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Abstract. The primary purpose of this paper is to provide general su�cient
conditions for any real quadratic order to have a cyclic subgroup of order n 2 N in
its ideal class group. This generalizes results in the literature, including some seminal
classical works. This is done with a simpler approach via the interplay between the
maximal order and the non-maximal orders, using the underlying infrastructure via
the continued fraction algorithm. Numerous examples and a concluding criterion
for non-trivial class numbers are also provided. The latter links class number one
criteria with new prime-producing quadratic polynomials.

1. Notation and preliminaries. We will be considering arbitrary real quadratic
orders, so we ®rst introduce the notions of arbitrary discriminants and radicands.

Let D0 6� 1 be a square-free integer, and set

�0 � D0 if D0 � 1 �mod 4�,
4D0 otherwise.

�
Then �0 is called a fundamental discriminant with associated fundamental radicand
D0. Let f� 2 N, and set � � f 2��0. Then

� � D if D0 � 1 �mod 4� and f� is odd,
4D otherwise,

�
is a discriminant with conductor f�, and associated radicand

D � � f�=2�2D0 if D0 � 1 �mod 4� and f� is even,
f 2�D0 otherwise,

�
having underlying fundamental discriminant �0 with associated fundamental radi-
cand D0.

Let � be a discriminant with associated radicand D. Then

!� � �1� ����
D
p �=2 if � � D � 1 �mod 4�,����

D
p

if � � 0 �mod 4�,
�

is called the principal surd associated with �. This will provide the canonical basis
element for our orders. First we need notation for a Z-module:

��; �� � �x� �y : x; y 2 Z
� 	

;
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where �, � 2 K � Q� ����
�
p � � Q� ������

D0

p �, the real quadratic ®eld of discriminant �0 and
radicand D0. For this reason, fundamental discriminants are often called ®eld
discriminants.

In particular, if we set O� � �1; !��, then this is an order in K. Also, the index
jO�0

: O�j � f� is the conductor associated with �, where O�0
is the maximal order

in K, sometimes called the ring of integers of K. In other words, the maximal order in
K is the order with conductor f� � 1, having square-free radicand D0 and funda-
mental discriminant �0. We also need to be able to distinguish those Z-modules that
are ideals in O�; (see [1, pp. 9±30]).

Theorem 1.1 (Primitive ideals and norms). Let � be a discriminant, and let
I 6� �0� be a Z-submodule of O�. Then I has a representation of the form
I � �a; b� c!��, where a; c 2 N and b 2 Z with 0 � b < a. Furthermore, I is an ideal
of O� if and only if this representation satis®es cja, cjb, and acjN�b� c!��. (For
convenience, we call I an O�-ideal.) If c � 1, then we say that a non-zero ideal I is a
primitive O�-ideal. If I is a primitive O�-ideal, then a is the least positive rational
integer in I, denoted N�I � � a, called the norm of I.

An O�-ideal I is called reduced if there does not exist any nonzero element � 2 I
such that both j�j < N�I � and j�0j < N�I �, where �0 is the algebraic conjugate of �.
It is convenient to have an easily veri®ed su�cient condition for reduction; (see
[1, p. 19]).

Theorem 1.2. If � > 0 is a discriminant and I is an O�-ideal with N�I � < ����
�
p

=2,
then I is reduced.

The following special case of the Continued Fraction Algorithm will prove to be
a highly useful tool in the next section. (See [1, Exercise 1.5.9, p. 29, Theorem 2.1.2,
p. 44, and Theorem 3.2.1, pp. 78±80].) In the sequel, we let C� denote the ideal class
group of the order O�, and its order h�, the class number of O�. We denote the class
of principal ideals in C� by I � 1.

Theorem 1.3. Let � > 0 be a discriminant with associated radicand D � t2 � r
for t 2 N and jrj � 1; 4. If I � 1 in C�, with N�I � < ����

�
p

=2, then one of the following
holds.

1. N�I � � t=2, where r � 1 and t is even.
2. N�I � � 4, where r � 4 and t is even.
3. N�I � � tÿ 2, where r � ÿ4 and t is odd.
4. N�I � � 1.

