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1. Introduction
Denote b y / a positive measurable function on R", and by A the distribution

function of/: A(j>) — \{x: f(x)>y}\, where y>0, and \{x: . . .} | denotes the
Lebesgue measure of the set specified. We shall suppose that X(y)< oo for each
y>0, and that AQ>)->0 as^->oo. The decreasing rearrangement/* of/is defined
on (0, oo) by

f*(t) = M{y:l(y)£t}, 0<t<co.

f1
The class Z,*(R") comprises those functions / for which f*(t)dt <oo and

Jo
/*(/)-• 0 as /-»oo: equivalently / e L*(R") if and only if for each c>0,

The averaged rearrangement/** is defined on (0, oo) by

f**(t) = r1 [ f*(u)du.
Jo

It is continuous on (0, oo), decreasing, and tends to zero as *-»oo.
For a bounded open set ^ c R", which we suppose to be convex and sym-

metric with respect to the origin, the Hardy-Littlewood maximal function*//!/
is defined at each x e R" by

f
JxIx + XK

where the integration is with respect to Lebesgue measure. In R1, mf(x)
Px + X

reduces to sup (2A)"1 / .
*>0 Jx-X

The object of this paper is to show that the functions (mf)* and/** are of
the same order of magnitude, a typical result being that

2~"~1/**(2n0 ^ (w/)*(0 ^/**(2~"0-
The special case where K is the unit cube has been considered by C. S. Herz

and the author in (2) and (6) where less precise constants are obtained.

If in L*(R1) we replace mf by 6f= sup A"1 I / , there is the well-known
*>0 Jx-x

result of F. Riesz (3) that (0/)*(O g /**(<)• However, the corresponding result
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(without the intervention of any constant) for mf is not valid, as we show in
Section 3.

Estimates for the maximal function are of importance for their applications
to the theories of differentiation and singular integrals as appears from (1) and
(4).

2. Principal results

Theorem. Let fe L*(R"), and mf, /** be as defined in Section 1.

Then for each t>0, (mf)*(t) ^ f**(ymt), (i)

and if A is a positive constant,

f**(At) g B(m/)*(0, (ii)

where B = 2\i+2"IA) if A<2\ and B = (l+(2"//l)1/(l'+1))'I+1 if A £ 2".
The proof of this theorem requires some standard facts about rearrange-

ments which are listed as Lemma 1, and whose proof may be found for instance
in (5), page 201, lemma 3.17, and also some simple geometrical results on convex
sets which are stated (and proved) as Lemma 2.

Lemma 1. (i) For any measurable set Ec R",

ie I

(ii) For anyt>0,f**(t) = sup j - i - | / : t ̂  | F |<ool.

Lemma 2. Let Kbe a bounded open set in R" which is convex and symmetric
about the origin.

(i) IfO<X g 1, and Kn(x+XK) # 0, then x e 2K.

(ii) Ifyex+odK, where a, X>0, then y+(l+u)2.K=>x+AK.

(iii) Let Hbea bounded subset of R", and A a finite subset of(0, oo). Suppose
that for each xe H,we are given a value ofk = k{x) e A. Then we can choose a
finite number of points xu x2, ..., xm of H so that the sets (xf+/l(Xj)K)™= x are
disjoint, while the sets (xi+2X(xl)K)T= x cover H.

Proof, (i) Let z e Kn(x+XK), where 0< X g 1.

Then z = x+Xk where keK, and so —keK since K is symmetric. It

follows that x = (1+X) (— z + — ( - k)) 6 (1+X)K c 2K.

This proves (i) and the proof of (ii) is similar.

(iii) We denote xi
JrX{x^K by K(xt) and Xi+od(Xi)K by Ka(xt) for a given

a>0.
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Since there are only a finite number of choices possible for A(x(), we choose
as xt a point for which A(x,) is as large as possible. Having chosen xY...xr

say, we choose xr+1 from among those points x of H for which K(x) is disjoint
from #(x1)u...uAr(xI.), and A(xr+1) is as large as possible. The chosen points
are separated by a certain minimum distance (determined by the smallest
element of A) and so the boundedness of H forces the sequence to terminate,
say at the point xm.

We have shown that the sets (K(xt))T= t are disjoint, and it remains to show
that the sets (X2(x,))JI- j cover H. Let y be a point of H which is not in any
K(xt) i = 1, 2, ..., m. K(y) cannot be disjoint from all of KixJ, ..., K(xm),
or else it would be available as a choice for xm+l. Let Xj be the first point of the
sequence (Xj)™= i for which K(Xi)nK(y) 4= 0 . Then y was available at the
7th stage as a possible choice for xJy and since it was not chosen, it follows that
Mxj) ^ My).

