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Abstract

A linear list is a collection of items that can be accessed sequentially. The cost of a request
is the number of items that need to be examined before the desired item is located, i.e.
the distance of the requested item from the beginning of the list. The transposition rule
is one of the algorithms designed to reduce the search cost by organizing the list. In
particular, upon a request for a given item, the item is transposed with the preceding one.
We develop a new approach for analyzing the algorithm, based on a coupling to a certain
constrained asymmetric exclusion process. This allows us to establish an asymptotic
optimality of the rule for two families of request distributions.
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1. Introduction

The linear list, a collection of items that can be accessed sequentially, is one of basic data
structures known in computer science. A primary operation defined on the list is search. A
requested item is found in the list by sequentially examining items from the beginning of the
list. The cost of search is defined to be the distance of the requested item from the beginning
of the list, i.e. the number of items that need to be examined in order to locate the desired
item. Intuitively, one would like to place frequently requested items at the front of the list,
so as to minimize the number of search steps. If the request sequence were known a priori,
one could place items in an order that minimizes the search cost. Yet, often properties of the
request sequence are either not known in advance or are time dependent. Hence, it is desirable
to employ an algorithm that organizes the list based on past requests. The two best-known
self-organizing algorithms are the move-to-front rule and the transposition rule [11, Section 6].
In addition to being simple, these rules are memory-free, i.e. they require no memory for their
operation.

List-organizing algorithms have been analyzed over the past fifty years – see, for example,
the review on self-organizing linear search in [8]. While the literature on the move-to-front
rule (and the corresponding least-recently-used caching algorithm) is extensive (see, e.g. [3],
[4], [5], [7], [9], [14], and references therein), results on the transposition rule are scarce. Early
analysis of the transposition rule can be found in [13]. In that paper it was conjectured that
the rule is optimal with respect to the expected value of the search cost. However, it was
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236 D. GAMARNIK AND P. MOMČILOVIĆ

shown in [1] that this conjecture is not true, in general. Except for the papers mentioned above,
the probabilistic analysis of the transposition rule is either limited to the case of simplistic
distributions [10], [15] or to numerical studies [2], [12]. The reader is referred to [14] for a
combinatorial (amortized) analysis of the transposition rule.

In the present paper we develop a new approach for analyzing the transposition rule, based
on a coupling to a constrained asymmetric exclusion process. This allows us to establish an
asymptotic optimality of the rule for two families of request distributions. Specifically, we
prove that the logarithm of the tail probability of the search cost is asymptotically optimal
under the transposition rule when the request distribution is either power law or geometric.

The rest of the paper is organized as follows. The model description and main results can
be found in the next section. In Section 3, we describe an associated asymmetric exclusion
process and characterize its stationary behavior. In Section 4, we relate the exclusion process
to the transposition rule for self-organizing lists. Section 5 contains the proofs of the results
stated in Section 2. Our conclusions, and some open questions, are discussed in Section 6.

2. Model and results

We consider an infinite list of items L = {1, 2, . . . , N, . . .} = N. At integer times
t = 0, 1, 2, . . . a request arrives for an item from L. The item requested at time t is denoted by
R(t). The requests are independent and identically distributed, and πi denotes the probability
of item i being requested, such that

∑
i≥1 πi = 1. Without loss of generality, we assume that

πi ≥ πi+1 for all i. Let R be equal in distribution to R(t), i.e. P[R = i] = πi .
The evolution of the list L is governed by the transposition rule. At time t = 0 the list is

assumed to be ordered as {1, 2, . . . , N, . . .}. Upon every request, the requested object is moved
forward (i.e. to the left) by one position in the list while the object in front of it is moved one
position back (i.e. to the right). If the first item in L is requested, the list does not change. The
basic idea is that frequently requested items are moved closer to the beginning of the list over
time; on the other hand, items with low request probabilities end up at some distance from the
beginning of the list.