A formula for the class number of an order is given by

h� � h�0
 �0
� f��=u; �1:1�

where f� is the conductor associated with �,

 �0
� f�� � f�

Y
pj f�

1ÿ ��0=p�
p

� �
;
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with (�=�) being the Kronecker symbol, and with the product ranging over all dis-
tinct prime factors of f�. Finally, u is the unit index of O� in O�0

, namely "� � "u�0
,

where "� is the fundamental unit of O� and "�0
is the fundamental unit of the

maximal order O�0
having class number h�0

; (see [1, pp. 23±30]). Also, it will be
useful in the next section to have a criterion for the invertibility of integral ideals in
canonical form; (see [1, Proposition 1.5.1, p. 25]).

Theorem 1.4 (Criterion for invertibility). Let � be a discriminant, and let
I � �N�I �; �b� ����

�
p �=2� be a primitive O�-ideal. Then I is invertible if and only if

gcd�N�I �; b; c� � 1, where c � �b2 ÿ��=�4N�I ��. Consequently if gcd� f�;N�I �� � 1,
then I is invertible.

Corollary 1.1. Let n 2 N. If I � �a; �b� ����
�
p

=2� is an invertible O�-ideal, and
gcd�a; b� � 1, then In � �an; �b� ����

�
p �=2�, for any n 2 N such that anjN��b� ����

�
p �=2�.

For background, proofs, further details and historical information, see [1], and
for information on these topics with applications, see [2].

2. Results. In this section, we are going to prove results concerning cyclic
subgroups of the ideal class groups in real quadratic orders. Throughout, we main-
tain the notation �0 to mean the fundamental discriminant, with associated radicand
D0, underlying a given discriminant � with associated radicand D. Also, O�0

will be
the underlying maximal order.

In the vast majority of papers in the literature, the assumption is made that the
radicand under investigation is square-free, namely a ®eld radicand as described in
the preceding section. Therefore, consideration of radicands of type

D � a2 � r where jrj � 1; 4;

called narrow Richaud-Degert types or simply narrow R-D types (see [1, p. 77 �]) is
quite restrictive. However, if no assumption is made upon the square-freeness of D,
then consideration of radicands of this type is no restriction whatsoever. To see this,
we observe that if �0 is a fundamental or ®eld discriminant with association radi-
cand D0, and "�0

� �T�U
������
D0

p �=� is the fundamental unit of O�0
, then

T2 ÿU2D0 � �1;�4. Thus, D � U2D0 � T2 � r where jrj � 1; 4. Furthermore, by
raising the fundamental unit to arbitrary powers, we see that there are in®nitely
many such radicands D of narrow R-D type. Hence, we may consider arbitrary
discriminants � of narrow R-D type without loss of generality. Furthermore, we
make the following crucial observation.

Suppose that I is a primitive O�-ideal, of order n in C�, with norm relatively
prime to the conductor, namely gcd�N�I �; f�� � 1, and with

gcd�n;  �0
� f��=u� � 1: �2:2�

Then njh�0
, by Formula 1.1. In particular, this holds for discriminants of R-D type

with any given underlying ®eld discriminant.
In view of the above, in order to prove that there is a real quadratic ®eld of

discriminant �0 with njh�0
for any given n 2 N, it su�ces to prove that there is an

IDEAL CLASS GROUPS IN REAL QUADRATIC ORDERS 199

https://doi.org/10.1017/S0017089599970799 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089599970799


associated discriminant � of narrow R-D type having an ideal I of order n in C�,
satisfying Equation 2.2, with gcd�N�I �;�� � 1. (Note that � � f 2��0. See the dis-
cussion at the beginning of the preceding section.) This approach simpli®es what has
been done classically in such works as that of Yamamoto [9], Shanks-Weinberger
[4], and more recent works such as Washington-Xianke [6], and Xianke [8]. In the
sequel, we use the above method to prove a variety of results that yield classical and
recent results with a certain ease missing in the literature thus far.

Theorem 2.1. Suppose that � is a discriminant with associated radicand
D � t2 � 1, t 2 N. Assume that there exist m; n;N 2 N, with N; n > 1, and
t 62 2m; 2mÿ 2f g such that

Nn � 4mtÿ 4m2 � 1 if D 6� 1 �mod 4�,
m�t� 1� ÿm2 ÿ t=2 if D � 1 �mod 4�.

�
�2:3�

Moreover, if � 6� �0, assume that gcd�N;�� � 1. Then C� has a cyclic subgroup of
order n. Furthermore, if Equation 2.2 is satis®ed, then njh�0

.

