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Abstract

In this paper we use a simple transient Markov process with an absorbing point to
investigate the qualitative behavior of a large-scale storage network of nonreliable file
servers across which files can be duplicated. When the size of the system goes to ∞, we
show that there is a critical value for the maximum number of files per server such that,
below this quantity, most files have a maximum number of copies. Above this value, the
network loses a significant number of files until some equilibrium is reached. When the
network is stable, we show that, with convenient time scales, the evolution of the network
towards the absorbing state can be described via a stochastic averaging principle.
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1. Introduction

1.1. Storage systems

We consider a large-scale storage system, namely a set of file servers in a communication
network. In order to ensure persistence, files are duplicated on several servers. When the disk
of a given server breaks down, its files are lost but can be retrieved on the other servers if
copies are available. For this reason, a fraction of the bandwidth of a server is devoted to the
duplication mechanism of its files to other servers. On the one hand, there should be sufficiently
many copies so that any file has a copy available on at least one server at any time. On the other
hand, in order to use the bandwidth in an optimal way, there should not be too many copies of a
given file so that the network can accommodate a large number of distinct files. These systems
are known as distributed hash tables (DHTs). They play an important role in the development
of some large-scale distributed systems; see [30] and [32] for a more detailed presentation.

Failures of disks occur naturally randomly; these events are quite rare, but, given the large
number of nodes in these distributed systems, this is not a negligible phenomenon at the level
of the network. If, for a short period of time, several of the servers break down, it may happen
that files will be lost for good because all the available copies were on these servers and because
the recovery procedure was not completed before the last copy disappeared. When designing
such a system, it is therefore desirable to find a convenient duplication policy and to design the
system so that a copy of each file exists for as long as possible. The natural critical parameters
of the network are the failure rates of the servers, the bandwidth allocated to duplication, the
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number of files, and the number of servers. The ratio of the two last quantities is a measure
of the storage capacity of the system. It is important to understand the impact of each of these
parameters on the efficiency of the storage system.

1.2. Literature

This network can be seen as a classical set of queues with breakdowns. Numerous stochastic
models of such systems have been investigated in the literature; see Chapter 6 of [21] for example
and the references therein. Related models include queues with retrial and queues with servers
of walking types; see [2] and [10]. For most of the systems analyzed, there are, in general,
one or two nodes that are subject to breakdown. A queueing analysis is generally done in
this context: convergence in distribution of the associated Markov model and analysis of the
distributions of the availability of the system, of the delays, and of the queue sizes. There
are very few stochastic models that can be used to investigate the performance of DHTs; the
existing models describe the evolution of the number of copies of a single file. See [5], [27],
and [28]; see also [13]. In most of these studies the interaction between different files, due to
the bandwidth sharing limitations, has not really been considered, except through simulations.
The purpose of this paper is to investigate the impact of this interaction. We consider a large
system, i.e. a large number of files, instead of a small number of elements, which is a natural
consideration for current distributed systems.

1.3. The stochastic model

We consider the following simple model. A file can have at most two copies, with the total
bandwidth allocated to file duplication given by λN for λ > 0 and N ∈ N. If at some moment
there are x ≥ 1 files with exactly one copy, a new copy of each of these files is created at rate
λN/x. It is assumed that initially FN files are present in the system with two copies and each
copy of a file disappears at rate μ. Recall that a file with 0 copies is lost. It will be assumed
that the total number of files FN is proportional toN , i.e. that FN/N converges to some β > 0.
Clearly, this system is transient and the empty state, i.e. all files are lost, is an absorbing state.
The aim of this paper is to describe the decay of the network, i.e. how the set of lost files
increases. For δ > 0, there exists some finite random instant TN(δ) such that �δN� files are
lost after time TN(δ). In this paper we investigate the order of magnitude in N of the variables
TN(δ) as N becomes large, and the role of the parameters λ, μ, and β in these asymptotics.

1.4. Modeling issues

As will be seen, one of the conclusions of this analysis is that if the parameters λ, μ, and β
of the network are properly dimensioned, then the system remains for a long period of time in
a kind of stationary state where only a few files are permanently lost. Curiously, this important
property does not seem to have been explicitly investigated by the designers of algorithms for
these storage systems, even if it was probably suspected. In general, algorithms are evaluated
experimentally with an overloaded initial state so that a significant fraction of files is lost at
the start. The ‘best’ algorithm is that which loses files less rapidly; see [23] for example.
These experimental simulations are conducted for a limited period of time, e.g. several weeks,
during which there is a sharp degradation, indicating that the decay to the empty state follows.
However, as will be seen with a simple model, this is misleading; there is a stabilization of the
network and this is why it makes sense to design such systems.

In order to concentrate on these stability properties, we neglect some other important issues
concerning these storage systems. We review some of them.
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Fixed set of files. In practice, new files arrive that have to be stored and duplicated. Initially, a
large number of files need to be stored and we study the conditions under which this initial set of
files can be preserved for some period of time. In the case of a Markovian model with arrivals,
one could consider the associated invariant distribution. This has been done, partially, in the
literature. In our opinion such a study would perhaps miss the interesting transient properties
which are exhibited here.

Capacity for duplication. If there areN servers, each with an available bandwidth λ to duplicate
files, then the maximal capacity for duplication is λN . The model described above has therefore
an optimal use of the duplication mechanism since the maximal duplication capacity is always
available. For this reason, this model provides upper bounds on the optimal performance of
such a system. In particular, for any duplication mechanism, after a duration of time with the
same distribution as TN(δ), at least �δN� files will be lost for good.

Homogeneity. In our study all files have the same loss rate, which is unlikely in practice since
the storage servers may have different reliability characteristics. To extend our results, we could
describe the state of the systems by adding a variable to indicate the loss rate of a given copy.
However, we work in a homogeneous framework for simplicity.

