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Beurling’s Theorem and Characterization of
Heat Kernel for Riemannian Symmetric
Spaces of Noncompact Type

Rudra P. Sarkar and Jyoti Sengupta

Abstract. We prove Beurling’s theorem for rank 1 Riemannian symmetric spaces and relate its conse-

quences with the characterization of the heat kernel of the symmetric space.

1 Introduction

The uncertainty principle in harmonic analysis reflects the inevitable tradeoff be-
tween the function and its Fourier transform as it says that both of them cannot de-

cay very rapidly. This principle has several quantitative versions which were proved
by Hardy, Morgan, Gelfand–Shilov, and Cowling–Price (see [7, 9, 25] and the refer-
ences therein). In more recent times Hörmander [16] proved the following theorem,
which is the strongest theorem in this genre in the sense that it implies the theorems

of Hardy, Morgan, Gelfand–Shilov, and Cowling–Price.

Theorem 1.1 ( [16]) Let f ∈ L1(R). Then
∫

R

∫
R
| f (x)|| f̂ (y)|e|x||y| dxdy < ∞ im-

plies f = 0 almost everywhere.

Hörmander attributes this theorem to A. Beurling.

As is well known in physics, the uncertainty in the momentum is smallest for a

given uncertainty in the position if the wave function is the Gaussian e−
x2

4t . In har-
monic analysis this means that the tradeoff is optimal when the function is Gaussian.
The quantitative versions of the uncertainty principle also accommodate this optimal
situation. The above theorem of Hörmander was further generalized in [3], which

takes care of this aspect of uncertainty.

Theorem 1.2 ( [3]) Let f ∈ L2(R) and N ≥ 0. Then

∫

R

∫

R

| f (x)|| f̂ (y)|
(1 + |x| + |y|)N

e|x||y| dxdy <∞

implies f (x) = P(x)e−tx2

,where t > 0 and P is a polynomial with deg P < N−1
2

.
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We will refer to Theorem 1.2 simply as Beurling’s theorem for the sake of brevity.

The aim of this article is to prove the analogue of Theorem 1.2 for Riemannian
symmetric spaces X of the noncompact type of rank 1. We recall that such a space is

of the form G/K where G is a noncompact connected semisimple Lie group of real
rank 1 with finite centre and K ⊂ G is a maximal compact subgroup.

The precise statement of the theorem and its proof appear in Section 3. In Section
4 we show that the estimate considered in the main theorem is the sharpest possi-
ble. In Section 5 we indicate how the theorems of Hardy, Morgan, Gelfand–Shilov,

and Cowling–Price on symmetric spaces follow from our Beurling’s theorem. The
mutual dependencies of these uncertainty theorems can be schematically displayed
as follows:

Beurling’s +3 Gelfand–Shilov

��

+3 Cowling–Price

��

Morgan’s +3 Hardy’s.

This shows that Beurling’s theorem is the master theorem. Some of the latter theo-
rems, which follow from Beurling’s were proved independently on symmetric spaces
in recent years by many authors (see [4, 6, 19–23, 25]).

After completing this work we had the opportunity to see Demange’s thesis [5] in
which he further generalized Theorem 1.2 (see Theorem 6.1). In Section 6 we have

given the appropriate analogue of Demange’s theorem on symmetric spaces.

It is unlikely that the method pursued here will generalize to the case when the
rank of X is greater than 1, since we utilize here the fact that for rank 1 spaces the
Plancherel density µ is a proper map (see (3.9)).

2 Notation and Preliminaries

The pair (G,K) is as described in the introduction. We let G = KAN denote a
fixed Iwasawa decomposition of G. Let g, k, a and n denote the Lie algebras of G,
K, A and N , respectively. We recall that dimension of a is 1. We choose and keep

fixed throughout a system of positive restricted roots, which we denote by Σ
+. Let

γ ∈ Σ
+ denote the unique simple root, and let Hγ ∈ a be the dual basis of a. Using

γ (respectively, Hγ) we can identify a∗ (respectively, a) with R. That is, we identify
t with tHγ and λ with λγ. The complexification a∗

C
of a∗ can then be identified

with C. Under this correspondence the half-sum of the elements of Σ
+, denoted

by ρ corresponds to the real number 1
2
(mγ + 2m2γ), where mγ (respectively m2γ) is

the multiplicity of the root γ (respectively, 2γ). We will frequently identify ρ with
this positive real number without further comment. Furthermore, the positive Weyl

chamber a+ ⊂ a (respectively, a∗+ ⊂ a∗) gets identified under this correspondence
with the set of positive real numbers. We let exp tHγ = at ∈ A for t ∈ R. This
identifies A with R. Let log a be the unique element in a such that exp(log a) = a.
Thus under the above identification log at = t .
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Let H : G → a be the Iwasawa projection associated to the Iwasawa decomposi-
tion, G = KAN . Then H is left K-invariant and right MN-invariant where M is the

centralizer of A in K. For λ ∈ a∗ (respectively, H ∈ a) we denote by λ+ (respectively,
H+) the unique Weyl translate of λ (respectively, H) that belongs to the closure of
the positive Weyl chamber a∗+ (respectively, a+). We have λ+(H+) = |λ(H)| where |r|
denotes the modulus of the real number r. Note that the Weyl group is isomorphic to

Z2. The unique nontrivial element of the Weyl group takes an element λ ∈ a∗ ≡ R

(respectively, H ∈ a) to −λ (respectively, −H). Therefore λ+ (respectively, H+)
corresponds to |λ| (respectively, |H|) under the above identification of a∗ (respec-
tively, a) and R.

We have the a-valued function A(x, k) on X × K defined by A(x, k) = −H(x−1k),
x ∈ X, k ∈ K. Note that A descends to a function, also denoted by A : X×K/M → a,
since H is right M-invariant.

The Killing form B of the Lie algebra g restricted to a is positive definite and gives
a Weyl group equivariant isomorphism between a and a∗. Using this isomorphism

we get an inner product on a∗ which we will also denote by B. We will normalize the
Killing form so that B(γ, γ) = 1. Then we have B(Hγ ,Hγ) = 1. By abuse of notation
we will denote this normalized Killing form by the same letter B. Henceforth we will
always use this normalized B and call it the Killing form. Note that with the above

identification B(λ, λ) = B(λγ, λγ) = λ2 and B(log at , log at ) = B(tHγ , tHγ) = t2.
Thus |t| and |λ| respectively are the Killing norms of log at ∈ a and λ ∈ a∗.