Proof. Let

� � 2mÿ t� ����
D
p

if D 6� 1 �mod 4�,
�2mÿ tÿ 1� ������

D�p
=2 if D � 1 �mod 4�.

�
Therefore, N��� � ÿNn. Thus, I � �N; �� is a primitive O�-ideal with norm N, by
Theorem 1.1. In order to be able to invoke Corollary 1.1, we need to establish two
claims.

Claim 1. gcd��;N� � 1.
If � is not fundamental, this is part of the hypothesis, and so we assume that �

is fundamental. Also, since N is odd when � � 0 �mod 4�, then we need only show
gcd�D;N� � 1. Suppose that p is a prime such that pjN and pjD. Assume ®rst that
� � 0 �mod 4�. Therefore, by Equation 2.3, we have

4mt � 4m2 ÿ 1 �mod p2�

since n > 1. Therefore, by squaring: 16m2t2 � �4m2 ÿ 1�2 �mod p2�, and by adding
16m2 to each side we get

16m2D � 16m2t2 � 16m2 � �4m2 ÿ 1�2 � 16m2 � �4m2 � 1�2 �mod p2�:

Since pjD, we have 16m2D � 0 �mod p2�. But p does not divide 4m and so p2jD,
contradicting the fact that D is fundamental. Now assume that � � D � 1 �mod 4�.
Then by considering Equation 2.3 in this case we get

2m2 � t � 2m�t� 1� �mod p2�:

Squaring yields: 4m4 � 4m2t� t2 � 4m2�t� 1�2 � 4m2D� 8m2t �mod p2�, and by
rewriting, �2m2 ÿ t�2 � 4m2D �mod p2�. Since pjD, we have p2j�2m2 ÿ t�2, and so
p2j4m2D. However, p is odd in this case, and pj-m since pj-t, so that p2jD, again
contradicting the fact that D is fundamental. This establishes Claim 1.
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Set

b � 4mÿ 2t if D 6� 1 �mod 4�,
2mÿ tÿ 1 if D � 1 �mod 4�.

�
Claim 2. gcd�b;N� � 1.
Since N��� � ÿNn, the result follows from Claim 1.
By Claims 1±2, we may invoke Corollary 1.1 to get In � �Nn; �� � ��� �

��b� ����
�
p �=2�, so that In � 1. Suppose that I j � �Nj; �� � 1 for some j 2 N dividing n.

We now show that j � n is the only possibility.

Claim 3. Nn=2 <
����
�
p

=2.
Suppose that Nn=2 >

����
�
p

=2. First assume that D � � � 1 �mod 4�. Then
Nn � m�t� 1� ÿm2 ÿ t=2 > �=4 � �t2 � 1�=4, or by rewriting,

0 > 4m2 ÿ 4m�t� 1� � 2t� t2 � 1 � �2mÿ tÿ 1�2;

a contradiction. Next, assume that � � 0 �mod 4�. Then

Nn � 4mtÿ 4m2 � 1 > �=4 � D � t2 � 1;

or by rewriting, 0 > t2 ÿ 4mt� 4m2 � �tÿ 2m�2, a contradiction that secures Claim 3.
By Claim 3, and Theorem 1.3, either Nj � 1, or Nj � t=2, where t is even. If

Nj � 1, this contradicts the assumption that N > 1 in the hypothesis. If Nj � t=2,
then D � 1 �mod 4�. Therefore, from Equation 2.3,

Nn � m�2Nj � 1� ÿm2 ÿNj;

or by rewriting, m2 ÿ �2Nj � 1�m�Nn �Nj � 0. Thus, by the quadratic formula,

m � 2Nj � 1� ��������������������������������
4N2j ÿ 4Nn � 1
p

2
:

This means that 4N2j ÿ 4Nn � 1 � 1 and so N2j � Nn. Since jjn, then j � n=2 is
forced. Hence, either m � Nn=2 � t=2, or m � Nn=2 � 1 � t=2� 1. In the former case
this is t � 2m, and in the latter case this is t � 2mÿ 2, both of which are excluded by
the hypothesis. Therefore, j � n, and so hIimust be a cyclic group of order n in C�.&

Example 2.1. Let t � 43, N � 5, and m � n � 4. Then D � 1850 � 2 � 52 � 37,
and Nn � 54 � 4mtÿ 4m2 � 1 � 4 � 4 � 43ÿ 4 � 42 � 1 � 625. Thus, C� has a cyclic
subgroup of order 4. Here f� � 5, D0 � 2 � 37 � 74, and �0 � 296. Theorem 2.1
does not apply to C�0

since gcd�n;  �0
� f�0
�=u� � gcd�4; 4� � 4, where u � 1. In fact,

from Equation 1.1, h� � h�0
 �0
� f��� � 2 � 4 � 8.