At every time t , the list is represented as some permutation σ : N → N. Let Xi(t) be
the position of the item i in the list at time t . Our focus is on the behavior of the position
C(t) := XR(t)(t) of the requested item, i.e. the search cost, as t → ∞. We note that if the
permutation σ is fixed, then the distribution of C(t) is determined completely by π := {πi}∞i=1.
In this case, we use Cσ to denote the random position of the selected element R. Namely, Cσ is
simply the (random) search cost required to locate the requested item in a list of given order σ .
Thus, there exist two sources of randomness affecting the search cost: one due to the random
arrangement σ of the items, and one due to the randomness of the requested item R.

Our first lemma is a simple observation stating that, for every permutation σ , the tail
asymptotics of Cσ dominates the tail asymptotics of R.

Lemma 1. For any distribution π , permutation σ , and for every x ∈ N,

P[Cσ > x] ≥ P[R > x].
Proof. By the definition of the search cost,

P[Cσ > x] =
∑

{j : σ(j)>x}
πj ≥

∑
j>x

πj = P[R > x],

where the inequality holds by the monotonicity of the elements of π .
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Thus, as far as the tail probability asymptotics is concerned, no list-ordering algorithm can
achieve a better performance than the one under the optimal static arrangement. Note that
arranging the items in (decreasing) order of πi is feasible only if the distribution π is known in
advance.

We say that R is distributed as a power law with parameter α > 1 if πi = ci−α for all i,
where c−1 = ∑

i≥1 i−α is the normalization constant. Random variable R is defined to be
asymptotically geometric, with parameter 0 < ν < 1, when i−1 log πi → log ν as i → ∞.
The next result states that the transposition rule is asymptotically optimal with respect to the
logarithm of the tail asymptotics for these two distribution families.

Theorem 1. Let π be either power law with parameter α > 1 or asymptotically geometric
with parameter 0 < ν < 1. Then

lim sup
x→∞, t→∞

log P[C(t) > x]
log P[R > x] = 1.

Proof. See Section 5.

Often it is of interest to consider lists that contain only a finite number of items, i.e. such
that π has a finite support. Although we will not make use of the following fact, we remark
that, for every distribution π with finite support on LN = {1, 2, . . . , N} (so that πi = 0 for
all i > N ), the described system is an irreducible, reversible, aperiodic Markov chain, and the
unique stationary solution is of the following product form:

P[X1 = i1, X2 = i2, . . . , XN = iN ] =
∏N

j=1 π
−ij
j∑

(k1,...,kN )∈PN

∏N
j=1 π

−kj

j

,

where PN denotes the set of all permutations of the list LN . A natural way to introduce a
power law and geometric distribution for the case of finite support is to take the distribution π

conditioned on the event {i ≤ N}. Denote by πN the truncated distribution, and let the random
variable RN be defined by P[RN > x] := P[R > x | R ≤ N ]. Note that the existence of
a unique stationary distribution for every N allows us to consider the stationary search cost,
denoted by CN .

Theorem 2. Let either (i) πN be truncated power law with parameter α > 1 and x/N < γ

for some γ < 1; or (ii) πN be truncated asymptotically geometric with parameter 0 < ν < 1
and x < N . Then

lim
x→∞
N→∞

log P[CN > x]
log P[RN > x] = 1.

Proof. See Section 5.

3. Constrained asymmetric exclusion process

In this section, we consider a certain constrained asymmetric exclusion process in which
we examine the deviation of the boundary particle from its minimal position. In particular,
we consider an n-particle system on countably many slots on a half-line, enumerated from
left to right as 1, 2, . . . . Each particle is associated with an independent Poisson process of
unit intensity (the actual rate is not important). At the arrival times of their corresponding
Poisson processes, particles move left or right with probability p or q, respectively. Multiple
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Figure 1: An example of evolution of the system with five particles. The arrows indicate intended
movements of particles. Movements actually occur only in the upper two instances.

occupancies are not allowed, and a move actually occurs only if the target slot is empty (see
Figure 1 for an illustration of this). A particle cannot move left if it is located in the first slot.