For x ∈ G, we define σ(x) = d(xK,K) where d is the canonical distance function
for X = G/K coming from the Riemannian structure induced by the normalized

Killing form restricted to p. Here g = k ⊕ p (Cartan decomposition) and p can
be identified with the tangent space at eK of G/K. The function σ is K-biinvariant
and continuous. Note that for x = k1at k2, k1, k2 ∈ K, at ∈ A, σ(x) = σ(at ) =√

B(tHγ , tHγ) = |t|, i.e., σ(a) = | log a|, the Killing norm of log a.

On X we fix the measure dx which is induced by the metric we obtain from B. As
the metric is G-invariant, so is dx. On G we fix the Haar measure dg satisfying

∫

X

f (x) dx =

∫

G

f (g) dg,

for every integrable function f on X which we also consider as a right K-invariant
function on G. While dealing with functions on X, we may gloss over the difference
between the two measures.

We normalize the Haar measure da on A so that
∫

A
f (a) da =

∫
R

f (at ) dt, where
dt is the Lebesgue measure on R. As usual, on the compact group K we fix the nor-
malized Haar measure dk, i.e., vol(K) =

∫
K

dk = 1. Finally we fix the Haar measure
dn on N by the condition that

∫
G

f (g) dg =
∫

A

∫
N

∫
K

f (ank) dkdnda holds for every

integrable function f on G.

For an integrable function f on R, we define its Euclidean Fourier transform at
λ as

∫
R

f (x)e−iλx dx, and we denote it by F f (λ). We follow the practice of using
C,C ′ etc. to denote constants whose values are not necessarily the same at each
occurrence.
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Definition 2.1 For a function f in C∞
c (X), the Helgason Fourier transform f̃ of f

is defined by

f̃ (λ, k) =

∫

X

e(−iλ+ρ)(A(x,k)) f (x) dx, λ ∈ a∗, k ∈ K.

Note that f̃ descends to a function on a∗ × K/M. By abuse of notation we will

continue to denote this function by f̃ . For f ∈ L1(X), there exists a subset B of K of

full Haar measure, such that f̃ (λ, k) exists for all k ∈ B and λ ∈ C with |ℑλ| ≤ ρ,

where ℑλ is the imaginary part of λ. Indeed for each fixed k ∈ B, λ 7→ f̃ (λ, k) is

holomorphic in the strip
{
λ ∈ C

∣∣ |ℑλ| < ρ
}

and continuous on its boundary
(see [14, 15] for proof, see also [18]).

Definition 2.2 For f in C∞
c (X), the Radon transform R f of f is defined by

R f (k, a) = eρ(log a)

∫

N

f (kan) dn, k ∈ K, a ∈ A.

Then R f descends to a function on K/M × A, and (as in the case of f̃ ) we continue
to denote this function by R f . We will also use the notation R f (k, t) for R f (k, at ),

t ∈ R.
For f as above, the basic relation between R f and f̃ is the following:

(2.1) f̃ (λ, k) = FR f (k, · )(λ),

where F denotes the Euclidean Fourier transform on A ≡ R, i.e., FR f (k, · )(λ) =∫
R

R f (k, t)e−iλt dt .

Let K̂0 be the set of equivalence classes of irreducible unitary representations of K

which are class 1 with respect to M, i.e., the irreducible unitary representations of K

which contain an M-fixed vector. Let δ ∈ K̂0 and let f ∈ L1(X) be K-finite of type δ,
i.e., d(δ)χ̄δ ∗ f = f where d(δ) (respectively, χδ) denotes the degree (respectively,
character) of δ and (d(δ)χ̄δ∗ f )(x) = d(δ)

∫
K

f (kx)χ̄δ(k)dk for x ∈ X. In particular, if
δ is the trivial representation, then f is a K-invariant function on X. For a function f

of type δ we have | f (x)| ≤ C
∫

K
| f (kx)| dk where C = d(δ) supk∈K |χδ(k)| = d(δ)2.

Let g(x) =
∫

K
| f (kx)| dk. Then g ∈ L1(X) and g is K-invariant, that is g ∈ L1(G) and

g is K-biinvariant. We have | f (x)| ≤ d(δ)2g(x).

Definition 2.3 For a δ-type function f in L1(X), the Abel transform A f of f is
defined by

A f (a) = eρ(log a)

∫

N

f (an) dn, a ∈ A.

It is well known that for a K-invariant function g ∈ L1(X), Ag exists for almost every

a ∈ A and Ag ∈ L1(A) [10, p. 27]. Now since

|A f (a)| ≤ eρ(log a)

∫

N

| f (an)| dn ≤ d(δ)2eρ(log a)

∫

N

g(an) dn = d(δ)2
Ag(a)
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for the K-invariant function g constructed from f as above, we conclude that A f ∈
L1(A). We will write A f (t) for A f (at ), t ∈ R.

It is also well known that for f ∈ L1(X), R f ∈ L1(K × A, dkda). We include the
proof here for the sake of completeness. For f ∈ L1(X), we construct the function
g(x) =

∫
K
| f (kx)| dk. Then g is a K-biinvariant function in L1(G) and hence, as

mentioned above (recall the identification of A and R), Ag(t) ∈ L1(R). But

Ag(t) = eρt

∫

N

g(at n) dn = eρt

∫

N

∫

K

| f (kat n)| dkdn

=

∫

K

eρt

∫

N

| f (kat n)| dndk =

∫

K

R| f |(k, t) dk.

Since
∫

A
Ag(t) dt < ∞ we have

∫
A

∫
K

R| f |(k, t) dkdt < ∞. This proves our asser-

tion. Thus for f ∈ L1(X), we can consider the Euclidean Fourier transform in the
A-variable of R f (k, · ) for each fixed k where it exists. Now, it can also be shown in a
similar way that the relation (2.1) holds when f ∈ L1(X) for almost every k ∈ K.

For λ ∈ a∗
C
≡ C, we denote by φλ the elementary spherical function with param-

eter λ. We have for all x ∈ X, φλ(x) = φ−λ(x) =
∫

K
e(ρ−iλ)(A(x,k)) dk [12, p. 418]. We

will often regard φλ as a K-biinvariant function on G.