Example 2.2. If m � 3, n � 6, t � 28, and N � 2, then Nn � 26 � 64 �
m�t� 1� ÿm2 ÿ t=2 � 3�28� 1� ÿ 32 ÿ 14, and � � D � 282 � 1 � 785 � 5 � 157.
Thus, C� has a cyclic subgroup of order 6. In fact, h� � 6.

In order to complete the overall picture, we now prove results for the remaining
general discriminants � � t2 � 4 and � � t2 ÿ 1. We lose no generality by assuming
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that t is odd in the following results, since if t were even we could divide D by 4 and
be in the case covered by Theorem 2.1.

Theorem 2.2. Let � � t2 � 4 be a discriminant with t an odd natural number.
Suppose that there is an m 2 N such that

Nn � mtÿm2 � 1; �2:4�

for some integers N > 1 and n > 1. Also, if � 6� �0, assume that gcd�N;�� � 1. Then
C� has a cyclic subgroup of order n. Furthermore, if Equation 2.2 is satis®ed, then
njh�0

. (For the case m � 1, see [7].)

Proof. If � � �2mÿ t� ������
��p
=2, then N��� � ÿNn. By the same reasoning as in

the proofs of Claims 1±3 in Theorem 2.1, we show that I � �N; �� is an invertible
ideal, and In � �Nn; ��, with Nn=2 <

����
�
p

=2 (observing that N�I � 6� t=2 since t is odd).
Suppose that there is a natural number j 6� n dividing n such that I j � 1. Since Nj �
Nn=2 <

����
�
p

=2, we have by Theorem 1.3, N�I j� � 1, a contradiction to the hypothesis
that N > 1. Thus, j � n, and the result follows as in the proof of Theorem 2.1. &

Example 2.3. If m � 3316, t � 3905, n � 9 and N � 5, then

� � 15249029 � 39052 � 4 � �59 � 10995855�=3316�2 � 4

is prime and C� has a cyclic subgroup of order 9. In fact, h� � 171 � 9 � 9.

Theorem 2.3. Suppose that � is a discriminant with associated radicand
D � t2 ÿ 1, for some integer t > 1. Assume that there is an m 2 N such that

Nn � 4mtÿ 4m2 ÿ 1; �2:5�

for integers N > 1 and n > 1. Furthermore, if� 6� �0, assume that gcd�N;�� � 1.Then
C� has a cyclic subgroup of order n.Moreover, if Equation 2.2 is satis®ed, then njh�0

.

Proof. If � � 2mÿ t� ����
D
p

, then N��� � ÿNn. Also, by similar reasoning to that
in the proof of Theorem 2.1, gcd�N; 2mÿ t� � 1 � gcd��;N�. (Observe that � � D
is not possible since D 6� 1 �mod 4�.) Thus, I � �N; �� is a primitive O�-ideal and
In � �Nn; ��. If I j � 1, for some natural number j 6� n dividing n, then since it can be
shown using Equation 2.5 that Nj � Nn=2 <

����
�
p

=2 � ����
D
p

, we get Nj � 1 from The-
orem 1.3, a contradiction. Hence, n � j and the result follows as in Theorem 2.1. &

Example 2.4. If m � 1, N � 3 � n and t � 8, then D � 63 � 32 � 7 �
��33 � 5�=4�2 ÿ 1 � 82 ÿ 1. Since h� � 2, then there is no subgroup of order 3.
Hence, gcd�N;�� � 3 > 1, and we cannot apply Theorem 2.3. However, if we take
m � 1, N � 7, t � 87, and n � 3, then

D � 7568 � 24 � 11 � 43 � ��73 � 5�=4�2 ÿ 1 � 872 ÿ 1;

and � � 26 � 11 � 43 with f� � 23, h� � 12 and h�0
� 3, where �0 � 11 � 43 � 473 �

D0. To see this from Formula 1.1,
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h� � h�0
f� 1ÿ 473

2

� �.
2

� �.
u � 3 � 23�1ÿ 1=2� � 12;

since u � 1 given that "� � 87�
���������������
24 � 473
p

� 87� 4
��������
473
p � "�0

. Hence, both C�

and C�0
have subgroups of order 3.