1.5. Time scales of transient Markov processes

If, for i ∈ {0, 1, 2}, XNi (t) denotes the number of files with i copies in the network, then,
under Poisson assumptions for failures and duplication processes, (XN0 (t), X

N
1 (t)) is clearly a

finite Markov process with (FN, 0) as an absorbing state. Contrary to the abovementioned
works, there is clearly no question of equilibrium here since the system dies at (FN, 0).
A possible approach to investigate the decay of such a system is to consider the associated
quasistationary distributions of the Markov process; see [6] and [11] for example. It would
give a description of the system conditionally on the event that only a fraction of the files has been
lost. It is in general expressed in terms of the spectral characteristics of the jump matrix. For
this reason, an explicit description of these distributions is quite rare outside one-dimensional
birth-and-death processes. In this paper, different time scales will be used to investigate the
qualitative behavior of these transient processes. Times scales can be thought of as ‘lenses’.

We show that a stochastic averaging principle (SAP) occurs for this transient process; roughly
speaking, its dynamics depend on two components, one evolving over a fast time scale and
the other evolving over a slower time scale. See [25, Chapters 9 and 10] for an elementary
introduction, and also [17] and [14]. This phenomenon is known to occur for the classical
example of loss networks. In this case the vector of the number of free places of the congested
links is the fast component; see [20] and [18]. Outside this class of network, there are currently
few examples of stochastic networks for which such a SAP occurs. See [12] and [26] for
recent examples of SAPs. In our case a SAP occurs as follows: under the stability condition
λ > 2βν, the transition rates associated with exactly one copy are proportional toN so that it is
instantaneously at its equilibrium depending on the current fraction of lost files. The number of
lost files increases at a bounded rate; hence, the process evolves on a much slower time scale.
This intuitive phenomenon requires some technical steps to be established rigorously. In this
paper, a martingale approach is used to tackle the technical intricacies. See Theorem 4 and the
discussion following its proof.

1.6. Outline of the paper

In Section 2 we introduce the Markov process investigated and its corresponding martingale
representation.
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In Section 3 we study a fluid picture of the network, i.e. the limit of the sequence of processes
(XN0 (t)/N,X

N
1 (t)/N). We show in Theorem 1 that its limit, the solution of an ordinary

differential equation, is not trivial when λ < 2μβ and is (0, 0) when λ > 2μβ. The storage
system is therefore properly designed when λ > 2μβ; otherwise, it is inefficient since it loses
a significant number of files from the start.

Section 4 is devoted to the critical case λ = 2μβ. In Theorem 2 we show that the sequence
of processes (XN0 (t)/

√
N,XN1 (t)/

√
N) converges in distribution and that its limit can be

expressed in terms of a non-Markovian one-dimensional process, which is the solution of
an unusual stochastic differential equation with reflection at 0.

In Section 5 we investigate the stable case λ > 2μβ. We show that the capacity of the system
remains intact at the normal time scale: for t ≥ 0, in Theorem 3 we prove that the variable
(XN0 (t)) converges in distribution to a Poisson process. Only a finite number of files is lost as
N goes to ∞.

The main result of the paper, Theorem 4 describes on the time scale t → Nt the transience
of the Markov process: a fraction ψ(t)N of the files is lost, where ψ(t) is the solution of some
fixed-point equation. Consequently, t → Nt is a convenient time scale to use to observe the
degradation of the storage system. In this case a stochastic averaging principle holds: around
time Nt there is a local equilibrium for which (β − ψ(t))N files are still available.

The proof of the convergence results uses an extension of the classical Skorokhod problem
proposed in [1]. The necessary material is gathered in Appendix A to keep the paper self-
contained.

2. The stochastic model

Recall that FN is the total number of distinct files initially present in the network, and that
XN1 (t) and XN0 (t) are respectively the number of files with one copy at time t and the number
of lost files at time t . The number XN2 (t) of files with two copies at time t is defined by
XN2 (t) = FN −XN0 (t)−XN1 (t).

We assume the initial state

(XN0 (0),X
N
1 (0)) = (0, 0),

and that all files initially have two copies. The copy of a file is lost with rateμ and, conditionally
on XN1 (t) = x, a file with only one copy gets an additional copy with rate λN/x. All events
are supposed to occur after an exponentially distributed time. Under these assumptions,
(X(t)) := (XN0 (t), X

N
1 (t)) is a Markov process on the state space

S = {x = (x0, x1) ∈ N
2 : x0 + x1 ≤ FN };

as mentioned above, under these assumptions, the state (FN, 0) is an absorbing point of the
process (XN(t)).

For x ∈ N
2, the Q-matrix QN = (qN(·, ·)) of the process (X(t)) is defined by

qN(x, x + e1) = 2μ(FN − x0 − x1), (1a)

qN(x, x − e1) = λN 1{x1>0}, (1b)

qN(x, x − e1 + e0) = μx1, (1c)

with e0 = (1, 0) and e1 = (0, 1). We assume that

lim
N→+∞

FN

N
= β,

and define ρ = λ/μ.
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The stochastic differential equations associated with this transient Markov process can be
written as

XN0 (t) = XN0 (0)+
FN∑
i=1

∫ t

0
1{i≤XN1 (u−)} Nμ,i(du), (2)

XN1 (t) = XN1 (0)−
∫ t

0
1{XN1 (u−)>0} NλN(du)−

FN∑
i=1

∫ t

0
1{i≤XN1 (u−)} Nμ,i(du)

+
FN∑
i=1

∫ t

0
1{i≤FN−XN0 (u−)−XN1 (u−)} N2μ,i(du), (3)

where (Nμ,i) and (N2μ,i) are two independent sequences of independent and identically
distributed Poisson processes with respective parameters μ and 2μ, and NλN is an independent
Poisson process with parameter λN . For the ith file having only one copy, the integrand on the
right-hand side of (2) corresponds to its definitive loss and the second term on the right-hand
side of (3) is associated with its duplication. The last term of (3) represents the loss of a copy
of a file with two copies.

Relation (2) can be rewritten as

XN0 (t) = XN0 (0)+ μ

∫ t

0
XN1 (u) du+MN

0 (t), (4)

where (MN
0 (t)) is the martingale defined by

MN
0 (t) =

+∞∑
i=1

∫ t

0
1{i≤XN1 (u−)}[Nμ,i(du)− μ du].