The following estimates on the growth of φλ are well known [8, Proposition 4.6.1;

Theorems 4.6.4, 4.6.5], [13]. Let Ξ(x) = φ0(x). Then

|φλ(x)| ≤ 1 for λ ∈ C, |ℑλ| ≤ ρ,(2.2a)

|φλ(x)| ≤ e|ℑλ|σ(x)
Ξ(x) for all λ ∈ C,(2.2b)

Ξ(a) ≤ C(1 + σ(a))e−ρ(log a) and Ξ(a) ≥ e−ρ(log a)(2.2c)

for a ∈ A+ = exp ā+ and a positive constant C.

We denote the spherical Plancherel measure on a∗ by µ(λ)dλ, where dλ is the

Lebesgue measure and µ(λ) = |c(λ)|−2, c( · ) is Harish-Chandra’s c-function. It is
well known that µ(λ) is real analytic on a∗ ≡ R (see [2, p. 399] for an explicit expres-
sion of µ(λ)).

Recall that the elements δ ∈ K̂0 can be labelled by a pair of integers (r, s) with

s ≥ r [13, pp. 344–347 ]. The trivial representation in K̂0 corresponds to the pair
(0, 0) in this setup. Note that if m2γ > 0, then r ≥ 0, s ≥ 0 and if m2γ = 0, then
r = 0. Thus for both the cases (r, s) is a pair of nonnegative integers.

It is known that for each δ ∈ K̂0, the M-fixed vector is unique upto a scalar mul-

tiple [17]. Let (δ,Vδ) ∈ K̂0. Suppose {vi | i = 1, . . . , d(δ)} is an orthonormal basis
of Vδ of which v1 is the M-fixed vector. Let Yδ, j(k) = 〈v j , δ(k)v1〉, 1 ≤ j ≤ d(δ)
and let Y0 be the constant function Y0 ≡ 1 on K. Note that Yδ, j is right M-invariant,
i.e., it is a function on K/M. Recall that L2(K/M) is the carrier space of the spherical

principal series representations πλ, λ ∈ C in the compact picture and
{√

d(δ)Yδ, j :

1 ≤ j ≤ d(δ), δ ∈ K̂0

}
is an orthonormal basis for L2(K/M) adapted to the decom-

position L2(K/M) = Σδ∈K̂0
Vδ . As the space K/M can be identified with Smγ+m2γ , this
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decomposition can be viewed as the spherical harmonic decomposition and therefore
Yδ, j ’s can be considered as the spherical harmonics. The action of πλ is given by:

(πλ(x)g)(k) = e(iλ+ρ)A(x,k)g(κ(x−1k)) for x ∈ G, k ∈ K and g ∈ L2(K/M).

Here κ(x) is the K-part of an element x ∈ G in the Iwasawa decomposition G =

KAN . The representation πλ is unitary for λ ∈ R. For f ∈ L1(X), δ ∈ K̂0 and

1 ≤ j ≤ d(δ) we define fδ, j (x) =
∫

K
f (kx)Yδ, j (k) dk. It can be verified that fδ, j is a

function of type δ.
We have | fδ, j (x)| ≤ ‖Yδ, j‖∞

∫
K
| f (kx)| dk ≤

∫
K
| f (kx)| dk, since ‖Yδ, j‖∞ =

supk∈K |Yδ, j(k)| ≤ 1.

For δ ∈ K̂0, 1 ≤ j ≤ d(δ), λ ∈ a∗
C

and x ∈ X, we define

(2.3) Φ
j
λ,δ(x) =

∫

K/M

e(iλ+ρ)(A(x,kM))Yδ, j(kM) dk.

We have Φ
j
λ,δ(x) = 〈πλ(x)Y0,Yδ, j〉, that is, Φ

j
λ,δ is a matrix coefficient of the spherical

principal series representation. It follows that for each fixed x ∈ X, λ → Φ
j
λ,δ(x) is

holomorphic in λ. Let ∆ be the Laplace–Beltrami operator of X. It is a negative self

adjoint operator. It is well known [11, p. 333] that Φ
j
λ,δ ’s are eigenfunctions of ∆ with

eigenvalues −(λ2 + ρ2). When δ = δ0 is trivial, then Yδ0, j = Yδ0,1 = Y0 and Φ
1
λ,δ0

is
obviously the elementary spherical function φλ(x). For λ ∈ a∗

C
, x = kat K ∈ X and

1 ≤ j ≤ d(δ) [13, p. 344]

(2.4) Φ
j
λ,δ(x) = Yδ, j(kM)Φ1

λ,δ(at ).

Then Φ
1
λ,δ is related to Φ

1
−λ,δ by

(2.5) Φ
1
λ,δ =

Qδ(λ)

Qδ(−λ)
Φ

1
−λ,δ,

where Qδ are Kostant’s polynomials [13, p. 348, (13)]. Kostant’s polynomials Qδ are
given by Qδ(λ) = pr,s(λ)qr,s(λ). For explicit expression of pr,s and qr,s see [13, p. 345,

(7), (8); p. 348, (15), (17)]. Note that our Qδ(λ) is Qδ(−λ) in [13]. Notice also that
for both the cases m2γ = 0 and m2γ > 0, Qδ is a polynomial and that Qδ(λ) and
Qδ(−λ) are relatively prime [13, p. 348]. It is clear [13, pp. 344–345] that deg Qδ = s.

Indeed Qδ(λ) is the polynomial factor of Φ
1
λ,δ and hence of Φ

j
λ,δ for 1 ≤ j ≤ d(δ) [13,

p. 344, (5), (6)].

Because of the relation (2.4) above, we have Φ
j
λ,δ =

Qδ(λ)
Qδ(−λ)

Φ
j
−λ,δ .

Let

f̂ (λ)δ, j =

∫

X

f (x)Φ
j
−λ,δ(x) dx for λ ∈ a∗.

It is clear that f̂ (λ)δ, j is the (δ, j)-th matrix coefficient of the operator valued Fourier

transform f̂ (λ) =
∫

G
f (x)π−λ(x) dx. From above we see that f̂δ, j(λ) has the polyno-

mial factor Qδ(−λ).

https://doi.org/10.4153/CMB-2007-029-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-029-6


Beurling’s Theorem and Characterization of Heat Kernel 297

Note that

|Φ j
−λ,δ(x)| ≤

∫

K/M

|e(−iλ+ρ)A(x,kM)|Yδ, j(k)dk

≤
∫

K/M

e(ℑλ+ρ)A(x,kM) dk (as ‖Yδ, j‖∞ ≤ 1)

= φℑλ(x).

