ϕ̃ ∈ A (G) by ϕ̃(g) = ϕ( tg−1) for
g ∈ G(A) and define ϕ̃′ ∈ A (G′) by ϕ̃′(g′) = ϕ′( tg′−1) for g′ ∈ G′(A). Then I(s, ϕ, ϕ′) possesses
a meromorphic continuation to the whole complex plane and satisfies the functional equation

I(−s, ϕ̃, ϕ̃′) = I(s, ϕ, ϕ′).
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Proof. We write ΛTm,B for the mixed truncation to indicate the dependence on the choice of B.

For any parabolic subgroup P of G, put tP = { tg | g ∈ P}. Observe that

ϕ̃P (g) = ϕ tP ( tg−1), HP (x) = −H tP ( tx−1), τ̂P (X) = τ̂ tP (−X).

It follows that

ΛTm,Bϕ̃(g) = Λ−Tm, tBϕ( tg−1).

We can deduce the stated identity from Proposition 3.7 and Corollary 5.1. 2

For φ ∈ A c
P (G), φ′ ∈ A c

P ′(G
′), λ ∈ a∗P,C and λ′ ∈ a∗P ′,C, we set

I(φ, φ′, λ, λ′) =

∫
N ′(A)\G′(A)

Wψ(g, φ, λ)Wψ̄(g, φ′, λ′) dg.

Corollary 5.4. Let φ ∈ A c
P (G) and φ′ ∈ A c

P ′(G
′).

(i) We have

PG′(E(φ, λ)⊗ E(φ′, λ′)) = I(φ, φ′, λ, λ′).

(ii) I(φ, φ′, λ, λ′) extends to a meromorphic function on a∗P,C × a∗P ′,C.

(iii) For w ∈W (M) and w′ ∈W (M ′),

I(M(w, λ)φ,M(w′, λ′)φ′, wλ,w′λ′) = I(φ, φ′, λ, λ′).

Proof. Assertion (i) follows from Theorem 1.1 and (4.2). By Proposition 3.6 the stated properties
of I(φ, φ′, λ, λ′) are inherited from the relevant properties of the Eisenstein series. 2

Let P be a parabolic subgroup of Gm. We denote by Π1
c(M) the set of irreducible summands

of A c(M). For a representation π of M(A) and λ ∈ a∗P,C, let πλ be the representation of M(A)

on the space of π given by πλ(m)v = e〈λ,HP (m)〉π(m)v. Put

Πc(M) = {πλ | π ∈ Π1
c(M), λ ∈

√
−1a∗P }.

For π ∈ Π1
c(M) we write A π

P (Gm) for the subspace of functions φ ∈ A c
P (Gm) such that for all

k ∈ Km the function m 7→ e−〈ρP ,HP (m)〉φ(mk) belongs to the space of π. For π ∈ Π1
c(M) and

λ ∈ a∗P,C, we denote by IGmP (πλ) the representation of Gm(A) given by right translations on the
space

A πλ
P (Gm) = {φλ | φ ∈ A π

P (Gm)}.

The modulus function of P (A) is built into the definition in order for the representation IGmP (πλ)
to be unitary whenever the inducing representation is unitary, which is to say, whenever λ belongs
to
√
−1a∗P .

When π =
⊗

i∈[1,t] πi ∈ Πc(M) and φ ∈ A π
P (Gm), we define a normalized Eisenstein series

by

E∗(φ, λ) = b(λ, π)E(φ, λ), b(λ, π) =
∏

16i<j6t

L(λi − λj + 1, πi × π∨j ).

Put

C∗P = {λ ∈ a∗P,C | 〈<λ, α∨〉 > 0 for all α∨ ∈ ∆∨P }.
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Proposition 5.5. Let π ∈ Πc(M) and φ ∈ A π
P (Gm).

(i) Wψ(E∗(φ, λ)) is holomorphic on C∗P .

(ii) If Λ ∈ C∗P , then Wψ(E∗(φ, λ)) can be made nonzero at λ = Λ for a suitable choice of
φ ∈ A π

P (Gm).

(iii) E∗(φ, λ) is holomorphic on
√
−1a∗P .

Proof. We may assume that φ =
⊗

vφv is decomposable. As in (4.8) we can decompose Wψ(φ, λ)
into an Euler product

Wψ(g, φ, λ) =
∏
v

Wψv(gv, φv, λ), g ∈ Gm(A).