Assume that p > q and define β := q/p < 1. Given that particles are enumerated from left
to right using natural numbers, let Zi be the position (slot number) of the ith particle. We first
verify in a straightforward manner that the stationary distribution is of the following form:

P[Z1 = i1, Z2 = i2, . . . , Zn = in] = η−1
n β

∑n
j=1 ij (1)

for all 1 ≤ i1 < i2 < · · · < in, where ηn is the normalization constant. To this end, notice that∑
1≤i1<i2<···<in

β
∑n

j=1 ij ≤
∑

1≤j≤n

∑
1≤ij <∞

β
∑n

j=1 ij

=
(

β

1 − β

)n

< ∞,

implying that the normalization constant ηn is finite. It is easy to check that the underlying
Markov chain is irreducible, reversible, and aperiodic, and that (1) satisfies the stationary
equation. Hence, (1) indeed describes the stationary distribution.

We point out that the minimal possible value of
∑n

i=1 Zi is
∑n

i=1 i = 1
2n(n+1). Throughout

the paper we interpret
∏k

i=j (·) ≡ 1 for k < j .

Lemma 2. The normalization constant satisfies

ηn = βn(n+1)/2
n∏

i=1

1

1 − βi
.

Proof. For each integer k ≥ 0, let ηn,k denote the sum of β
∑n

j=1 ij over the feasible choices
of ij such that max1≤j≤n{ij } ≤ n + k. Then, clearly, ηn,0 ≤ ηn,1 ≤ · · · and ηn,k → ηn as
k → ∞. We claim that, for every n and k,

ηn,k = βn(n+1)/2
k∏

i=1

1 − βn+i

1 − βi
. (2)

The expression for ηn follows immediately, by taking the limit as k → ∞ in (2).

https://doi.org/10.1239/jap/1110381383 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1110381383


A transposition rule analysis based on a particle process 239

The proof of (2) is by induction. It is trivial to verify both that ηn,0 = βn(n+1)/2, n ≥ 1, and
η1,k = ∑k+1

i=1 βi , k ≥ 0, conform to (2). Next, we assume that (2) holds for ηi,j for all i and j

such that either i ≤ n and j < k, or i < n and j ≤ k, and show that the statement is true for
ηn,k . The quantity ηn,k satisfies the following equality:

ηn,k = ηn,k−1 + βn+kηn−1,k; (3)

the first term corresponds to the case max1≤j≤n{ij } < n + k, and the second one to the case
max1≤j≤n{ij } = n+k, i.e. the final (nth) particle is in the slot n+k. From (3) and the inductive
assumption, we find that

ηn,k = βn(n+1)/2
k−1∏
i=1

1 − βn+i

1 − βi
+ β(n−1)n/2+n+k

k∏
i=1

1 − βn−1+i

1 − βi

=
(

1 + βk 1 − βn

1 − βk

)
βn(n+1)/2

k−1∏
i=1

1 − βn+i

1 − βi

= βn(n+1)/2
k∏

i=1

1 − βn+i

1 − βi
.

This concludes the proof.

Next, we use (1) to examine the stationary deviation κn of the last particle from its minimal
position, i.e. κn := Zn − n ≥ 0. Expressions (1) and (2), and Lemma 2, yield

P[κn = i] = ηn−1,i βn+i

ηn

= βi(1 − βn)

n−1∏
j=1

(1 − βi+j )

< βi (4)

and, thus,
P[κn ≥ i] < (1 − β)−1βi. (5)

Interestingly, this implies that there exists a limiting behavior for the case when the number
of particles n grows to infinity. Indeed, as n → ∞, the random variable κn converges in
distribution to a random variable κ with distribution given by

P[κ = i] = βi
∞∏

j=1

(1 − βi+j ).

From this, we conclude that κ is asymptotically geometric and stochastically monotone in the
parameter β, and that

lim
i→∞ P[κ = i]β−i = 1.