Therefore from the estimate (2.2a) we have |Φ j
λ,δ(x)| ≤ 1 for all λ ∈ C with |ℑλ| ≤ ρ.

From the above uniform estimate of Φ
j
λ,δ and the fact that λ 7→ Φ

j
λ,δ is a holomorphic

function in λ (see the comment following equation (2.3)), it follows by a standard
use of Morera’s theorem in conjunction with Fubini’s theorem that for f ∈ L1(X),

f̂ (λ)δ, j is holomorphic on the open strip {λ ∈ C

∣∣ |ℑλ| < ρ} and in particular it is

real analytic on a∗ ≡ R.

Let f ∈ L1(X) ∩ L2(X). Then for every λ ∈ a∗,

(2.6) ‖ f̂ (λ)‖2
2 =

∑

δ∈K̂0

∑

1≤ j≤d(δ)

| f̂ (λ)δ, j |2,

where ‖ · ‖2 is the Hilbert–Schmidt norm.

Also by (2.5)

(2.5 ′) f̂ (−λ)δ, j =
Qδ(λ)

Qδ(−λ)
f̂ (λ)δ, j .

Note that for λ ∈ a∗, Qδ(λ) = Qδ(−λ̄) = Qδ(−λ) [13, p. 348]. Consequently,

| f̂ (λ)δ, j | = | f̂ (−λ)δ, j | for λ ∈ a∗.

The following is also easy to see:

∫

K

f̃ (λ, k)Yδ, j(k) dk

=

∫

X

∫

K

f (x)e(−iλ+ρ)A(x,k)Yδ, j(k) dkdx (by Fubini’s theorem)

=

∫

X

f (x)Φ
j
−λ,δ(x) dx

= f̂ (λ)δ, j .

(2.7)

Starting from the relation (2.1) and using (2.7) we have

∫

K

F(R( f )(k, · ))(λ)Yδ, j (k) dk = f̂ (λ)δ, j .
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Now the left-hand side is (recall that a∗ ≡ R):

∫

K

∫

R

R( f )(k, t)e−iλt dtYδ, j(k) dk

=

∫

K

∫

R

eρt

∫

N

f (kat n) dne−iλt dtYδ, j(k) dk

=

∫

R

eρt

∫

N

fδ, j(at n)dn e−iλt dt (by Fubini’s theorem)

=

∫

R

A( fδ, j )(t)e−iλt dt

= F(A( fδ, j ))(λ).

Therefore,

(2.8) F(A( fδ, j ))(λ) = f̂ (λ)δ, j .

Note that from above it is also clear that

(2.9)

∫

K

R( f )(k, t)Yδ, j (k) dk = A( fδ, j)(t),

and hence

|A( fδ, j )(t)| =

∣∣∣
∫

K

R( f )(k, t)Yδ, j (k) dk
∣∣∣

≤
∫

K

|R( f )(k, t)| dk ≤
∫

K

R| f |(k, t) dk

(2.10)

since ‖Yδ, j‖∞ ≤ 1.
We will conclude this section with a description of the heat-kernel of the symmet-

ric space X. The heat kernel on X is an appropriate analogue of the Gauss kernel pt

on R
n, where pt (x) = (4πt)−n/2e−‖x‖2/4t , t > 0.

Recall that ∆ is the Laplace–Beltrami operator of X. Then (see [24, Ch. V]) Tt =

et∆, t > 0, defines a semigroup (heat-diffusion semigroup) of operators such that for
any φ ∈ C∞

c (X), Ttφ is a solution of ∆u =
∂u
∂t

and Ttφ → φ a.e. as t → 0. For

every t > 0, Tt is an integral operator with kernel ht , that is, for any φ ∈ C∞
c (X),

Ttφ = φ ∗ ht . The ht , t > 0 are K-biinvariant functions on G having the following
properties:

(i) h(x, t) = ht (x) is in C∞(G × R
+).

(ii) {ht : t > 0} form a semigroup under convolution ∗. That is ht ∗ hs = ht+s for

t, s > 0.
(iii) ht is a fundamental solution of ∆u =

∂u
∂t

.
(iv) ht ∈ L1(G) ∩ L∞(G) for every t > 0.
(v)

∫
X

ht (x) dx = 1 for every t > 0.
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Thus we see that the heat kernel ht on X retains all the nice properties of the Gauss
kernel. It is well known that ht is given by [1]:

(2.11) ht (x) =
1

2

∫

a
∗

e−t(λ2+ρ2)φλ(x)µ(λ) dλ.

That is, the spherical Fourier transform of ht is ĥt (λ) = e−t(λ2+ρ2). It has been proved

[1, Theorem 3.1 (i)] that for any t > 0, there exists C > 0 depending only on X such
that

(2.12) ht (exp H) ≤ Ct−
1
2 e−ρ

2t−〈ρ,H〉− |H|2

4t (1 + |H|2)
dX−1

2

for H ∈ a+, where dX = mγ + m2γ + 1 = dim X.

3 Statement and Proof of the Theorem

Theorem 3.1 Let f ∈ L2(X) satisfy

(3.1)

∫

X

∫

a
∗

| f (x)|‖ f̂ (λ)‖2 eσ(x)|λ|
Ξ(x)

(1 + σ(x) + |λ|)d
dxµ(λ)dλ <∞

for some nonnegative integer d. Then f is a K-finite function of the form f =
∑

δ∈F hδ

where F = {δ ∈ K̂0 | s < d−dX

2
} is a finite set of K-types and hδ is a function of type δ

having Fourier coefficients ĥδ, j(λ) = P ′
δ, j(λ

2)Qδ(−λ)e−αλ
2

for 1 ≤ j ≤ d(δ). Here α

is a positive constant and P ′
δ, j a polynomial which depends on δ and j.

In particular if d ≤ dX , then f = 0 almost everywhere.

Remark 3.2 In Section 2 we discussed the correspondence of elements of K̂0 with a
pair of integers, which we have used in the above statement. As s ≥ 0, only finitely
many s can satisfy s < d−dX

2
. Again r ≥ 0 and r ≤ s. Therefore for a given s, there can

only be finitely many r such that (r, s) corresponds to an element of K̂0. Hence there
are only finitely many elements in F.