Its increasing process is given by

〈MN
0 (t)〉 = μ

∫ t

0
XN1 (u) du.

Since XN1 (u) ≤ FN , there exists some constant C0 such that

E(MN
0 (t)

2) = E(〈MN
0 (t)〉) ≤ C0Nt

holds for all t ≥ 0 and N ≥ 1.
Similarly, if f is in Cc(N), the set of functions with finite support on N, (3) gives

f (XN1 (t)) = f (XN1 (0))+ μ

∫ t

0
[f (XN1 (u)− 1)− f (XN1 (u))]XN1 (u) du

+N

∫ t

0
�

[
FN

N
− XN1 (u)+XN0 (u)

N

]
(f )(XN1 (u)) du+MN

1 (t), (5)

where, for y ≥ 0, �[y] is the functional operator defined by

�[y](f )(x) = 2μy(f (x + 1)− f (x))+ λ 1{x>0}(f (x − 1)− f (x)), x ∈ N,

and (MN
1 (t)) is a martingale such that, for some constant C1,

E(MN
1 (t)

2) ≤ C1N‖f ‖∞,FN t

holds for all t ≥ 0 and N ≥ 1, where ‖f ‖∞,FN = max{|f (x)| : 0 ≤ x ≤ Fn}.
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3. Fluid limits

In this section we prove that a significant fraction of files is lost quickly if the network is not
correctly dimensioned. When the ratio ρ = λ/μ is less than 2β, for a large N , the fraction of
files with two copies at time t , (FN −XN0 (t)−XN1 (t))/N, is close to ρ/2 if t is large enough.
Consequently, (β − ρ/2)N files are lost and the network stabilizes for a subset of files with
two copies whose cardinality is of the order ρ/2.

When ρ = 2β, this is the critical case which is analyzed in Section 4, where we prove that
the number of lost files is of the order

√
N . When ρ > 2β, the proportion of lost files is 0 at

the fluid level. This case is investigated in Section 5.

Theorem 1. (Fluid equations.) If limN→+∞ FN/N = β then the sequence of processes
(XN0 (t)/N,X

N
1 (t)/N) converges in distribution to

[(
β − 1

2ρ
)
(1 − 2e−μt + e−2μt ), (2β − ρ)(e−μt − e−2μt )

]
if ρ ≤ 2β,

(0, 0) if ρ > 2β.

Proof. Equations (4) and (5), with the function f ≡ Id on [0, FN ], can be written as

XN0 (t)

N
= μ

∫ t

0

XN1 (u)

N
du+ MN

0 (t)

N
, (6)

XN1 (t)

N
= 2μ

∫ t

0

(
FN

N
− XN1 (u)+XN0 (u)

N

)
du− λt − μ

∫ t

0

XN1 (u)

N
du+ MN

1 (t)

N

+ λ

∫ t

0
1{XN1 (u)=0} du. (7)

Doob’s inequality and the bounds on the second moments of the associated martingales show
that, for i = 0, 1 and t ≥ 0,

P

(
sup

0≤s≤t
MN
i (s)

N
≥ ε

)
≤ 1

ε2 E(Mi(t)
2) ≤ 1

N

Cit

ε2 .

Therefore, the two sequences of processes (MN
0 (t)/N) and (MN

1 (t)/N) converge in distribution
to 0 uniformly on compact sets.

For T > 0, δ > 0, and i = 0, 1, define wT
XNi
(δ) to be the modulus of continuity of the

process (XNi (t)) on the interval [0, T ]:
wT
XNi
(δ) = sup

0≤s≤t≤T , |t−s|≤δ
|XNi (t)−XNi (s)|. (8)

Using the fact that, for some constant C,XNi (t) ≤ FN ≤ CN for all N ∈ N and t ≥ 0, it
follows from the above equations and the convergence of the martingales to 0 that, for any
ε > 0 and η > 0, there exists δ > 0 such that the relation P(wT

XNi
(δ) ≥ η) ≤ ε holds for all N .

The above implies that the sequence of stochastic processes (XN0 (t)/N,X
N
1 (t)/N) is tight.

See [3, Theorem 15.1] for example. We denote by (x0(t), x1(t)) a limiting value for some
subsequence (Nk). From (6), we obtain the relation

x0(t) = μ

∫ t

0
x1(u) du.
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Define

ZN(t) = μ

∫ t

0

(
2FN
N

− 3XN1 (u)

N
− 2XN0 (u)

N

)
du− λt + MN

1 (t)

N
. (9)

Equation (7) can also be interpreted as the unique solution

(XNZ (t), R
N
Z (t)) :=

(
XN1 (t)

N
, λ

∫ t

0
1{XN1 (u)=0} du

)
(10)

of the Skorokhod problem associated with the process (ZN(t)). SeeAppendixA for a definition.
The sequence (ZNk (t)) converges in distribution and, by the continuous mapping theorem,

lim
k→+∞(Z

Nk (t)) = y(t)

:= μ

∫ t

0
(2β − 2x0(u)− 3x1(u)) du− λt

= (2μβ − λ)t − μ

∫ t

0

(
3x1(u)+ 2μ

∫ u

0
x1(v) dv

)
du. (11)

As the solutions of Skorokhod problems are continuous with respect to the process (ZN(t))
(see Appendix D of [31] for example), (XNZ (t), R

N
Z (t)) converges in distribution to the solution

(xy(t), ry(t)) of the Skorokhod problem associated with (y(t)). Since xy(t) = x1(t) and
y(t) = F(x1)(t) with

F(x)(t) = (2μβ − λ)t − μ

∫ t

0

(
3x(u)+ 2μ

∫ u

0
x(v) dv

)
du,

the process (x1(t)) is therefore the first coordinate of the solution of the generalized Skorokhod
problem associated with the functional F . See Appendix A. Proposition 3 shows that such a
solution exists and is unique. This implies that there is a unique, deterministic limiting value for
the sequence (XN0 (t)/N,X

N
1 (t)/N). It is easy to check that the explicit expressions for (x0(t))

and (x1(t)) given in the statement of the theorem are indeed the solutions of the generalized
Skorokhod problem. The convergence in distribution is therefore established.

4. The critical case

To complete the picture of the overloaded network ρ ≤ 2β, we consider the critical case
ρ = 2β. As will be seen, the convergence result can be expressed in terms of a reflected
stochastic differential equation. In Appendix A we present the corresponding definition, and a
result of existence and uniqueness.

