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Abstract—Fougerite (IMA 2003-057) was accepted by the Commission on New Minerals and Mineral
Names of the International Mineralogical Association (IMA) in 2004 as a new mineral to represent the
green rust (GR) family. The data on which it was approved, however, are inconsistent. X-ray diffraction
patterns from the Fougères soils contain no peaks that could meaningfully be attributed to a GR phase. The
sequential dissolution procedure used to identify GR in the soils was not rigorously tested for selectivity. If
indeed it is selective, the results indicate the presence of 40�78% Fe in minerals other than GR. Other
Fe-bearing phases were not included in the interpretation of the spectroscopy data that were presented. The
data are consistent with the presence of Fe-bearing clays and other silicate minerals. In light of the
ambiguous and conflicting data, we recommend that the case for fougerite as a mineral be re-evaluated by
the IMA.
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Based on data from soil samples and synthetic green

rust (GR), fougerite ((Fe2+,Mg)6Fe3+
2 (OH)18·4H2O;

Trolard et al., 2007) was accepted by the Commission

on New Minerals and Mineral Names of the

International Mineralogical Association (IMA 2003-

057) (Burke and Ferraris, 2004) as the representative

mineral for the GR family. Several studies have shown

that Fe(II),Fe(III) layered double hydroxides are found

in natural settings and many have shown that the

composition and structure of synthetic material vary

widely and are defined by the formation conditions. In

nature, GR minerals play a significant role in Fe cycling

and their activity in reducing anthropogenic contami-

nants has been documented clearly (lists in Hansen,

2001; Christiansen et al., 2009a). Undoubtedly, the GR

family of compounds deserves to be characterized and

described rigorously and the application to the IMA for

naming fougerite was a step in that direction. The

purpose of this letter is to propose that the material

identified by Trolard et al. (2007), and named fougerite,

does not represent a single GR mineral because the

evidence is insufficient to prove that the material is not a

mixture of several Fe phases. A further aim of this letter

is to clarify what can, and what cannot, be concluded

about the soil from Fougères.

The samples used to establish the existence of

fougerite were collected from three locations in

Brittany, France: five soil profiles from Fougères,

examined from 1996 to 2008 (Trolard et al., 1996;

Abdelmoula et al., 1997; Trolard et al., 1997; Génin et

al., 1998; Bourrie et al., 1999; Refait et al., 2001;

Trolard, 2006; Trolard et al., 2007) and single profiles

from Quintin and Naizin (Génin et al., 1998). Published

data (Table 1) for the soil mineral assemblage, chemical

composition, and the techniques used to study them

revealed that the basement rock that has weathered to

produce the soil is a cordierite granodiorite (Vire type;

Jonin, 1973) and contains quartz (29%), alkaline

feldspar (17%), plagioclase (36.5%), biotite (14%),

cordierite (1.5%), and muscovite (1%). When the rock

weathers, biotite, smectite, chlorite, kaolinite, and

vermiculite are expected to form. Trolard et al. (1996;

1997) reported that the soil contains considerable Fe

(expressed in oxide form as 3.89% Fe2O3 equivalent),

which is not far from the total Fe content (4.6% Fe2O3)

of the underlying bedrock (Jonin, 1973), suggesting that

>80% of the original Fe remains in the soil.

Trolard et al. (2007) examined the soil with several

techniques and interpreted the results from the perspec-

tive of a GR mineral alone. Results published by these

same investigators over the years, however, provide

clear evidence that other Fe phases are also present in

these soils, particularly Fe phyllosilicates, which are

common weathering products of cordierite granodiorite.