Finally, we note that for β < 1
2 or, equivalently, for 2q < p, the most probable value of κ is 0.
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4. Coupling

The following lemma relates the stationary properties of list L, operating under the trans-
position rule and as t → ∞, to characteristics of the particle system studied in Section 3. Let
κi(β) explicitly denote the dependency of the random variable κi on parameter β (see (4)), and
set β := πi+1/πi ≤ 1.

Proposition 1. For every x ≥ i ≥ 1,

lim sup
t→∞

P

[ i∨
j=1

Xj(t) > x

]
≤ P[κi(β) + i > x].

Remark 1. When the support of π is finite, there exists a unique stationary solution and,
therefore, the left-hand side of the preceding inequality converges as t → ∞.

4.1. Proof of Proposition 1

The proof is based on a coupling argument. We start by exploiting a Poisson embedding
technique. (See [6] for an application of this technique in the context of the move-to-front
rule.) The requests for item i form a Poisson process of intensity πi , meaning that the limiting
behavior (as t → ∞) of the original discrete-time system is the same as that of the system with
the Poisson request patterns.

Given a Poisson process (a set of arrival times) 	 with rate λ, let 	(p) denote its subset,
	(p) ⊆ 	, formed by including each element of 	 in 	(p) independently with probability p.
Let {	i} be the set of request times for item i ∈ N.

Next we construct a modified list L̂ consisting of the same items as the original list L –
parameters of the new system are denoted with the ‘hat’ symbol (caret). Specifically, X̂j (t)

denotes the position of element j at time t in the list L̂. Each element j ∈ L̂ is associated with
an independent Poisson process 	̂j defined as

	̂j :=
{

	j(πi/πj ), 1 ≤ j ≤ i,

	j ∪ 	+
j , j > i,

where 	+
j is an independent Poisson process with rate πi+1 − πj . Note that the processes 	̂j

are constructed in such a way that they are Poisson, with rates πi for 1 ≤ j ≤ i and πi+1 for
j > i. In addition, observe that 	̂j ⊆ 	j for 1 ≤ j ≤ i and 	̂j ⊇ 	j for j > i. Furthermore,
let the function ϕj (t) be defined as follows:

ϕj (t) :=
{

1{∃ k>i : X̂k(t)=X̂j (t)−1}, j ≤ i,

1{∃ k≤i : X̂k(t)=X̂j (t)−1}, j > i,

where 1{·} denotes the indicator of the event {·}. That is, the function ϕj (t) indicates whether
item j is preceded by an item k such that the rates of 	̂j and 	̂k differ.

The request process 	̂ of list L̂ is a superposition of Poisson processes 	̂j :

	̂(t) :=
⋃

{j : ϕj (t)=1}
	̂j (t). (6)

Item j is requested from L̂ at time t = T if T ∈ 	̂j ∩	̂. In other words, item j ≤ i is requested
according to 	̂j only if it is preceded by an item in {i + 1, i + 2, . . .}. On the other hand,
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4 1 3 6 7 2 5 8

5 2 8 1 4 7 3 6

2 1 4 3

5 8 7 6

4 1 3 6 7 2 5 8

6 4 7 1 3 5 2 8

4 1 3 2

6 7 5 8

LN

L̂N L̂N

LN

Figure 2: An example of reordering by the operator Ri (in the case i = 4 and N = 8). The initial
states of the lists are shown on the left. The modified list L̂N is divided into two sublists: {1, 2, 3, 4} and
{5, 6, 7, 8}. Upon reordering items in each of the sublists according to LN , the new ordering in L̂N is

shown on the right.

requests for item j > i are placed according to 	̂j only if element j is preceded by an item
in {1, . . . , i}. Note that the set of Poisson processes included in 	̂ changes with the evolution
of list L̂. In addition, the number of elements in the union in (6) is always finite and bounded
from above by 2i.