Theorem 2. Let λ/μ = 2β,

lim
N→+∞

1√
N

(
FN −N

ρ

2

)
= γ for some γ ∈ R, lim

N→+∞
XN1 (0)√
N

= y,

and XN0 (0) = 0. Then the relation

lim
N→+∞

(
XN0 (t)√
N

,
XN1 (t)√
N

)
=

(
μ

∫ t

0
Y (u) du, Y (t)

)

holds for the convergence in distribution, where (Y (t)) is the solution starting at y of the
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stochastic differential equation

dY (t) = √
2λ dB(t)+ μ

(
2γ − 3Y (t)− 2μ

∫ t

0
Y (u) du

)
dt (12)

reflected at 0, i.e. with the constraint that Y (t) ≥ 0 for all t ≥ 0. The process (B(t)) is a
standard Brownian motion on R.

The solution of stochastic differential equation (12) is non-Markovian due to the integral
term in the drift.

Proof of Theorem 2. Equations (4) and (5), with the function f ≡ Id on [0, FN ], can be
written as

X̄N0 (t) := XN0 (t)√
N

= μ

∫ t

0

XN1 (u)√
N

du+ MN
0 (t)√
N

, (13)

X̄N1 (t) := XN1 (t)√
N

= XN1 (0)√
N

+ 2μ
∫ t

0

(
γN − XN1 (u)√

N
− XN0 (u)√

N

)
du− μ

∫ t

0

XN1 (u)√
N

du+ MN
1 (t)√
N

+ λ
√
N

∫ t

0
1{XN1 (u)=0} du, (14)

with γN = (FN −Nρ/2)/
√
N . With the same notation as used in Section 2, the martingales

(MN
0 (t)) and (MN

1 (t)) are given by

MN
0 (t) =

+∞∑
i=1

∫ t

0
1{i≤XN1 (u−)}[Nμ,i(du)− μ du],

MN
1 (t) =

+∞∑
i=1

∫ t

0
1{i≤FN−XN1 (u−)−XN0 (u−)}[N2μ(du)− 2μ du] −MN

0 (t)

−
∫ t

0
1{XN1 (u)>0}[NλN(du)− λN du].

Their increasing processes are given by
〈

1√
N
MN

0

〉
(t) = μ

∫ t

0

XN1 (u)

N
du,

〈
1√
N
MN

1

〉
(t) = 2μ

∫ t

0

(
FN

N
− XN1 (u)

N
− XN0 (0)

N

)
du+

〈
1√
N
MN

0

〉
(t)

+ λ

∫ t

0
1{XN1 (u)>0} du.

The last term on the right-hand side of the above equation is (RN(t)), defined as in (10). It is
the second component of the solution to the Skorokhod problem associated with the process
(ZN(t)) of (9). The sequence of processes (ZN(t)) converges to (y(t)) defined in (11). In this
case (y(t)) is identically 0; the solution of the corresponding Skorokhod problem associated
with (y(t)) is therefore (0, 0). The continuity properties of the solutions of the Skorokhod
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problem imply that the process (RN(t)) converges to 0. Consequently, by Theorem 1 we
obtain the convergence in distribution

lim
N→+∞

(∫ t

0
1{XN1 (u)=0} du

)
= 0,

and, therefore,

lim
N→+∞

(〈
1√
N
MN

0

〉
(t)

)
= 0 and lim

N→+∞

(〈
1√
N
MN

1

〉
(t)

)
= 2λt.

We deduce that (M̄N
1 (t)) := (MN

1 (t)/
√
N) converges to (

√
2λB(t))),where (B(t)) is a standard

Brownian motion, and that (M̄N
0 (t)) := (MN

0 /
√
N) converges to 0. See [9, Theorem 1.4, p. 339]

for example.
We now prove that the processes

(X̄N0 (t)) :=
(
XN0 (t)√
N

)
and (X̄N1 (t)) :=

(
XN1 (t)√
N

)

are tight. If (h(t)) is a function on R+, we define

‖h‖∞,t = sup
0≤s≤t

|h(s)|

and let wth(·) be the modulus of continuity of h defined in (8). Equation (13) gives, for
0 ≤ t ≤ T ,

‖X̄N0 ‖∞,t ≤ ‖M̄N
0 ‖∞,T + μ

∫ t

0
‖X̄N1 ‖∞,u du.

Equation (14) shows that (XN1 (t)/
√
N) is the first coordinate of the solution of the Skorokhod

problem associated with (ZN1 (t)) defined by

ZN1 (t) := yN + μ

∫ t

0

(
2γN − 3

XN1 (u)√
N

+ 2
XN0 (u)√
N

)
du+ MN

1 (t)√
N

,

with yN = XN1 (0)/
√
N . Using the explicit representation of the solution of a Skorokhod

problem in dimension 1, we have

‖X̄N1 ‖∞,t ≤ 2‖ZN1 ‖∞,t for 0 ≤ t ≤ T ;
see Appendix D of [31] for example. Then

‖X̄N1 ‖∞,t ≤ 2yN + 4μγNT + 2‖M̄N
1 ‖∞,T + 4μ

∫ t

0
(‖X̄N0 ‖∞,u + ‖X̄N1 ‖∞,u) du

≤ UN(T )+ (4 + μT )μ

∫ t

0
‖X̄N1 ‖∞,u du,

with UN(T ) := 2yN + 4μγNT + 2‖M̄N
1 ‖∞,T + 4μT ‖M̄N

0 ‖∞,T .
It follows from Gronwall’s inequality that the relation ‖X̄N1 ‖∞,t ≤ UN(T ) exp((4+μT )μt)

holds for 0 ≤ t ≤ T , and, consequently,

‖X̄N0 ‖∞,t ≤ μTUN(T )e(4+μT )μt + ‖M̄N
0 ‖∞,T .

The convergence of martingales shows that the two sequences of random variables (UN(T ))
and ‖M̄N

0 ‖∞,T converge in distribution. Consequently, for ε > 0, there exists some K > 0
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such that, for i = 0, 1 and all N ≥ 0,

P(‖X̄Ni ‖∞,t > K) ≤ ε.

If η > 0, there exist N0 and sufficiently small δ such that, for all N ≥ N0,

2μδT (γN + 2K) <
η

2
and P(wT

M̄N
1

≥ η) ≤ ε.