In the following paragraphs, attention is drawn, in

particular, to their published data from X-ray diffraction

(XRD) (Trolard and Bourrie, 2008), Mössbauer spectro-

scopy (MS) (e.g. Trolard et al., 1996; Abdelmoula et al.,

1997; Trolard et al., 1997; Feder et al., 2005), Raman

spectroscopy (RS) (Trolard et al., 1996; Trolard et al.,

1997), scanning electron microscopy (SEM) (Trolard,

2006), X-ray absorption spectroscopy (XAS) (Refait et

al., 2001), and selective extraction (e.g. Feder et al.,

2005; Trolard, 2006; Trolard and Bourrié, 2008).
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X-ray diffraction (XRD) is the widely accepted

standard method for identifying minerals and defining

their structure. The basal peaks for the GR family of

minerals are very characteristic (Table 2) but, in the

description for fougerite, no XRD patterns of the soil

were presented. Data from other techniques were used

instead, justified by the claim that the characteristic GR

peaks were masked by peaks from other minerals

(Abdelmoula et al., 1997; Génin et al., 1998; Refait et

al., 2001; Trolard et al., 2007). In XRD data from the

same soils presented in 2008 (Trolard and Bourrié,

2008), however, major reflections at 3.3, 5, and 10 Å

were observed from material sampled from all horizons.

These spacings are consistent with kaolinite and illite

and the peak at 14.1 Å is characteristic of smectite, a

common Fe-bearing clay mineral (Jefferson et al., 1975;

Murad and Wagner, 1994; Kanket et al., 2005). The

presence of these clay minerals is completely consistent

with weathering of the cordierite granodiorite.

Furthermore, the XRD patterns for many of the

phyllosilicates are similar (Moore and Reynolds,

1997). For example, muscovite, biotite, and chlorite

have XRD peaks at similar d spacings. To prove that the

3.3 and 10 Å peaks were not from one specific

phyllosilicate, these investigators should have shown

the (060) reflection at ~1.5 Å (Moore and Reynolds,

1997). Unfortunately, data from this region are missing

(figures 10�14 in Trolard and Bourrié, 2008).

To check for the presence of GR, the soil samples

were treated with ethylene glycol and solutions of KCl

and MgCl2 and then heated to 350, 450, and 550ºC.

Although XRD patterns for the untreated, original soil

were not included, data from the dried, treated solids

were presented. Trolard and Bourrié (2008) ‘‘clearly’’
observed a peak in the XRD patterns representing a GR

phase. No peak was present, however, at 7.5�8 Å

(Figure 1 here and figures 10�14 in Trolard and Bourrié,

Table 2. Parameters for the two types of GR (Trolard et al.,
2007).

GR type 1 d003 = 7.5�8 Å Space group R3̄m
GR type 2 d001 = 11.0�11.6 Å Space group P3̄m1

Figure 1. XRD patterns of the clay fraction for ‘‘Sample 4’’ from Fougères (reprinted from Trolard and Bourrié, 2008, with

permission from Elsevier). This figure is claimed to show clearly peaks of fougerite (green rust) at ~13º2y (black arrow), but no such

peak is ‘‘clear’’ in the raw pattern.
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2008). The Rietveld fitting presented, which should

describe a GR peak, resulted in a peak width of 3 Å,

which is unrealistic. In fact, in the region where these

peaks ought to be, the diffraction intensity is at a

minimum. It is a region between two major silicate

peaks at 10 Å, which can represent illite, and 7 Å, for

kaolinite. The data from the treatment experiments are,

therefore, inconclusive.

Selective extraction, using citrate-bicarbonate (CB)

as the active agent, was also used to check for a GR

phase (Trolard et al., 1996; Génin et al., 1998; Feder et

al., 2005; Trolard 2006; Trolard et al., 2007). The CB is

assumed to extract only ‘‘complexed Fe’’, i.e. Fe from

GR and from Fe-organic complexes (Trolard and

Bourrié, 2008). Although selective extraction methods

can provide information about the composition of a soil,

their use as a stand-alone tool for mineral identification

is questionable (Borggaard, 1988) because dissolution is

much less selective than one might hope (e.g. Mitchell et

al., 1971; Borggaard, 1988; Acebal et al., 2000, 2003).