The modified list L̂ operates under the transposition rule with one modification. Namely,
after the transposition rule rearranges items in either of the lists (L or L̂), a reordering operator
Ri is applied to L̂. The operator works as follows. The list L̂ is divided into two sublists:
{1, 2, . . . , i} and {i + 1, i + 2, . . .}. The operator Ri reorders each sublist so that the order of
the elements within the sublists is the same as it is in the original list L. However, only items
belonging to the same sublist are allowed to exchange positions in the list. An example of how
Ri operates is shown in Figure 2.

Next, assume that both lists are in the same permutation at time t = 0. We then appeal to
the following lemma.

Lemma 3. For every t ∈ R+ and 1 ≤ j ≤ i,

Xj(t) ≤ X̂j (t). (7)

Proof. The lists change only at times of request to the corresponding system; denote these
times by 0 < T1 < T2 < · · · < Tn < · · · . Since there are no changes in item order between
the times {Tn}, it is sufficient to prove that (7) holds for t = Tn+, n ≥ 1. To this end, suppose
that (7) holds for t = Tn−1+ and consider the two lists at time t = Tn+. The following three
cases must be examined.

Case 1. At time t = Tn, item j ≤ i is requested from L. By the construction of 	̂, this event
implies that item j is requested in the modified list L̂ only with some probability depending on
the state of L̂.

If item j is not requested from L̂, then the set of positions occupied by items {1, . . . , i}
in L̂ remains the same. On the other hand, the set of positions occupied by items {1, . . . , i}
in L either does not change (when an item in {1, . . . , i} precedes item j or j is the first item
in the list) or is pairwise smaller (when an item in {i + 1, . . . , N} precedes item j ). This, in
conjunction with the fact that the relative order of items {1, . . . , i} in L and L̂ at t = Tn+ is
the same (due to the action of Ri), implies that (7) holds for t = Tn+.

On the other hand, if item j is requested in both lists, then the only case that needs to be
examined in detail is the one in which j is preceded by item l ≤ i in L; note that, from (6), it
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follows that j is preceded by an item v > i in L̂. Since Xl(Tn−) ≤ X̂l(Tn−) and the order of
the items {1, . . . , i} is the same in both lists, we have

Xj(Tn−) + 1 ≤ X̂j (Tn−). (8)

The fact that items j and l are transposed in L but not in L̂ means that the order of j and l is
different in the two lists before Ri is applied. Thus, Ri exchanges the positions of items j and
l in L̂. This means that

X̂j (Tn+) = X̂l(Tn−) ≥ Xl(Tn−) = Xj(Tn+)

and

X̂l(Tn+) = X̂j (Tn−) − 1 ≥ Xj(Tn−) = Xl(Tn+),

where the inequality in the first equation follows from the inductive assumption, and that in the
second is due to (8). Thus, we conclude that (7) holds for t = Tn+.

Case 2. At time t = Tn, item j > i is requested from L̂. The argument is very similar to
that in Case 1. In this case, j is preceded by some v ≤ i in L̂ (see (6)).

If item j is not requested from L or is preceded (in L) by an item v > i, then the positions
occupied by items {1, . . . , i} in L do not change. However, in L̂, item j must be preceded by
v ≤ i and, thus, v is moved one position back by the transposition rule. Alternatively, if in
L, item j is requested and preceded by l ≤ i, then either v = l and Xl(Tn−) = X̂v(Tn−), or
v = l and

Xl(Tn−) ≤ X̂l(Tn−) + 1,

Xv(Tn−) ≤ X̂v(Tn−) + 1.

In either case, after the items are transposed we have

Xl(Tn+) ≤ X̂l(Tn+)

and

Xv(Tn+) ≤ X̂v(Tn+).

Case 3. At time t = Tn, item j > i is requested from L but not from L̂. This implies that j

is preceded in L̂ by an item v > i (see (6)). If j is preceded in L by an item l > i, then the
positions occupied by items {1, . . . , i} do not change in either list. Therefore, we need only
consider the case in which j is preceded by l ≤ i. However, in that case, we necessarily have

X̂l(Tn−) ≥ Xl(Tn−) + 1,

which implies that

Xl(Tn+) = Xl(Tn−) + 1 ≤ X̂l(Tn−) = X̂l(Tn+).