Proof We have divided the proof into several steps for the convenience of the reader.

We will use Fubini’s theorem freely throughout the proof without explicitly mention-
ing it.

Step 1: In this step we will show that f ∈ L1(X). It is given that f ∈ L2(X). Hence

f is a locally integrable function on X. We will first show that f̂ cannot be supported

on a set of finite measure.

From (3.1) we have

∫

X

| f (x)|eσ(x)|λ|
Ξ(x)

(1 + σ(x) + |λ|)d
dx <∞
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for almost every λ ∈ a∗. Since f̂ 6≡ 0, there exists λ0 6= 0 such that f̂ (λ0) 6= 0 and

the inequality above holds for λ = λ0. Suppose |λ0| = r > 0. Thus we have

∫

X

| f (x)|erσ(x)
Ξ(x)

(1 + σ(x) + r)d
dx <∞.

As f ∈ L1
loc(X), for 0 < r ′ < r,

∫
X
| f (x)|er ′σ(x)

Ξ(x) dx <∞. Recall that f̂ (λ)δ, j =∫
X

f (x)Φ
j
−λ,δ(x) dx, for δ ∈ K̂0 and 1 ≤ j ≤ d(δ). Now,

∣∣∣
∫

X

f (x)Φ
j
−λ,δ(x) dx

∣∣∣ ≤
∫

X

| f (x)||Φ j
−λ,δ(x)| dx

≤
∫

X

| f (x)|e|ℑλ|σ(x)
Ξ(x)

≤
∫

X

| f (x)|er ′σ(x)
Ξ(x)e(|ℑλ|−r ′)σ(x) dx.

This shows that f̂ ( · )δ, j is holomorphic in the open strip |ℑλ| < r ′ in a∗
C

. There-

fore f̂ ( · )δ, j and hence f̂ cannot be supported on a set of finite measure.

Now since f̂ is supported on a set of infinite measure and as µ(λ) is real analytic,

from (3.1) we see that for some λ1 ∈ a∗ with |λ1| > 2|ρ|,
∫

X

| f (x)|Ξ(x)e|λ1|σ(x)

(1 + σ(x) + |λ1|)d
dx <∞.

Now from (2.2c) we have for x = k1ak2, Ξ(x)−1 ≤ eρ(log a) ≤ e|ρ|| log a|
= e|ρ|σ(x).

Therefore

Ξ(x)−1e−|λ1|σ(x)(1 + σ(x) + |λ1|)d ≤ e−|ρ|σ(x)(1 + σ(x) + |λ1|)d.

The function e−|ρ|σ(x)(1 + σ(x) + |λ1|)d is continuous and bounded. Hence

∫

X

| f (x)| dx =

∫

X

| f (x)|Ξ(x)e|λ1|σ(x)

(1 + σ(x) + |λ1|)d

(
Ξ(x)−1e−|λ1|σ(x)(1 + σ(x) + |λ1|)d

)
dx <∞.

That is, f ∈ L1(X).

Step 2: In this step we will show that (3.1) implies the condition:

(3.2)

∫

K

∫

R

∫

R

R(| f |)(k, t)| f̂ (λ)δ, j |e|λ||t|
(1 + |t| + |λ|)d

dkdtµ(λ)dλ <∞,

for every fixed δ ∈ K̂0 and 1 ≤ j ≤ d(δ).
Since all the terms of the integrand in (3.1) are right K-invariant, it is equivalent

to ∫

G

∫

a
∗

| f (x)|‖ f̂ (λ)δ, j‖2eσ(x)|λ|
Ξ(x)

(1 + σ(x) + |λ|)d
dxµ(λ)dλ <∞.
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Also as

| f̂ (λ)δ, j | ≤

√√√√√
∑

δ ′∈K̂0

d(δ ′)∑

j ′=1

| f̂ (λ)δ ′, j ′ |2 = ‖ f̂ (λ)‖2

we have

(3.3)

∫

G

∫

a
∗

| f (x)|| f̂ (λ)δ, j |eσ(x)|λ|
Ξ(x)

(1 + σ(x) + |λ|)d
dxµ(λ)dλ <∞.

By definition, Ξ(x) =
∫

K
e−ρ(H((k−1x)−1) dk. Plugging this into (3.3) and using

K-invariance of the measure dx and of σ(x), we obtain

∫

K

∫

X

∫

a
∗

| f (kx)|| f̂ (λ)δ, j |eσ(x)|λ|−ρ(H(x−1))

(1 + σ(x) + |λ|)d
µ(λ) dλ dxdk <∞.

We write the integral dx over X as da dn over AN and use the fact that H((an)−1) =

− log a to get,

(3.4)

∫

K

∫

A

∫

N

∫

a
∗

| f (kan)| | f̂ (λ)δ, j | eσ(an)|λ|+ρ(log a))

(1 + σ(an) + |λ|)d
µ(λ) dλ dadndk <∞.

Assuming f 6= 0, this implies that there exists α > 0 such that

∫

a
∗
| f̂ (λ)δ, j |eα|λ|µ(λ) dλ <∞.

In particular it follows that f̂ (λ)δ, j ∈ L1(a∗, µ(λ)dλ).

For l > 0 the function

gl(t) =
elt

(1 + t + l)d

is monotonically decreasing for 0 < t < d
l
− 1 − l and increasing for t > d

l
− 1 − l.

Therefore for a ∈ A with σ(a) > d
|λ| − 1 − |λ|, one has

eσ(an)|λ|(1 + σ(an) + |λ|)d ≥ eσ(a)|λ|(1 + σ(a) + |λ|)d,

as σ(an ≥ σ(a). Hence by (3.4) one concludes

∫

K

∫

a
∗

∫

{a∈A|σ(a)> d
|λ|−1−|λ|}

∫

N

| f (kan)|| f̂ (λ)δ, j |eσ(a)|λ|+ρ(log a))

(1 + σ(a) + |λ|)d
dndaµ(λ)dλ dk <∞.