Based on the rate of Fe release, between 22% and 60%

of the total Fe in the soils was attributed to dissolving

GR (Trolard et al., 2007). No study has been found to

document the rate of CB-induced dissolution of GR

compared to other soil minerals, so this evidence does

not demonstrate convincingly the presence of a GR

phase. However, if CB truly is able to selectively

dissolve fougerite, the observed rates of Fe release

would mean that from 40% to 78% of the soil Fe is

associated with other minerals, quite possibly silicates.

Yet, in the interpretation of the XAS, RS, and MS data,

no other Fe phases were considered. This is indefensible,

considering that XRD reveals Fe-bearing phyllosilicates.

Mössbauer spectroscopy (MS) data were fitted with

four absorption lines from Fe(II) and Fe(III), exclusively

interpreted to represent Fe in a GR phase (Génin et al.,

1998; Feder et al., 2005). Although MS parameters from

synthetic GR are similar to those of the interpreted soil

data (Table 3), Fe from a range of other bonding

environments has absorption lines that are compatible

with the soil spectra. Examples include Fe in biotite,

smectite, vermiculite (Heller-Kallai and Rozenson,

1981; Diamant et al., 1982; Cardile et al., 1987),

muscovite (Ferrow, 2002; Dainyak et al., 2004), illite

(Murad and Wagner, 1994; Murad, 1998; Dainyak et al.,

2004), and fine-grained Fe oxides (Cornell and

Schwertmann, 2003), all of which are expected in a

soil formed from weathered cordierite granodiorite.

Feder et al. (2005) contended that the relationship

between isomer shift (IS) and quadropole splitting (QS)

for the soil is different from that for silicate minerals.

However, the analysis temperature affects both of these

hyperfine parameters. The soil samples were analysed at

283 K. References for the silicate MS data were not

Table 3. Mössbauer parameters of synthetic GR and soil samples at 77 K (unless otherwise noted).

IS
(mm/s)

QS
(mm/s)

Relative area
(%)

Reference

GRCl Refait et al. (1997)
D1 1.26 2.80 46
D2 1.27 2.55 26
D3 0.48 0.38 28

GRSO4
Génin et al. (1996)

D1 1.27 2.86 66
D3 0.48 0.45 34

GRNaSO4
Christiansen et al. (2009b)

D1 1.27 2.90 63
D3 0.46 0.49 37

GRCO3
Drissi et al. (1995)

D1 1.27 2.92 49
D2 1.28 2.69 17
D3 0.47 0.43 34

Soil (1) Trolard et al. (1997)
D1 1.25 2.87 50.7
D3 0.45 0.54 49.3

Soil (2) Refait et al. (2001)
D1 1.27 2.86 59
D2 1.25 2.48 7
D3 0.46 0.48 20
D4 0.46 0.97 14

Soil (3) 283K Feder et al. (2005)
D1 1.00�1.08 2.6�2.74 28�62
D2 0.6�1.0 2.2�2.7 0�30
D3 0.21�0.30 0.65�0.80 35�67
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provided in Feder et al. (2005), so we cannot rule out the

possibility that temperature is responsible for the

differences. If the analyses were conducted at room

temperature, we note that synthetic chloride-bearing

green rust, which is assumed by Trolard et al. (2007) as

structurally very similar to fougerite, has room-tempera-

ture MS parameters (Fe(II): IS: 1.22, QS: 2.34; IS: 1.11,

QS: 2.02; Fe(III): IS: 0.35 QS: 0.58; Refait et al., 1998)

that are well within the range for silicates and that differ

significantly from those of the soil sample. The MS

parameters for soil resemble those for some

Fe-phyllosilicates more closely than they match those

for the fougerite analog. Thus MS cannot be used to

exclude the presence of Fe-phyllosilicates or to prove

the presence of fougerite.

X-ray absorption spectroscopy (XAS) also provides

information about the bonding environment. Refait et al.