Part (i) now applies to show that y e K2(xj), and (iii) follows.

Proof of the main theorem. Suppose c>0 is given, and

The lower semi-continuity of mf makes E an open set, and in particular E is
measurable.

Let if be a compact subset of E and 8>0 a positive constant; H and 8 are
chosen independently of each other and of c.

Foreachxe#2£,therewillbeavalueofAforwhich(A"|K:|)~1 f>c;
Jx + XK

furthermore, the easily verified fact that {I" \ K \)~l /->0 as A-K» shows
Jx + XK

that we may assume that ((2A)n | K I)"1 f<c + 3. For each xe H, we
Jx+2XK

choose a value of X to satisfy both these properties. The continuity of the

integral I / as a function of x shows that there will be a neighbourhood
Jx + XK

N(x) of x such that the same value of A may be used throughout. We now use
the compactness of H to cover it by a finite number of neighbourhoods N(x),
and thus obtain a finite number of values of A.

This brings us to the situation of (iii) of Lemma 2, which may now be
applied to give a finite number of points xlt ...,xmofH with the properties that
(K(x,))T= ! are disjoint, while (K2(xJ)T= t cover H.

It follows that if S = (J K(x(),
• = I

| H | g £ | K2(xt)\ = 2" £ | K(xt)\ = 2" | S |.
i = 1 i = 1
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Also for each xh f>c \ K(x,)\, so that on adding, we have I f>c \ S |.
JK(XI) JS

With the aid of Lemma 1 (i), this may be rewritten
i f 1 f |S |

0 < c < TTi ^ 7TF f* = ' * * ( ' S l) ^f**(2~" I H D-I >̂ I Js I ^ I Jo
The fact that/**(f)-»O as t-+oo now shows that | H\ is bounded above.

But | £ | = SUP {I H h H compact and <=E}, and so | E |is finite, and

(2-"|£|). (iii)
i f I E|/2- i

A corollary of this is that | E |/2" ^ - / * ^ - | | / \\t if / is integrable.
^ J 0

It follows from this inequality by a standard argument (see for instance (1))

that lim (A" | K I)"1 f-+f(x) a.e., and in particular that/(x) ^ m/(x) a.e.
*-° Jx+XK

We may now prove inequality (i) of the theorem as follows.
Let *!>() be given, and let c be any positive number with 0<c<{mf)*{ti).
Then \E\ = \{x: (mf)(x)>c}\ = |{/: {mf)*{t)>c}\

^ |{/: (m/)*(0 ^ (»!O*(/i)}l ^ /i,
where the facts that (mf)* is decreasing and equimeasurable with w/have been
used.

Inequality (iii) above now shows that 0<c ^/**(2""/1), and since c was any
number less than (m/)*(^) we deduce that (mf)*^,) ^/**(2~%) as required.

In order to prove inequality (ii) of the theorem we again make use of the
fact that the family (K2(Xi)T= i covers H. It follows that

f /£ I f
J H i = l J K

f£(c+5) I \K2(Xi)\ = (-)\c + 5) £ \KJ(xd\ (iv)
i l W i l

where a is a constant to be determined later. It will be necessary to restrict a
to lie in (0, 1] in order to ensure the disjointness of the sets CKa(x,))™= i

We now show that each Ks(xD is contained in £"(c(l +a)~"). For according
to (ii) of Lemma 2, if y e Ka{x^, then G(y) = y+(l+ix)X(xt)K^K(xi), and so
we have

I GOO!"1 f ft ((l + a)B I Kixdir1 f />c(l + a)-».
JG(y) jK(Xi)

We can now deduce from inequality (iv) that

tH,5\

[/-(" /sew
j £ JE(C)

and from the fact that H, d were chosen independently it follows that

% (v)
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Now let A be any positive constant, and let F be a measurable subset of R"
for which A | £(c(l +a)-")| ^ | F | < oo.

Then

J £ J FJ J J F\E

<f2Vc | ^ J c //2\M A
- W ^ I F I " V W ^ ;

where we have used (v) and the fact that/(x) ^ mf(x) ^ c at almost all points
of F\£". By (ii) of Lemma 1, it follows that

f**(A\ E(c(l + a)-")|)

The proof of inequality (ii) of the theorem is now completed as follows.
Let f!>0 be given, and let c = (1 +a.)n(mf)*(t1). Then

| £(c(l + a)-")| = |{x: (m/)(x)>(m/)*(<1)}| = \{t: (m/)*(0>(m/)*(f1)l ^ »

It follows that/*'(All) ^/**011 £(c(l+a)-")|)

Inequality (ii) now follows on making the substitution a. = 1 if A<2", or
a = (2n/y4)1/(n+1) if A ^ 2", and the proof is complete.