In our next result, we lose no generality in assuming that t is odd since division
of � by 4 would bring us into Theorem 2.3 if � were even.

Theorem 2.4. Let � � t2 ÿ 4 be a discriminant, where t > 2 is an odd integer.
Suppose that there are integers m; n;N with N; n > 1 such that

Nn � mtÿm2 ÿ 1: �2:6�

Also, if � 6� �0, assume that gcd�N;�� � 1. Then C� has a cyclic subgroup of order n.
Furthermore, if Equation 2.2 is satis®ed, then njh�0

.

Proof. If � � �2mÿ t� ����
�
p �=2, then as in the above proofs, I � �N; �� is a pri-

mitive O�-ideal and In � �Nn; �� � 1. By the same reasoning as above, both
gcd��;N� � 1, and Nn=2 <

����
�
p

=2. If there is a natural number j such that j 6� n and j
divides n with I j � 1, then by Theorem 1.3, either N j � 1, a contradiction, or
Nj � �tÿ 2�j�, a contradiction. &

Example 2.5. Let m � 8, N � 7, n � 3 and t � 51; then

� � 2597 � 512 ÿ 4 � 72 � 53 � ��73 � 65�=8�2 ÿ 4;

and so C� has a subgroup of order 3. Here, h� � 3, but h�0
� 1, since

 �0
� f�0
�=u �  53�7�=2 � 3, with gcd�N;�� � 7.

We engage in some remarks about other papers in the literature concerning
cyclic subgroups, and how those results also follow from the above techniques. For
instance, the Washington-Xianke paper [6] looks at general R-D types of radicands,
namely those of the form D � t2 � r where rj4t, which have been widely studied (see
[1, pp. 77±95]). They consider only square-free D, namely only the ®eld case. Their
main result is [6, Theorem 2, p. 3], which has eight parts, and these are repeated in
[8]. We give a generalization and simple proof of one of their cases, and show how
the technique used in the proof of Theorem 2.2 can be used to yield any such result.
The reader may easily develop generalizations of the balance of the results in [6], [8]
based upon the following template.

Theorem 2.5. (Washington-Xianke [6], Xianke [8]). Suppose that � � t2 � 4r is
a discriminant with t 2 N odd, r > 0, rjt, r 6� t, and

t � Nn � rÿ 1;

for integers N > 1 and n > 1. Furthermore, if � 6� �0, assume that gcd�c;�� � 1.
Then C� has a cyclic subgroup of order n. Also, if Equation 2.2 is satis®ed, then njh�0

.
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Proof. If � � �t� 2� ����
�
p �=2, then N��� � Nn. Hence, by similar techniques to

those developed in previous proofs above, I � �N; �� is a primitive invertible O�-
ideal and In � �Nn; �� � 1. If Ij � �Nj; �� � 1 for any natural number jjn and j 6� n,
then as above, Nj � Nn=2 <

����
�
p

=2, so that Ij is reduced. Hence, by [1, Theorem
2.1.2, p. 44, and Theorem 3.2.1, Case B(b), pp. 78±80], Nj � r. However,
rjt � Nn � rÿ 1, so that N � 1, a contradiction. Thus, j � n and the results follow as
in previous proofs. &

Example 2.6. If � � 92 � 4 � 85 with t � 9, N � 3, n � 2, and r � 1, then C�

has a subgroup of order 2 since t � Nn � rÿ 1. In fact, h� � 2.

We also get the main result of [5], which is stated with a number of conditions
that we can boil down to a simpler version, which we prove based upon the above
techniques.

Theorem 2.6. (Uehara [5]). Let � � 4D be a discriminant with associated radi-
cand D � t2 ÿ r, where r > 0, rjt, r 6� t, and

Nn � 4t� 4r� 1;

for some integers N > 1 and n > 1. Also, if � 6� �0, assume that gcd��;N� � 1. Then
C� has a cyclic subgroup of order n.Additionally, if Equation 2.2. is satis®ed, then njh�0

.