For given φ and g, let S be a finite set of places of F containing all the archimedean places such
that for v /∈ S, πv is unramified, ψv has conductor ov, φv is Km,v-invariant, Wψv

M (1, φv) = 1 and
gv ∈ Km,v. Then

Wψ(E∗(φ, λ)) =
∏
v∈S

b(λ, πv)Wψv(gv, φv, λ),

where we define b(λ, πv) by taking the local L-factors in place of the global L-functions in the
definition of b(λ, π). Since πv is unitary and generic, b(λ, πv) is holomorphic on C∗P . The local
Whittaker function Wψv(φv, λ) is known to extend to an entire function on a∗P,C which can made
nonzero at λ = Λ by choosing φv to be supported in a small neighborhood modulo Pv inside
Pvw

−1
M Nm,v.
To prove the last statement, we may suppose that π ∈ Π1

c(M). Put T = {1 6 i < j 6 t |
πi ' πj}. Since the poles of E∗(φ, λ) on

√
−1a∗P are among those of b(λ, π) and since E(φ, λ) is

concentrated on parabolic subgroups associated to P , it suffices to show that for all parabolic
subgroups Q associated to P ,

EQ(φ, λ)
∏

(i,j)∈T

(λi − λj)−1

is holomorphic on
√
−1a∗P . Since λi − λj (i < j) are distinct prime elements in the ring of

power series C[[λ1, . . . , λt]], we need only check the holomorphy of (λi − λj)−1EQ(φ, λ) near the
imaginary axis for all (i, j) ∈ T. Fix (i0, j0) ∈ T. Identifying W (M) with St, we put

W (M,L)0 = {σ ∈W (M,L) | σ(i0) < σ(j0)}.

Let σ0 be the transposition interchanging i0 and j0. Since W (M,L) is a disjoint union of W (M,
L)0 and W (M,L)0σ0, the formula (4.1) for the constant term yields

EQ(φ, λ) =
∑

σ∈W (M,L)0

(M(σ, λ)φ)σλ +
∑

σ∈W (M,L)0

(M(σ, σ0λ)M(σ0, λ)φ)σσ0λ.

Taking limλi0→λj0
M(σ0, λ) = −1 into account (see [MW89, II.1(4)]), we get the required result.

2

Lemma 5.6. If φ ∈ A c
P (G), φ′ ∈ A c

P ′(G
′), λ ∈

√
−1a∗P and λ′ ∈

√
−1a∗P ′ , then the pair of

normalized cuspidal Eisenstein series (E∗(φ, λ), E∗(φ′, λ′)) belongs to A (G×G′)∗.

Proof. Since the real parts of the exponents of E(φ, λ) and E(φ′, λ′) are zero and since 〈%Q,w,
$∨〉 6= 0 for all Q, w ∈ LW

G
G′ and $∨ ∈ ∆̂∨Q, the lemma follows. 2
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For irreducible automorphic representations π '
⊗

vπv and π′ '
⊗

vπ
′
v of G(A) and G′(A)

respectively, the basic analytic properties of the tensor product L-function

L(s, π × π′) =
∏
v

L(s, πv × π′v)

have been established through the works [JPS83, MW89, CP04]. The infinite product converges
absolutely in some right half-plane, continues to a meromorphic function on the whole complex
plane and satisfies a functional equation. Let π =

⊗
i∈[1,t] πi ∈ Πc(M) and π′ =

⊗
j∈[1,t′] π

′
j ∈

Πc(M
′). Since π and π′ are unitary, the induced representations IGP (π) and IG

′
P ′ (π

′) are irreducible
(see [Ber84, Vog86]). Since

L(s, IGP (π)× IG′P ′ (π′)) =
∏
i

∏
j

L(s, πi × π′j),

the L-function L(s, IGP (π)× IG′P ′ (π′)) is holomorphic away from the lines <s = 0, 1.

Corollary 5.7. If π ∈ Πc(M) and π′ ∈ Πc(M
′), then the following conditions are equivalent:

– there are functions φ ∈ A π
P (G) and φ′ ∈ A π′

P ′ (G
′) such that PG′(E∗(φ, 0)⊗ E∗(φ′, 0)) 6= 0;

– L(1/2, IGP (π)× IG′P ′ (π′)) 6= 0.

Proof. Put ϕ = E∗(φ, 0) and ϕ′ = E∗(φ′, 0). Provided that φ and φ′ are factorizable, we have an
Euler factorization

I(s, ϕ, ϕ′) = L

(
s+

1

2
, IGP (π)× IG′P ′ (π′)

)∏
v

I(s,Wψv
ϕv ,W

ψ̄v
ϕ′v

)

L
(
s+ 1

2 , I
G
P (πv)× IG

′
P ′ (π

′
v)
) .