The last relation follows from the fact that the sequence (M̄N
1 (t)) converges in distribution to

a continuous process. We finally obtain

P(wT
ZN1
(δ) ≥ η) ≤ P(2μδT [γN + ‖X̄N0 ‖∞,T + ‖X̄N1 ‖∞,T ] + wT

M̄N
1
(δ) ≥ η)

≤ P(‖X̄N0 ‖∞,T ≥ K)+ P(‖X̄N1 ‖∞,T ≥ K)+ P

(
wT
M̄N

1
(δ) ≥ η

2

)

≤ 3ε.

The sequence (ZN1 (t)) is therefore tight. By continuity of the solution of the Skorokhod
problem, the same property holds for (XN1 (t)/

√
N) and, consequently, for (XN0 (t)/

√
N).

Let (Y0(t), Y1(t)) be a limit of the subsequence [(XNk0 (t)/
√
Nk,X

Nk
1 (t)/

√
Nk)]. By (13)

and (14), we find that (
X
Nk
1 (t)√
Nk

, λ
√
N

∫ t

0
1{XN1 (u)=0} du

)

converges in distribution to the solution of the Skorokhod problem associated with the process

(
y + √

2λB(t)+ μ

∫ t

0

(
2γ − 3Y1(u)− 2μ

∫ u

0
Y1(v) dv

)
du

)
.

We conclude that (Y1(t)) is the solution of the generalized Skorokhod problem for the functional
F defined by

F(h)(t) = y + √
2λB(t)+ μ

∫ t

0

(
2γ − 3h(u)− 2μ

∫ u

0
h(v) dv

)
du.

Proposition 3 shows that there is a unique solution (Y1(t)) and, consequently, a unique limit
(Y0(t), Y1(t)). This completes the proof of the theorem.

5. The time scales of the stable network

The asymptotic properties of the network are investigated under the condition ρ = λ/μ >

2β. In Section 3 we showed that in this case the system is stable at the fluid level, i.e. that the
fraction of lost files is 0. Of course, this does not change the fact that the system is still transient
with the absorbing state (FN, 0). To understand how the system reaches this state, we must
consider the following three interesting time scales.

• The slow time scale: t → t/N .

• The normal time scale: t → t .

• The linear time scale: t → Nt .
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We successively investigate each of these time scales in this section. The following elementary
lemma will be used throughout the section.

Lemma 1. If ρ = λ/μ > 2β for any β0 > β such that λ/μ > 2β0, ε > 0, η > 0, and T > 0,
there exists N0 ∈ N such that

(i) (coupling) there exists a probability space where the relation

XN1 (t) ≤ Lβ0(Nt) for all t ≥ 0

holds for all N ≥ N0 and t ≥ 0, where (Lβ0(t)) is the process of the number of
customers in an ergodic M/M/1 queue with arrival rate 2μβ0 and service rate λ, with
initial condition Lβ0(0) = XN1 (0),

(ii) the relation

P

[
sup

0≤s,t≤T
|t−s|≤δ

1

N

∫ tN

sN

Lβ0(u) du > η

]
≤ ε

holds.

Proof. There exist some β0 ≥ β and N0 ≥ 1 such that λ > 2β0μ and FN ≤ Nβ0 for
N ≥ N0. It is enough to take the M/M/1 queue with arrival rate 2μβ0 and service rate λ.

Denote by A the event on the left-hand side of the relation in (ii). If, for x ∈ N, τx denotes
the hitting time of x by the process (Lβ0(t)), for δ < 1

2 , we have

P(A) ≤ P(τ�ηN� ≤ NT ).

By ergodicity of this process and Proposition 5.11 of [31] for example, there exist some 0 <
α < 1 such that the sequence (αNτ�Nη�) converges in distribution. The right-hand side of the
above relation is thus arbitrarily small as N becomes large.

5.1. The slow time scale

A description of the asymptotic behavior for the slow time scale is briefly presented. The
following proposition shows in particular that, on the slow time scale, with probability 1, no
file is lost in the limit.

Proposition 1. The sequence of processes (XN0 (t/N),X
N
1 (t/N)) converges in distribution to

the process (0, Lβ(t)), where (Lβ(t)) is the process of the number of jobs in an M/M/1 queue
with arrival rate 2μβ and service rate λ.

Proof. From (1), we can see that the Q-matrix of the process on the slow time scale
(XN0 (t/N),X

N
1 (t/N)) has the following asymptotic expansion:

qN(x, x + e1) = 2μ
1

N
(FN − x0 − x1) → 2μβ,

qN(x, x − e1) = λ 1{x1>0},

qN(x, x − e1 + e0) = μ
x1

N
→ 0.

For T > 0, the above lemma shows that, for sufficiently large K, (XN1 (t/N)) is bounded by
K on the time interval [0, T ] with high probability and for any N ≥ 0. In particular, for
sufficiently large M , the number of jumps of the process (XN1 (t/N), 0 ≤ t ≤ T ) is less than
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M with high probability for all N . The convergence of the successive instants of jumps is then
a direct consequence of the convergence of the Q-matrix. The convergence of the processes
on the time interval [0, T ] follows from the definition of the metrics defining the Skorokhod
topology on right-continuous functions with left limits. See [9, Proposition 5.2] for example.

5.2. The normal time scale

We show that, on the normal time scale, the stability does not only hold on the fluid level:
almost surely, there is a finite number of losses in any finite time interval; more precisely, losses
occur as a Poisson process (see Theorem 3). The capacity λN of the network is thus able to
maintain an almost complete set of files. The following proposition shows in particular that the
number of definitive losses at time t > 0 is finite with a Poisson distribution.

Theorem 3. If ρ = λ/μ > 2β,

(i) the sequence of processes (XN0 (t)) converges in distribution to a Poisson point process
on R+ with rate 2μβ/(ρ − 2β),

(ii) for t > 0, as N goes to ∞, the random variable XN1 (t) converges in distribution to a
geometric distribution with parameter 2β/ρ.

The second convergence is for the marginal distribution of (XN1 (s)) at time t . One cannot
expect a convergence in distribution of the sequence of processes (XN1 (t)). Indeed, since the
sequence of processes (XN1 (t/N)) converges in distribution to the law of the M/M/1 process
(Lβ(t)) for 0 ≤ s < t , the distributions of (XN1 (s),X

N
1 (t)) and (Lβ(Ns), Lβ(Nt)) are close.