The results of these three cases establish (7), proving Lemma 3.
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Next, let the variables Zj (t), 1 ≤ j ≤ i, be defined by

(Z1(t), . . . , Zi(t)) := S(X̂1(t), . . . , X̂i(t)),

where S is the sorting (in increasing order) operator. Note that the definition of Zi(t) and (7)
imply that

Zi(t) ≥
i∨

j=1

Xj(t). (9)

Observe that the evolution of {Zj (t)} is probabilistically the same as in the constrained particle
system described in Section 3 (recall that there Zj (t) denotes the position of the j th particle
at time t), with p = πi/(πi + πi+1) and q = πi+1/(πi + πi+1). Indeed, Zj (t) increases by
1 at Poisson rate πi+1 only if Zj+1(t) = Zj (t) + 1, and it decreases by 1 at rate πi only if
Zj−1 = Zj (t) − 1.

Taking maximums on both sides of (9), and applying the operator P[· > x], leads to

P

[ i∨
j=1

Xj(t) > x

]
≤ P[Zi(t) > x],

from which we obtain

lim sup
t→∞

P

[ i∨
j=1

Xj(t) > x

]
≤ P[Zi > x]

= P[κi(β) + i > x],
where the last equality follows from the definition of κi(β) in Section 3 and the fact that
β = πi+1/πi .

5. Proofs

Proposition 1 is the primary tool in establishing our results on the performance of the
transposition rule. The following lemma is a simple consequence of Proposition 1.

Lemma 4. For any y ≥ 1 and distribution of requests π ,

lim sup
t→∞

P[C(t) > x] ≤ P[κy(πy+1/πy) > x − y] + P[R > y, R + κR(πR+1/πR) > x].
Proof. Conditioning on the requested item, and using the monotonicity of the max operator,

results in

lim sup
t→∞

P[C(t) > x] = lim sup
t→∞

(∑
i≥1

πi P[Xi(t) > x]
)

≤
y∑

i=1

πi lim sup
t→∞

P

[ y∨
j=1

Xj(t) > x

]
+

∑
i≥y+1

πi lim sup
t→∞

P

[ i∨
j=1

Xj(t) > x

]

≤ P[κy(πy+1/πy) > x − y] + P[R > y, R + κR(πR+1/πR) > x],
where the last inequality follows from Proposition 1.
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At this point we present the proofs of Theorems 1 and 2.

5.1. Proof of Theorem 1

The lower bound is an immediate consequence of Lemma 1 and holds for any distribution
of requests π . Hence, we only consider the upper bound.

We first examine the case in which π is asymptotically geometric with parameter ν. Fix
an arbitrary, small ε > 0 such that ν + ε < 1. By the assumption, there exists iε such that
ν − ε < πi+1/πi < ν + ε for all i ≥ iε. For any s−1 > ν + ε, setting y = iε in Lemma 4 yields

lim sup
t→∞

P[C(t) > x] ≤ P[κiε (ν + ε) > x − iε] + P[R + κR(ν + ε) > x]
≤ P[sκiε (ν+ε) > sx−iε ] + P[sR+κR(ν+ε) > sx]
≤ s−xsiε E sκiε (ν+ε) + s−x E sR+κR(ν+ε), (10)

where the last step is due to Markov’s inequality. From s−1 > ν + ε and (5), it follows that
E sR+κR(ν+ε) < ∞. This bound, (5), and (10) result in

x−1 lim sup
t→∞

log P[C(t) > x] ≤ − log s + x−1 log(siε E sκiε (ν+ε) + E sR+κR(ν+ε))

→ − log s as x → ∞. (11)

On the other hand, note that

P[R > x] ≥
∑
i>x

πiε (ν − ε)i−iε

≥ πiε (1 − ν + ε)−1(ν − ε)x+1−iε ,

implying that
lim inf
x→∞ x−1 log P[R > x] ≥ log(ν − ε). (12)