The right-hand side is a finite product. The local L-factor coincides with the ‘g.c.d.’ of the local
zeta integrals (see [JPS83, CP04]). That is, the ratio

I(s,Wψv
ϕv ,W

ψ̄v
ϕ′v

)

L
(
s+ 1

2 , I
G
P (πv)× IG

′
P ′ (π

′
v)
)

is not only entire for all ϕv and ϕ′v but also nonzero at each fixed point s ∈ C for a suitable
choice of ϕv and ϕ′v, from which we can infer the corollary. 2

We write Πd(Gm) for the set of irreducible summands of the discrete spectrum of Gm.

Corollary 5.8. Let π ∈ Πd(G), π′ ∈ Πd(G
′), ϕ ∈ π and ϕ′ ∈ π′. Exclude the case where π is

one-dimensional. Then the integral ∫
G′(F )\G′(A)

ϕ(g)ϕ′(g) dg

is absolutely convergent. It is zero unless π ∈ Πc(G) and π′ ∈ Πc(G
′).

Remark 5.9. If π is one-dimensional, then the period integral obviously diverges.

Proof. The classification of the discrete spectrum of Gm was established by Mœglin and
Waldspurger in [MW89]. The representations in Πd(Gm) are parametrized by pairs (t, σ) where t
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divides m and σ ∈ Πc(Gm/t). Let Q be the parabolic subgroup of Gm attached to the composition
(m/t, . . . ,m/t). Put

Λt =

(
t− 1

2
,
t− 3

2
, . . . ,

1− t
2

)
.

The representation IGmQ (σ⊗tΛt
) has a unique irreducible quotient, which belongs to Πd(Gm). For

φ ∈ IGmQ (σ⊗t), the square-integrable automorphic form E−1(φ) is defined to be the limit

E−1(φ) = lim
λ→Λt

[
E(φ, λ)

t−1∏
i=1

(λi − λi+1 − 1)

]
.

Let n+ 1 = dm and n = d′m′. Assume that m > 1. Let P (respectively P ′) be the parabolic
subgroup of G (respectively of G′) attached to the composition (m, . . . ,m) (respectively (m′,
. . . ,m′)). Note that ρP = mΛd and ρP ′ = m′Λd′ . Let ρ ∈ Πc(Gm), ρ′ ∈ Πc(Gm′), φ ∈ IGP (ρ⊗d)
and φ′ ∈ IG′P ′ (ρ′⊗d

′
). We can assume that ϕ = E−1(φ) and ϕ′ = E−1(φ′). By [Jac84], E−1(φ)

(respectively E−1(φ′)) is concentrated on P (respectively on P ′), and its only cuspidal exponent
has real part −Λd (respectively −Λd′). Put

ei = (1, . . . , 1︸ ︷︷ ︸
i

, 0, . . . , 0︸ ︷︷ ︸
n+1−i

), i ∈ [1, n].

If w ∈ 0W
G
G′ and $∨i ∈ ∆̂∨P ∩ ∆̂∨P ′(w), then i is divisible by m and

〈−Λd − wΛd′ + ρP − wρP ′ , $∨i 〉 = 〈(1−m−1)ρP − (1 +m′−1)wρP ′ , ei〉
= 〈(1−m−1)ρ0 − (1 +m′−1)wρ′0, ei〉
6 〈(1−m−1)ρ0 − (1 + n−1)wρ′0, ei〉.

Since m > 1 and m 6 i 6 n+ 1−m,

(1−m−1)
i∑

j=1

(n+ 2− 2j)− (1 + n−1)
i∑

j=1

(n+ 1− 2j) = −
(

1

m
+

1

n

)
(n+ 1− i)i+

(
1 +

1

n

)
i < 0

and

(1−m−1)
i∑

j=1

(n+ 2− 2j)− (1 + n−1)
i−1∑
j=1

(n+ 1− 2j) =

(
1− i

m
+

1− i
n

)
(n+ 1− i) < 0.

Thus Proposition 3.4 can be applied to prove the convergence.
At this stage, we can derive the last statement as a direct corollary of Theorem 1.1,

noting that the representations occurring in the residual spectrum are not generic. From the
representation-theoretic point of view we can argue as follows. The period integral

ϕ⊗ ϕ′ 7→
∫
G′(F )\G′(A)

ϕ(g)ϕ′(g)|det g|s dy

varies analytically in s and defines an element of the space HomG′(A)(π ⊗ π′ ⊗ |det |s,C) for s
near the imaginary axis. Note that if d > 1, then none of the local components of π is generic.
Therefore, if dd′ > 1, then there does not exist any such invariant functional for generic values
s by [JPS83, Lemma 2.11], so that the function s 7→ PG′(ϕ⊗ ϕ′s) must vanish identically. 2
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