That is,

(3.5)

∫

K

∫

a
∗

∫

{a∈A|σ(a)> d
|λ|−1−|λ|}

R(| f |)(k, a)| | f̂ (λ)δ, j | eσ(a)|λ|)

(1 + σ(a) + |λ|)d
daµ(λ)dλdk <∞.
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Note that when |λ| is large so that d
|λ| − 1 − |λ| < 0 then {a ∈ A | σ(a) >

d
|λ| − 1 − |λ|} = A as σ(a) is nonnegative. This shows that R(| f |)(k, a) is finite

almost everywhere. Further assuming that f̂ (λ)δ, j is nonzero, it is nonzero for λ with
arbitrary large |λ| as it is a holomorphic function in λ. This implies that R(| f |)(k, a)

is in L1(A × K).

Finally when σ(a) ≤ d
|λ| − 1 − |λ| then eσ(a)|λ| ≤ ed. Therefore,

R(| f |)(k, a)| | f̂ (λ)δ, j |eσ(a)|λ|)

(1 + σ(a) + |λ|)d
≤ ed

R(| f |)(k, a)| f̂ (λ)δ, j |.

As the right-hand side is integrable with respect to µ(λ)dλdadk, we have

(3.6)

∫

K

∫

a
∗

∫

{a∈A|σ(a)≤ d
|λ|−1−|λ|}

R(| f |)(k, a)| | f̂ (λ)δ, j | eσ(a)|λ|)

(1 + σ(a) + |λ|)d
daµ(λ)dλ dk <∞.

The inequalities (3.5) and (3.6) together establish (3.2).

Step 3: From (3.2) and (2.10) we have

(3.7)

∫

R

∫

R

|A( fδ ′, j ′)(t)|| f̂ (λ)δ, j |e|λ||t|
(1 + |t| + |λ|)d

dtµ(λ)dλ <∞

for δ, δ ′ ∈ K̂0, 1 ≤ j ≤ d(δ), 1 ≤ j ′ ≤ d(δ ′).

In particular we can take δ = δ ′ and j = j ′ to obtain

(3.8)

∫

R

∫

R

|A( fδ, j )(t)|| f̂ (λ)δ, j |e|λ||t|
(1 + |t| + |λ|)d

dtµ(λ)dλ <∞.

Step 4: Now we will show that in (3.8) µ(λ)dλ can be replaced by dλ. We have the
following asymptotic estimate of the spherical Plancherel density [2]

(3.9) µ(λ) = |c(λ)|−2 ≍ 〈λ, γ〉2(1 + |〈λ, γ〉|)mγ+m2γ−2,

where mγ ,m2γ are as defined in Section 2. Here f ≍ g means c1g(λ) ≤ f (λ) ≤
c2g(λ) for two positive constants c1, c2 and λ ∈ a∗, |λ| large.

As f̂ (λ)δ, j is holomorphic, hence continuous, this immediately implies our asser-

tion, that is, we get

(3.10)

∫

R

∫

R

|A( fδ, j)(t)|| f̂ (λ)δ, j |e|λ||t|
(1 + |t| + |λ|)d

dtdλ <∞.

Step 5: In this step we will deduce that f̂ (λ)δ, j = P(λ)e−αλ
2

, where P is a polynomial
which depends on δ, j and α is a positive constant, which is independent of δ, j.
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We claim that A( fδ, j ) ∈ L1(R) ∩ L2(R). Recall that f ∈ L1(X) ∩ L2(X). There-

fore by Plancherel theorem
∫

R
‖ f̂ (λ)‖2

2µ(λ)dλ < ∞ and in particular f̂ (λ)δ, j is in

L2(R, µ(λ)dλ). On the other hand, f being an L1 function, f̂ (λ)δ, j is a continuous
function and hence locally integrable. Now since the Plancherel density µ(λ) tends

to ∞ as |λ| tends to ∞, f̂ (λ)δ, j ∈ L2(R). But f̂ (λ)δ, j is also the Euclidean Fourier
transform of A( fδ, j ) (see (2.8)). Therefore, we can use the Euclidean Plancherel the-
orem to conclude that A( fδ, j) is in L2(R). Again since f is in L1(X), so is fδ, j , which
is a function of type δ on X. We have shown (following Definition 2.3) that A( fδ, j )

is in L1(A) = L1(R). Thus the claim is established.
In view of (2.8) we can apply Theorem 1.2 to obtain f̂ (λ)δ, j = P(λ)e−αλ

2

. A

priori the polynomial P as well as the constant α depend on δ, j. We will see that the
constant α is actually independent of δ, j.

Suppose for δ1, δ2 ∈ K̂0 and 1 ≤ j1 ≤ d(δ1), 1 ≤ j2 ≤ d(δ2),

f̂ (λ)δ1, j1
= P1(λ)e−α1λ

2

,(3.11)

f̂ (λ)δ2, j2
= P2(λ)e−α2λ

2

,(3.12)

where P1, P2 are two polynomials, α1, α2 are positive constants. Suppose α1 6= α2.
Without loss of generality we can assume that α1 < α2. From (3.12) above we have

(3.13) A( fδ2, j2
)(t) = P2(t)e

− 1
4α2

t2

.

Substituting (3.11) and (3.13) in (3.7) we see that the integrand in (3.7) is

|P1(λ)||P2(t)|e−(
√
α1|λ|− 1

2
√
α2

|t|)2

eA|λ||t|

(1 + |t| + |λ|)d
,

where A = 1 −
√
α1/α2 > 0 as α1/α2 < 1. Therefore the integrand in (3.7)

grows very rapidly in the neighbourhood of the hyperplane (pair of straight lines)√
α1|λ| =

1
2
√
α2
|t| and the integral diverges. This establishes that the positive con-

stant α is independent of δ and j.

Step 6: This is our final step wherein we conclude the proof of the theorem. From

the previous step we know that f̂ (λ)δ, j = P(λ)e−αλ
2

. From (2.5 ′) we get

Qδ(λ)

Qδ(−λ)
=

P(−λ)

P(λ)
.

Since Qδ(λ) and Qδ(−λ) are relatively prime (see §2), Qδ(−λ) divides P(λ) and
hence P(λ) = P ′(λ2)Qδ(−λ) where P ′(λ2) is a polynomial in λ2. As deg Qδ = s

we see that deg P(λ) ≥ s.

On the other hand, noting that A( fδ, j)(t) = P(t)e−
1

4α t2

, substituting f̂ (λ)δ, j and

A( fδ, j )(t) back in (3.8) and using (3.9), it is easy to verify that deg P < d ′−1
2

where
d ′

= d − (mγ + m2γ) as otherwise the integral in (3.8) diverges.
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Therefore if s ≥ d ′−1
2

, then fδ, j = 0 almost everywhere. As s ≥ r and s, r ≥ 0, we

conclude that only for finitely many δ ∈ K̂0 which corresponds to the pair of integers

(r, s) with s < d ′−1
2

, fδ, j will satisfy (3.8). We thus conclude that f is a K-finite

function of the form described in the statement of the theorem.