Proof. If � � 2t� 1� 2
����
D
p

, then N��� � Nn, so that as above, I � �N; ��, and
In � �N; �� � 1. If there is a natural number jjn such that I j � �Nj; �� � 1, then
c j � Nn=2 <

����
�
p

=2 � ����
D
p

. Thus, by [1, Theorem 3.2.1, Case A(d), pp. 78±80], Nj � r
or Nj � 2tÿ rÿ 1, both of which lead easily to contradictions. Hence, j � n, and the
results follow as above. &

Example 2.7. If �0 � 3596, then D0 � 899 � 29 � 31. If N � 5, n � 3, t � 30,
and r � 1, then Nn � 4t� 4r� 1, and so C�0

has a subgroup of order 3. In fact, C�0

is the product of a group of order 3 and one of order 2.

The invocation of Theorem 2.1.2 of [1] in the above proofs of Theorems 2.5±2.6
is just another implementation of the continued fraction algorithm, a special case of
which we isolated in Theorem 1.3 for narrow R-D types. One of the primary pur-
poses in the writing of this paper is to bring these ideas to the fore, with the imple-
mentation of the quite general and new results summarized in Theorems 2.1±2.4,
which can also be used indirectly to achieve results such as that in Theorem 2.5 via
non-maximal orders of narrow R-D type. This general approach is most often
overlooked. Consequently, more di�cult techniques with less favourable results are
often used. In [6], for instance, a special case of [1, Theorem 3.2.1] was used, and
their results were less precise since they had to exclude ®nitely many cases. The
technique used above is simpler and more accurate. Also, in [6], the authors discuss
the work of Shanks-Weinberger [4] in the exploration of class numbers of maximal
orders divisible by powers of 3. They mention that if �0 � s6 � 4 is square-free, then
empirical evidence shows that 9jh�0

. They go on to say that the multiple of 3 divid-
ing h�0

is explainable, but ``the extra 3 is unexpected. We do not have a good
explanation for this phenomenon.'' The explanation is given by Theorem 2.2, which
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applies whenever c9 � xs3 ÿ x2 � 1 has a solution c, x 2 N for given s 2 N (and [3,
Theorem 4, p. 265] says that there are only ®nitely many). If there is such a solution,
then C� has a cyclic subgroup of order 9. Since Theorem 2.2 does not require a
maximal order, then there are in®nitely many possible such Diophantine equations
to try, and via the above results, may account for the high density of such �0 having
9jh�0

, as discussed via the Cohen-Lenstra heuristics in [6].
We conclude with a result that will show the reader how to use the above tech-

niques to develop an algorithm for showing that a class number is bigger than 1. We
only prove the result for one of the types of discriminant, but the reader may use this
as a template for developing similar results for the other types.

Theorem 2.7. Suppose that � � t2 � 4 is a discriminant, where t 2 N is odd. If
there exists an m 2 N such that mtÿm2 � 1 � N 2 N is composite, and if
gcd� f�;N� � 1, then h� > 1.

Proof. If � � �2mÿ t� ������
��p
=2, where mtÿm2 � 1 � N > 0 is composite for

some m 2 N, then N��� � ÿN. Set N � c1c2 with 1 < c1 � c2. Since gcd� f�;N� � 1,
then by Theorem 1.4, I � �c1; �� is a primitive invertible O�-ideal. We now show
that I is not principal. First we prove that N < �=4. If N > �=4, then
4N � 4mtÿ 4m2 � 4 > t2 � 4, or by rewriting, we obtain

0 > t2 ÿ 4mt� 4m2 � �tÿ 2m�2;

a contradiction. Hence c1 � N1=2 <
����
�
p

=2. Therefore, by Theorem 1.3, if I � 1, then
N�I � � c1 � 1, a contradiction. &

A result that is immediate from Theorem 2.7 is related to class number one cri-
teria developed by this author over a decade ago (see [1, pp. 138±143, and 158±163]).

Corollary 2.1. If � � t2 � 4 is a discriminant with h� � 1, then

f�x� � ÿx2 � tx� 1

is prime, for all natural numbers x < t. Also, if m � 1, and t is composite, then h� > 1.

The largest known discriminant �0 � t2 � 4 with h�0
� 1 is

�0 � 293 � 172 � 4. Notice that 17mÿm2 � 1 is prime for all m 2 N with m < 17.
This is related to class number one criteria established for fundamental R-D types
by this author; (see [1, pp. 158±163]).
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