By combining (11) and (12), we obtain

lim sup
x→∞, t→∞

log P[C(t) > x]
log P[R > x] ≤ log s−1

log(ν − ε)
;

letting first s−1 ↓ ν + ε and then ε ↓ 0 yields the result.
Next, we consider the case in which π is power law with parameter α > 1. Lemma 4 and

(5) yield

lim sup
t→∞

P[C(t) > x] ≤ P[κy(πy+1/πy) > x − y] + P[R > y]

≤
(

1 − πy+1

πy

)−1(πy+1

πy

)x−y

+ P[R > y].

Letting y = �εx/ log x� for a sufficiently small ε > 0 (where �·� denotes the smallest integer
greater than or equal to its argument) results in an estimate on the two terms in the preceding
expression: as x → ∞,(

1 − πy+1

πy

)−1(πy+1

πy

)x−y

= α−1eαyx−α/ε(1 + o(1))
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and
P[R > y] =

∑
i>y

ci−α = O(y−α+1).

Therefore, as x → ∞,

lim sup
t→∞

P[C(t) > x] ≤ P[R > y](1 + o(1)).

The preceding equation, together with the fact that π is a power law, yields the statement of the
theorem.

5.2. Proof of Theorem 2

This proof is very similar to that of Theorem 1 and, thus, we omit the details. Since

log P[CN > x]
log P[RN > x] = log P[CN > x]

log P[R > x]
log P[R > x]

log P[RN > x]
and the upper bound on P[CN > x] is the same as the one on lim sup P[C(t) > x], we need
only verify that the final fraction in the preceding equality tends to 1 as x → ∞ and N → ∞.
However, this fact follows easily from the assumptions of the theorem.

6. Concluding remarks

In this paper, we presented an analysis of the transposition rule based on a coupling to a
constrained exclusion process. As an outcome, we established an asymptotic optimality of the
transposition rule in linear lists. Specifically, when the probability distribution of the requests
is power law or geometric, we showed that, under the transposition rule, the logarithm of the
tail probability of the search cost is asymptotically optimal.

While the steady-state distribution of the search cost is a primary quantity of interest, in
practice, rates of convergence play an important role in assessing the applicability of self-
organizing algorithms. The proposed coupling may offer new directions for understanding
these rates under the transposition rule. The same question, for the related move-to-front
algorithm, was investigated in [5]. As was remarked there, the transposition rule is expected to
have slower rates of convergence than the move-to-front rule.

References

[1] Anderson, E., Nash, P. and Weber, R. (1982). A counterexample to a conjecture in optimal list ordering.
J. Appl. Prob. 19, 730–732.

[2] Bachrach, R. and El-Yaniv, R. (1997). Online list accessing algorithms and their applications: Recent
empirical evidence. In Proc. Eighth Annual Symp. Discrete Algorithms (New Orleans, LA), ACM, New York,
pp. 53–62.

[3] Barrera, J. and Paroissin, C. (2004). On the distribution of the search cost for the move-to-front rule with
random weights. J. Appl. Prob. 41, 250–262.

[4] Fill, J. (1996).An exact formula for the move-to-front rule for self-organizing lists. J. Theoret. Prob. 9, 113–159.
[5] Fill, J. (1996). Limits and rates of convergence for the distribution of search cost under the move-to-front rule.

Theoret. Comput. Sci. 164, 185–206.
[6] Fill, J. and Holst, L. (1996). On the distribution of search cost for the move-to-front rule. Random Structures

Algorithms 8, 179–186.
[7] Flajolet, P., Gardy, D. and Thimonier, L. (1992). Birthday paradox, coupon collector, caching algorithms

and self-organizing search. Discrete Appl. Math. 39, 207–229.
[8] Hester, J. and Hirchberg, D. (1985). Self-organizing linear search. Comput. Surveys 17, 295–311.
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