In particular if d ′ ≤ 1, that is, if d ≤ 1 + mγ + m2γ = dX , then there is no s

satisfying s < d ′−1
2

and hence in that case f = 0 almost everywhere.

Remark 3.3 If in the above theorem we add the condition that f is a K-biinvariant
function, then the theorem concludes that the spherical Fourier transform of f , i.e.,∫

X
f (x)φ−λ(x) dx = P ′(λ2)e−αλ

2

for some polynomial P and a positive constant α.

From this it follows that f is a derivative of the heat-kernel hα.

4 Sharpness of the Estimate

In order to complete the picture we investigate the optimality of the condition used
in Theorem 3.1. More precisely, suppose a function f ∈ L1(X) ∩ L2(X) satisfies

(4.1)

∫

X

∫

a
∗

| f (x)‖ f̂ (λ)‖2ecσ(x)|λ|
Ξ(x)1−ε

(1 + σ(x) + |λ|)d
dxµ(λ)dλ <∞

for some nonnegative integer d and c, ε ∈ R.

(i) We will see that if {c > 1 and ε ≥ 0} or if {c ≥ 1 and ε > 0} in (4.1), then
f = 0 almost everywhere.

(ii) We will find a symmetric space X on which there can be infinitely many
linearly independent functions in L1(X) ∩ L2(X) satisfying the estimate (4.1) with
{c < 1 and ε ≤ 0} and with {c ≤ 1 and ε < 0}. These functions are not of the form
characterized in Theorem 3.1.

In case (i) as c > 1 and Ξ
−ε ≥ 1, f satisfies the condition (3.1) in Theorem 3.1 and

hence f̂ (λ)δ, j = Pδ, j(λ)e−αλ
2

. Therefore A( fδ, j)(t) = Pδ, j(t)e−βt2

where αβ =
1
4
,

since A( fδ, j ) is the Euclidean Fourier inverse of f̂ (·)δ, j .
On the other hand starting from the condition (4.1) and following the steps of the

proof of Theorem 3.1 we obtain finally,

(4.2)

∫

R

∫

R

|A( fδ, j )(t)|| f̂ (λ)δ, j |ec|λ||t|eερt

(1 + |t| + |λ|)d
dtdλ <∞.

Substituting A( fδ, j )(t) and f̂δ, j(λ) as obtained above in this inequality we see that it
demands ∫

R

∫

R

e−(
√
α|λ|−

√
β|t|)2

e(c−1)|λ||t|eερt

(1 + |t| + |λ|)d
dtdλ <∞.

But around the hyperplane
√
α|λ| =

√
β|t|, the integrand grows rapidly as |t| → ∞,

since c−1 > 0 or ε > 0. Hence the integral becomes infinite, which contradicts (4.2).

https://doi.org/10.4153/CMB-2007-029-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-029-6


Beurling’s Theorem and Characterization of Heat Kernel 305

Next we consider the case (ii), that is, we will find a symmetric space X and func-
tions f on X which satisfy

(4.3)

∫

X

∫

a
∗

| f (x)‖ f̂ (λ)‖2ecσ(x)|λ|
Ξ(x)1+ε ′

(1 + σ(x) + |λ|)d
dxµ(λ)dλ <∞

for some nonnegative integer d, and either c < 1, ε ′ ≥ 0 or c ≤ 1, ε ′ > 0.

Let G = SL(2,C) considered as a real Lie group and K = SU (2). Consider the
symmetric space X = SL(2,C)/SU (2). Let

A =
{

at =

(
et/2 0

0 e−t/2

) ∣∣ t ∈ R
}
.

Then φλ(at ) =
sin(λt)
λ sinh t

, and the Plancherel measure is µ(λ) = λ2 [12, p. 432]. We
define a K-biinvariant function g on X by prescribing its spherical Fourier transform

ĝ(λ) =
∫

G
g(x)φ−λ(x) dx = F(ψ)(λ)e−λ

2/4P(λ) for λ ∈ R, where ψ is an even func-

tion in C∞
c (R) with support [−ζ, ζ] for some ζ > 0, F(ψ) is its Euclidean Fourier

transform, and P is an even polynomial in R. This means that g is the convolution (in
G) of a smooth compactly supported K-biinvariant function on G with a (invariant)
derivative of the heat kernel of X. Indeed it is clear from the Paley–Wiener theorem

that F(ψ) is also the spherical Fourier transform of a K-biinvariant smooth function
on G supported in a ball of radius ζ .

It follows that g is a K-biinvariant function of the L2-Schwartz space of G. By the
inversion formula for the spherical Fourier transform, we have

g(at ) = C

∫

R

ĝ(λ)φλ(at )µ(λ) dλ

=
C

sinh t

∫

R

F(ψ)(λ)e−
λ2

4 λP(λ) sinλt dλ.

Using Fourier inversion on R, we see that g(at ) =
C

sinh t
(ψ1 ∗R h)(t), where ∗R is the

convolution in R, ψ1 is a derivative ofψ and hence a function in C∞
c (R) with support

contained in [−ζ, ζ], h(t) = e−t2

. An easy computation shows that

|g(at )| ≤ Ce−t2

e4ζt−t ≤ Ce−σ(at )2

Ξ(at )
1−4ζ .

If we choose ζ > 0 such that l = 1 − 4ζ > 0, then we see that the function g on X

satisfies

|g(x)| ≤ Ce−σ(x)2

Ξ
l(x)(1 + σ(x))M for all x ∈ X

for M > 0 and l ∈ (0, 1), and its spherical Fourier transform ĝ satisfies

|ĝ(λ)| ≤ C ′e−
λ2

4 (1 + |λ|)N for all λ ∈ R

for some N > 0.
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Thus we can find a function g on X which satisfies the above estimate for any given
l ∈ (0, 1). Suppose ε ′ > 0. We choose l (that is, choose ζ) so that l + ε ′ ≥ 1. Then it

is easy to verify that g satisfies the estimate (4.3) with c ≤ 1 for any suitable large d.
Now suppose c < 1 and ε ′ ≥ 0. If c ≤ 0, the above function g clearly satisfies

(4.3). We need only therefore consider the case when 0 < c < 1. Notice that we can
choose α, β ∈ R

+, α < 1 and β < 1
4

satisfying the constraint 4αβ = c2 such that the

above function g and its spherical Fourier transform ĝ satisfy

|g(x)| ≤ Ce−ασ(x)2

Ξ(x) for all x ∈ X,

|ĝ(λ)| ≤ C ′e−βλ
2

for all λ ∈ R.