Between times Ns and Nt , the M/M/1 ‘forgets’ its location at time Ns (just because it hits 0
with probability 1), so when N goes to ∞, the pair (XN1 (s),X

N
1 (t)) converges in distribution

to the distribution of two independent geometric distributions.

Proof of Theorem 3. Define

ηN(t) :=
∫ t

0
XN1 (u) du.

For 0 ≤ s ≤ t , Lemma 1 gives

ηN(t)− ηN(s) =
∫ t

s

XN1 (u) du ≤
∫ t

s

Lβ0(Nu) du = 1

N

∫ Nt

Ns

Lβ0(u) du.

It follows from the criteria of the modulus of continuity and Lemma 1 that the sequence of
processes (ηN(t)) is tight. The above inequality and the ergodic theorem applied to the ergodic
Markov process (Lβ0(t)) also show that, almost surely,

lim sup
N→+∞

∫ t

0
XN1 (u) du ≤ 2β0

ρ − 2β0
t. (15)

For fixed T > 0 and K > 0,

P(XN0 (T ) ≥ K) ≤ P

(
μ

∫ T

0
XN1 (u) ≥ K

2

)
+ P

(
MN

0 (T ) ≥ K

2

)

≤ P

(
μ

∫ T

0
XN1 (u) ≥ K

2

)
+ 4

K2 E

(
μ

∫ T

0
XN1 (u) du

)
.
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We can thus choose K so that P(XN0 (T ) ≥ K) ≤ ε holds for N ≥ N0 for some N0 ∈ N. As in
the proof of Lemma 1, for δ > 0, there exist some N1 ∈ N such that if N ≥ N1 then

P

(
sup

0≤s≤T
Lβ0(s) ≥ δN

)
≤ ε.

In the same way as in the proof of Lemma 1, we can construct an M/M/1 process (ZN(t))
whose arrival and service rates are respectively

2μ

(
FN

N
− K

N
− δ

)
and λ,

and such that, on the event

AT :=
{
XN0 (T ) ≤ K, sup

0≤t≤NT
Lβ0(t) ≤ δN

}
,

the relation XN1 (t) ≥ ZN(Nt) holds for all t ≤ T . Hence, almost surely,

lim inf
N→+∞ η

N(t) ≥ lim inf
N→+∞

1

N

∫ Nt

0
ZN(u) du = 2(β − δ)

ρ − 2(β − δ)
t (16)

holds on AT . By setting β0 equal to β in (15) and δ equal to 0 in (16), it follows that the variable
ηN(t) converges almost surely to αt with α = 2βμ/(ρ − 2β). Consequently, the tightness of
the sequence of processes (ηN(t)) implies that it converges in distribution to (αt).

Note that t �→ XN0 (t) can also be seen as a point process with jumps of size 1. By (4),
(
XN0 (t)− μ

∫ t

0
XN1 (u) du

)

is a martingale with respect to the natural filtration of the associated Poisson processes. The
random measure

�N([0, t]) = μ

∫ t

0
XN1 (u) du

is a compensator of the point process t �→ XN0 (t); see [19]. It has therefore been shown that the
sequence of compensators converges to the deterministic measure α dx. Theorem 5.1 of [19],
see also [4], gives the convergence in distribution of (XN0 (t)) to a Poisson process with rate α.

In a similar way as in the proof of Proposition 1, through the convergence of the Q-matrix,
the asymptotic distribution of XN1 (t) can easily be obtained by conditioning on the event
{XN0 (t) ≤ K} for large K and by using arbitrarily close M/M/1 processes at equilibrium as
upper and lower stochastic bounds for XN1 (t). We omit the details.

5.3. The linear time scale t → Nt

On the linear time scale, we will show that a fraction �(t) of the files is lost at time t . That
is, the linear time scale gives a picture of the decay of the network. In the following, for a
nonnegative measure � on some space H and a nonnegative measurable function f on H , the
classical notation 〈�, f 〉 will denote the integration of f with respect to the measure �.

For N ≥ 1, the random measure μN on N × R+ is defined as, for a measurable function
g : N × R+ → R+,

〈μN, g〉 =
∫

R+
g(XN1 (Nt), t) dt.
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Note that if g(x, t) = h(x) 1[0,T ](t) for T > 0 then

〈μN, g〉 =
∑
x∈N

h(x)
1

N

∫ NT

0
1{XN1 (t)=x} dt.

Consequently, (μN) is a relatively compact sequence of random Radon measures on N × R+;
see [7, Theorem 3.7.1, p. 56] for example. Note that the measure identically null can be a
possible limit of this sequence.

In the following we fix (Nk) such that (μNk ) is a converging subsequence whose limit is ν.
By taking a convenient probability space, we can assume that the convergence of (μNk ) holds
almost surely for the weak convergence of Radon measures.

Since, for N ≥ 1, μN is absolutely continuous with respect to the product of the counting
measure on N and Lebesgue measure on R+, the same property holds for the limiting measure ν.
Let (x, t) → πt (x) denote its (random) density. We note that a version of πt (x) can be chosen
such that the map (ω, x, t) → πt (x)(ω) on the product of the probability space and N × R+ is
measurable by taking πt (x) as a limit of measurable maps:

πt (x) = lim sup
s→0

1

s
ν({x} × [t, t + s]).

See Chapter 8 of [33] for example.

Proposition 2. For the convergence in distribution of continuous processes,

lim
k→+∞

(
μ

Nk

∫ Nkt

0
X
Nk
1 (u) du

)
= (�(t)) :=

(
μ

∫ t

0
〈πu, I 〉 du

)
,

where I (x) = x for x ∈ N. Moreover, almost surely, for all t ≥ 0,
∫ t

0
πu(N) du = t.

The latter relation is crucial, as it shows that the masses of the measures μNk for k ≥ 1 do
not vanish at ∞.This property is sometimes absent from the proofs of SAPs, but is nevertheless
essential to identify πu as an invariant distribution of a Markov process.

Proof of Proposition 2. The criteria of the modulus of continuity is used to prove the
tightness of

(�N(t)) :=
(
μ

N

∫ Nt

0
XN1 (u) du

)
.