(2001) presented Fe-XAS data on Fougères soils. The

near-edge portion of the spectra (XANES) agrees

reasonably well with that from CO3-bearing GR, but

XANES spectra from Fe silicates could also strongly

resemble those of GR (Brigatti et al., 2000; O’Day et al.,

2004). For example, for the 7100 to 7160 eV region

investigated by Refait et al. (2001, figure 2), the location

of three of the four inflection points for CO3-bearing GR

and chlorite differ by <0.4 eV (O’Day et al., 2004).

From extended X-ray absorption fine structure

(EXAFS) spectra of the soil, the k3-weighted Fourier

transform (radial structure function; RSF) shows peaks

at R & 2 Å (Fe�O) and 3.1�3.2 Å (Fe�Fe), as well as

peaks for more distant Fe at ~5.5 Å, ~6.3 Å, ~8.3 Å, and

~9.2 Å (corrected for phase shift). In addition to the

peaks that the authors reported, the RSF also shows three

small but clear peaks at R values from ~3.7 to ~4.5 Å

(Refait et al., 2001, figure 3), which do not appear in the

RSF of GR. Noted also is that the 3.1�3.2 Å peak

attributed exclusively to the Fe�Fe distance is compa-

tible with the signal from Fe and a next-nearest neighbor

tetrahedrally coordinated Si or Al in phyllosilicates

(Manceau et al., 2000). Furthermore, the ~4.5 Å

shoulder corresponds to the distance expected between

Fe and a second neighbor Si or Al (e.g. Manceau et al.,

1988) and a similar, low-intensity peak has been

observed for preferred and randomly oriented smectites

(Manceau et al., 2000; Vantelon et al., 2003). Therefore,

although the EXAFS spectra from the soil samples have

features resembling GR and pyroaurite (another fouger-

ite analog), the match with Fe-bearing phyllosilicates is

actually more complete.

Raman spectroscopy (RS) in the range 350�
700 cm�1 on soil samples from Fougères shows peaks

at ~427, 518 (very broad), 630, and 675 cm�1. For

synthetic GR, peaks at 427 and 518 cm�1 have been

identified, but peaks at 630 and 675 cm�1 are absent.

Published data from kaolinite, cordierite, illite, musco-

vite, and smectites show vibration bands that match all

four peaks (Frost, 1995; Frost, 1997; Sontevska et al.,

2007). In addition, the peaks for the soil are narrower

than those for synthetic GR, suggesting that the natural

material is more ordered than synthetic material, a

feature that is in conflict with the lack of well defined

peaks in the XRD patterns. Raman spectroscopy cannot,

therefore, exclude the possibility that Fe phyllosilicates

are present; in fact, the evidence is to the contrary.

An SEM image from a soil sample (Trolard, 2006,

figure 5) shows a well defined, hexagonal particle that is

~500 nm wide, but composition data proving the

presence of Fe are absent. Such clear hexagonal

morphology is also characteristic of kaolinite (Ekosse,

2000). If the GR phase were as abundant and well

crystallized as this image would suggest, the XRD

pattern should provide clear, sharp peaks for GR.

In conclusion, the data from XRD and selective

extraction show clearly the presence of Fe-bearing

minerals, including Fe silicates. In the analysis of the

spectroscopic data, however, the possibility that Fe

could exist in bonding environments other than GR has

been overlooked, resulting in a less than complete

description of the Fe-bearing minerals in the Fougères

soils. The case presented for establishing the presence of

the mineral, fougerite, is ambiguous.

This comment does not challenge the hypothesis that

GR could be present in soils, as such, but contends that

the nature and structural parameters of the GR minerals

in the Fougères soil are poorly constrained. Therefore,

the authors recommend that the IMA re-evaluate the

merits of the case for fougerite.
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Mössbauer spectroscopy do to help understand them?
Hyperfine Interactions, 117, 39�70.

Murad, E. and Wagner, U. (1994) The Mössbauer spectrum of
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