The choice of a particular value for A is to some extent arbitrary: the value
A = 2" gives 2""~1/**(2"0 ^ (mf)*(t) mentioned in the introduction, while the
choice A = 1 gives f**(t) g 2"(2"+l)(m/)*(0 which is the estimate obtained in
(2) and (6) when K = Qn, the unit cube in R".

The fact that i f / is essentially bounded, lim (m/)*(0 = lim/**(f) = || / IL
t-o »-*o

(which is also evident from elementary considerations) may be deduced from
(i) and (ii) by taking A large.

3. Further results

For a given K, we denote by r\{K) the smallest constant for which

for all/eL*(Rn)
With this notation, (i) of Section 2 can now be stated simply as

tj(K) g 2" for alljsuitable K<=Rn.

We denote the unit sphere and unit cube in R" by Kn and Qn respectively. We
can now make the following observations concerning the size of ij{K).

(1) ti(K) > 1. For the value of tj(K) is independent of rotations or dilations
of K, and so without loss of generality we may assume that \ diam (K) = 1
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and that et = (1,0, ..., 0) is a boundary point ofK. Consider now a unit mass
placed at each of the points (rej^ -N. (Such a mass-distribution is a limit
in an obvious sense of a sequence of functions in L*(R") whose supports shrink
to the points reu while their integrals remain constant.) If we take
en = (1+211")'1 <\, an easy calculation shows that m/(x) ^ (e"n | K I)"1 at all
points of ret + BnK, (r = —N, ..., N) and also at all points in the " overlap "
((r — l)et + (1 — E^K)n(rex + (1 — en)K). Hence if fitt denotes the measure of this
last set, we have m/(x) ^ (e|| | K I)"1 on a set whose measure is at least
(2N + l)e"n | K \+2Nfin = T say. It follows that (mf)*(x) ^ (ejj | K I)"1. But

f**(t) is simply (2JV+ I);"1 for all t>0, and so

^ (W/)*(T) ^ (e"n \K I)-1 x

2N + 1 'tj(K)'
or

1 % I K |

But N may be taken arbitrarily large, and so r}(K)^l+nn(e"\ K\)~1>1.
In the case K = Kn the estimate obtained tends rapidly to 1 for large n.

(2) riiQi) = riiKj) ^ 1- This is simply the case n = 1 of the above, when
K = (—1, 1), en = /!„ = £. Thus we have a gap, even in the one-dimensional
case between the upper estimate OKÂ ) ^ 21 = 2) given by the theorem, and
the lower estimate t](Kt) ^ \.

(3) »/((?„) is an increasing function of n. For if f(x) =f(xu x2, ..., xn)
is a function on R", which gives a near approximation to t](Qn), then
f~{xu x2, ..., xn, xn+i) =/(xi> x2, ..., JCB) gives the same approximation for
t](Qn+1). The details are identical to those in Section 3 of (6).

(4) f/(X2) ^ f — — >i- This estimate is obtained by considering a

hexagonal lattice of unit masses in the plane: we outline the argument briefly.
Consider unit masses atthe points of the lattice generated by the points

Pi = 0 , 0) and P2 = Q, -^3/2). If we restrict attention to a large area V of
the plane, there are approximately 2 F/,/3 point masses, and so/**(0 = 2 V/(y/3t).
Let the point P be determined by

2(7r(P1P)2)-1 = 3(7r(P2P)2)-1 = p

say. It is easily verified t h a t / is (1/^/6, (V3~V2)/V6) and that the corres-
ponding value of p is (n(l —y/$))~1. Then at each point of the triangle OPXP2,
w/has a value at least as large as p, and so mf{x) ^ p for all x e V.

Hence (w/)*(F) ^ p, and so .
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Hence

(5) The estimate (m/)*(f) g f**(tfo(K)) g f**(2~"t) leads at once via
Hardy's inequality (see (5) page 196) to a norm estimate for mf if

), l<p<oo. Thus

|p ^ ||/M(./i/(K))||p g MX))1" ||/** ||p

>pl(p-1)|| / * ||p = (r,(K))1»'pKp-l)\\ f ||p.

In particular || mf\\p g 2""W(p-l)| | / | | , .
The following example gives some information about the constants which

appear in inequality (ii) of Section 2.
(6) Let/(x) = | x |~", where | x |2 = xt+xj + ... + x2

n, and 0<a<n.
Then if 0<a ^ n - 2 , / i s a superharmonic function on R", so that

; x, A) = i

is a non-increasing function of A>0. In particular (m/)(x) = /(x) = | x \ ",
and so

(m/)*(0 = (t/\ Kn |)""/B =/*(0 = -—/**(0»
n

and when a = n—2, (mf)*(t)/f**(t) has the constant value 2//i.
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