By Lemma 1,

�N(t)−�N(s) = μ

N

∫ Nt

Ns

XN1 (u) du ≤ μ

N2

∫ N2t

N2s

Lβ0(u) du.

As in the proof of Theorem 3, we conclude that the sequence of processes (�N(t)) is tight.
For K > 0 and t ≥ 0, the almost-sure convergence of the measures (μNk ) gives the

convergence

lim
k→+∞

1

Nk

∫ Nkt

0
X
Nk
1 (u)1[0,K](XNk1 (u)) du =

∫ t

0
〈πu, I1[0,K]〉 du,
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where I (x) = x. By again using Lemma 1 we obtain

1

Nk

∫ Nkt

0
X
Nk
1 (u) 1{XNk1 (u)≥K} du ≤ 1

N2
k

∫ N2
k t

0
Lβ0(u) 1{Lβ0 (u)≥K} du,

and the ergodic theorem applied to (Lβ0(t)) shows that the last quantity converges in distribution
to

(tE(Lβ0(∞) 1{Lβ0 (∞)≥K})),

where Lβ0(∞) is the limit in distribution of (Lβ0(t)), a geometrically distributed random
variable. For ε > 0, K is chosen sufficiently large so that the last quantity is less than ε/2;
consequently, if k is large enough, we have

1

Nk

∫ Nkt

0
X
Nk
1 (u) 1{XNk1 ≥K} du ≤ ε.

We deduce that (�(t)) is the only possible limiting process for (�Nk (t)). This proves the first
part of the proposition.

For K ≥ 1, the convergence of (μNk ) gives the relation

lim
k→+∞

1

Nk

∫ Nkt

0
1{XNk1 (u)≤K} du = ν([0,K] × [0, t]) =

∫ t

0
πu([0,K]) du.

By again using the stochastic domination for an ergodic M/M/1 queue,

1

Nk

∫ Nkt

0
1{Lβ0 (u)≤K} du ≤ 1

Nk

∫ Nkt

0
1{XNk1 (u)≤K} du.

Letting k go to ∞, we obtain, almost surely,

tP(Lβ0(∞) ≤ K) ≤
∫ t

0
πu([0,K]) du ≤

∫ t

0
πu(N) du.

If K goes to ∞, the relation ∫ t

0
πs(N) ds = t

holds for all t ∈ N and, consequently, for all t ≥ 0. This completes the proof.

Theorem 4. (Rate of decay of the network.) If ρ = λ/μ > 2β then, as N goes to ∞, the
process (XN0 (Nt)/N) converges to (�(t)), where�(t) is the unique solution y ∈ [0, β] of the
equation (

1 − y

β

)ρ/2
ey+μt = 1.

For t ≥ 0, the process (XN1 (Nt + u), u > 0) converges in distribution to the stationary process
of the number of jobs in an M/M/1 queue with service rate λ and arrival rate 2μ(β −�(t)).

It is easily seen that the asymptotic expansion �(t)− β ∼ β exp(−2(β + μt)/ρ) holds as
t goes to ∞. The last part of the theorem states that, ‘around’ time Nt , the process XN1 has a
local equilibrium.
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Proof of Theorem 4. Equation (5) gives, for f ∈ Cc(N),
f (XN1 (Nt))− f (XN1 (0))−MN

f,1(Nt)

= N2
∫ t

0
�[YN(u)](f )(XN1 (Nu)) du+ μN

∫ t

0
�−(f )(XN1 (Nu))XN1 (Nu) du, (17)

where, using (4),

YN(u) = FN

N
− XN1 (Nu)

N
− MN

0 (Nu)

N
− μ

N

∫ Nu

0
XN1 (v) dv,

and �−(f )(x) = (f (x − 1)− f (x)) 1{x≥1}. The bound on the increasing process of the
martingale (MN

f,1(t)) at the end of Section 2, Doob’s inequality, and Lemma 1 show that
the sequence of processes(

1

N2

[
f (XN1 (Nt))−f (XN1 (0))−MN

f,1(Nt)−μN
∫ t

0
(�−(f )(XN1 (Nu))XN1 (Nu) du

])

converges to 0 for the topology of the uniform norm on compact sets.
By Lemma 1, we obtain

XN1 (Nu)

N
≤ Lβ0(N

2u)

N
;

hence, the sequence of processes (XN1 (Nu)/N) converges in distribution to 0.
The bound on the increasing process and Proposition 2 show that the sequence of processes

(YNk (t)) converges in distribution to (β − �(t)). We deduce from (17) that the sequence of
processes(∫ t

0
�[β −�(u)](f )(XNk1 (Nku)) du

)
=

(∫
N×[0,t]

�[β −�(u)](f )(x)μNk (dx, du)

)

converges to 0.
The convergence of the (μNk ) and Proposition 2 therefore show that, almost surely, the

relations ∫ t

0
〈πu,�[β −�(u)](f )〉 du = 0 and

∫ t

0
πu(N) du = t

hold for all t ≥ 0 and all functions f ∈ Cc(N). Note that we have used the fact that Cc(N) has
a countable dense subset for the uniform norm.

If � is the subset of all real numbers u ≥ 0 such that either of the relations

πu(N) �= 1, 〈πu,�[β −�(u)](f )〉 �= 0 for some f ∈ Cc(N) (18)

holds, then the Lebesgue measure of � is 0. Hence, if u �∈ � then πu(N) = 1 and 〈πu,�[β−
�(u)](f )〉 = 0 for all f ∈ Cc(N). Since �[β − �(u)] is the infinitesimal generator of an
M/M/1 queue with arrival rate 2μ(β −�(u)) and service rate λ, πu is a geometric distribution
on N with parameter 2μ(β −�(u))/λ.

From Proposition 2, for t ≥ 0,

�(t) = μ

∫
[0,t]\�

〈πu, I 〉 du = μ

∫ t

0

2μ(β −�(u))

λ− 2μ(β −�(u))
du.

Straightforward calculus gives the relation

(β − ψ(u))ρ/2eψ(u) = βρ/2e−μu.
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Since 2β < ρ, it is easy to check that there is a unique�(u) < β satisfying the above equation.
This completes the proof.

Corollary 1 below on the asymptotic behavior of TN(δ), the first time when a fraction δ of
the files has been lost, follows directly from Theorem 4.

Corollary 1. If ρ = λ/μ > 2β then, for N ≥ 1 and δ ∈ (0, 1),

TN(δ) = inf{t ≥ 0 : XN0 (t) ≥ δFN }.
For the convergence in distribution,

lim
N→+∞

TN(δ)

N
= 1

μ

(
−ρ

2
log(1 − δ)− δβ

)
.

5.4. SAP

The quantity used to establish the theorem concerning the rate of decay of the network is

1

N

∫ Nt

0
XN1 (u) du =

∫ t

0
XN1 (Nu) du,

which is the average of lost files on [0, Nt] scaled byN . If at ‘time’Nu the number of remaining
files (i.e. those not lost) isN(β−ψ(u)), the process (XN1 (Nu+ v), v ≥ 0) is an ergodic M/M/1
queue with input rate 2μ(β − ψ(u)) and service rate λ. The πu of Proposition 2 is therefore
the geometric distribution with parameter 2μ(β − ψ(u))/λ. The local equilibrium of (XN1 )
determines the evolution of the process XN0 on the time scale t → Nt .

This SAP phenomenon is already well known in the framework of deterministic dynamical
systems; see [15]. In a stochastic context, an additional difficulty, sometimes neglected or
underestimated in the literature, is of controlling the regularity properties of a family of invariant
distributions indexed by the state of the slow process. This can be done through a kind of
uniform control of some ergodic averages (see [14]) or by using a martingale representation of
the associated Markov processes and a convenient Lyapunov function (see [24]). See also [22].
In any case, there are several delicate technical issues to address: a convenient tightness result
for a set of random measures and the rate of convergence of ergodic averages. In our case this
is obtained in Proposition 2 as a consequence of a simple monotonicity property.

Appendix A. Generalized Skorokhod problems

For the sake of self-containedness, in this section we briefly present the more or less classical
material necessary to state and prove the convergence results used in this paper. The general
theme concerns the rigorous definition of the solution of a stochastic differential equation
constrained to stay in some domain, and also the proof of the existence and uniqueness of such
a solution. See [1], [8], and [34], and [16] and [35] for the multidimensional context, and [29]
for the more general context. See Appendix D of [31] for a brief account.

We first recall the classical definition of the Skorokhod problem. If (Z(t)) is some function
of the set D(R+,R) of càdlàg functions defined on R+, the pair of functions [(X(t)), (R(t))]
is said to be a solution of the Skorokhod problem associated with (Z(t)) whenever

1. X(t) = Z(t)+ R(t) for all t ≥ 0,

2. X(t) ≥ 0 for all t ≥ 0,
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3. t → R(t) is nondecreasing, R(0) = 0, and∫
R+
X(t) dR(t) = 0.

The generalization used in this paper corresponds to the case when (Z(t)) is itself a functional
of (X(t)).

Definition 1. (Generalized Skorokhod problem.) IfG : D(R+,R) → D(R+,R) is a Borelian
function, ((X(t)), (R(t))) is a solution of the generalized Skorokhod problem (GSP) associated
with G if ((X(t)), (R(t))) is the solution of the Skorokhod problem associated with G(X); in
particular, for all t ≥ 0,

X(t) = G(X)(t)+ R(t) and
∫

R+
X(t) dR(t) = 0.

The classical Skorokhod problem described above corresponds to the case when the functional
G is constant and equal to (Z(t)). If we take

G(x)(t) =
∫ t

0
σ(x(u)) dB(u)+

∫ t

0
δ(x(u)) du,

where (B(t)) is a standard Brownian motion and σ and δ are Lipschitz functions on R, the
first coordinate (X(t)) of a possible solution to the corresponding GSP can be described as the
solution of the stochastic differential equation

dX(t) = σ(X(t)) dB(t)+ δ(X(t)) dt

reflected at 0.

Proposition 3. If G : D(R+,R) → D(R+,R) is such that, for any T > 0, there exists a
constant CT such that, for all (x(t)) ∈ D(R+,R) and 0 ≤ t ≤ T ,

sup
0≤s≤t

|G(x)(s)−G(y)(s)| ≤ CT

∫ t

0
|x(u)− y(u)| du, (19)

then there exists a unique solution to the GSP associated with the functionalG and the matrixP .

Proof. Define the sequence (XN(t)) by induction: (X0(t), R0(t)) = 0 and, for N ≥ 1,
(XN+1, RN+1) is the solution of the Skorokhod problem (SP) associated with G(XN), in
particular,

XN+1(t) = G(XN)(t)+ RN+1(t) and
∫

R+
XN+1(u) dRN+1(u) = 0.

The existence of such a solution is guaranteed as well as the Lipschitz property of the solutions
of a classical SP (see Proposition D.4 of [31]); this gives the existence of some constant KT
such that, for all N ≥ 1 and 0 ≤ t ≤ T ,

‖XN+1 −XN‖∞,t ≤ KT ‖G(XN)−G(XN−1)‖∞,t ,

where ‖h‖∞,T = sup{|h(s)| : 0 ≤ s ≤ T }. From (19), this implies that

‖XN+1 −XN‖∞,t ≤ α

∫ t

0
‖XN −XN−1‖∞,u du,
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with α = KT CT . The iteration of the last relation yields the inequality

‖XN+1 −XN‖∞,t ≤ αNtN−1

(N − 1)!
∫ t

0
‖X1‖∞,u du, 0 ≤ t ≤ T .

We conclude that the sequence (XN(t)) converges uniformly on compact sets and, consequently,
so does the sequence (RN(t)). Let (X(t)) and (R(t)) be the limit of these sequences. By
continuity of the SP, the pair ((X(t)), (R(t))) is the solution of the SP associated with G(X),
and, hence, a solution of the GSP associated with G.

Uniqueness. Let (Y (t)) be another solution of the GSP associated withG. In the same way
as before, we obtain, by induction, for 0 ≤ t ≤ T ,

‖X − Y‖∞,t ≤ (αt)N

N !
∫ t

0
‖X − Y‖∞,u du.

Letting N go to ∞, we conclude that X = Y . This completes the proof.
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