Clearly the pair (g, ĝ) satisfy (4.3).

From the construction of g it is clear that there are infinitely many linearly inde-
pendent functions satisfying the estimate in case (ii). This example is a modification
of the example given in [23].

5 Consequences of Beurling’s Theorem

In this section we will justify our claim made in the introduction that this extension

of the Beurling–Hörmander theorem is the “master theorem”, that is, all other the-
orems of this genre follow from Theorem 3.1. All the theorems in this section also
characterize the heat-kernel described in Section 2. First we consider the Gelfand–
Shilov theorem.

Theorem 5.1 (Gelfand–Shilov) Let f ∈ L2(X). Suppose f satisfies

∫

X

| f (x)|e
(ασ(x))p

p Ξ(x)

(1 + σ(x))N
dx <∞,(5.1)

∫

a
∗

‖ f̂ (λ)‖2, e
(β|λ|)q

q

(1 + |λ|)N
µ(λ) dλ <∞,(5.2)

where 1 < p <∞, 1
p

+ 1
q

= 1 and N is a nonnegative integer.

(i) If αβ > 1, then f = 0 almost everywhere.

(ii) If αβ = 1 and p 6= 2 (and hence q 6= 2), then f = 0 almost everywhere.

(iii) If αβ = 1, p = q = 2 and N < dX + 1, then f = 0 almost everywhere

(iv) If αβ = 1, p = q = 2 and N ≥ dX + 1, then f is a K-finite function of the

form described in Theorem 3.1. In particular if N = dX + 1, then f is a constant

multiple of the heat kernel ht for some t > 0.

Proof (i) Since αp

p
σ(x)p + βq

q
|λ|q ≥ αβσ(x)|λ| and (1 + σ(x) + |λ|)2N ≥ (1 +

σ(x))N (1 + |λ|)N , from the assumptions (5.1) and (5.2), we obtain:

(5.3)

∫

X

∫

a
∗

| f (x)‖ f̂ (λ)‖2eαβσ(x)|λ|
Ξ(x)

(1 + σ(x) + |λ|)2N
dxµ(λ)dλ <∞.
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But as αβ > 1, we conclude that f = 0 almost everywhere (see §4).
(ii) Fix a δ ∈ K̂0 and an integer j such that 1 ≤ j ≤ d(δ). We will show that

fδ, j = 0 almost everywhere. Note that conditions (5.1) and (5.2) of the theorem can
be reduced, respectively, to

∫

X

| fδ, j(x)|e
(ασ(x))p

p Ξ(x)

(1 + σ(x))N
dx <∞,(5.4)

∫

a
∗

| f̂ (λ)δ, j |e
(β|λ|)q

q

(1 + |λ|)N
µ(λ) dλ <∞.(5.5)

Therefore we can confine ourselves to the (δ, j)-th component of the function. Using
αβ = 1, we can argue as in (i) and show that

(5.6)

∫

X

∫

a
∗

| fδ, j(x)| f̂ (λ)δ, j |eσ(x)|λ|
Ξ(x)

(1 + σ(x) + |λ|)2N
dxµ(λ)dλ <∞,

and thereby conclude from Theorem 3.1 that f̂ ( · )δ, j is either identically zero or of

the form Pδ, j(λ)e−β0λ
2

for some β0 > 0.

Now, if we consider the case when 1 < p < 2, then we see that unless f̂ (λ)δ, j = 0

for almost every λ, it cannot satisfy (5.5) because q > 2.
Next we take up the case when p > 2 and hence 1 < q < 2. Since µ(λ) has

polynomial growth (3.9), f̂ (λ)δ, j = Pδ, je
−β0λ

2

satisfies

∫

a
∗

| f̂ (λ)δ, j |e
(γ0|λ|)2

2

(1 + |λ|)M
µ(λ) dλ <∞,

where γ0 =
√

2β0, for some suitable M > 0. We choose α0 such that α0γ0 > 1. Since
p > 2 and fδ, j ∈ L1(X), we see from (5.4) that

∫

X

| fδ, j(x)|e
(αδ, jσ(x))2

2 Ξ(x)

(1 + σ(x))N
dx <∞.

But then from (i) it follows that fδ, j = 0 almost everywhere.

(iii)–(iv) By the above argument, f̂ (λ)δ, j = Pδ, j(λ)e−β0λ
2

. It follows from (5.5)
with q = 2 that

√
2β0 ≥ β. But if 2β0 > β2, then α

√
2β0 > 1. On the other hand,

f̂δ, j satisfies (5.5) with q = 2 and with β replaced by
√

2β0 for a suitably large N .

Therefore by (i), fδ, j = 0 almost everywhere. Hence f̂ δ, j(λ) = Pδ, j(λ)e−β
2λ2/2.

Now, as noted in the proof of Theorem 3.1, Qδ(−λ) is a factor of Pδ, j(λ), and hence

deg Pδ, j ≥ deg Qδ = s. Therefore, only for finitely many δ ∈ K̂0 can f̂δ, j satisfy (5.5).
This proves the first statement in (iv). Substituting f̂ δ, j back in (5.5) and using (3.9)
it is now easy to verify that if N < 2 + mγ + m2γ = dX + 1, then f̂ δ, j ≡ 0, and if

N = 2 + mγ + m2γ = dX + 1, then deg Pδ, j = 0 and hence f̂ δ, j(λ) = Ce−β
2λ2/2.
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But that is possible only when δ is trivial. Indeed from (2.3) it follows that Φ
j
iρ,δ ≡ 0

when δ ∈ K̂0 is nontrivial and 1 ≤ j ≤ d(δ). Hence for such a δ, f̂ δ, j(iρ) = 0, which

is not possible if f̂ δ, j(λ) = Ce−β
2λ2/2. Thus f is a constant multiple of the heat kernel

ht where t =
β2

2
.

We will see below that the theorems of Morgan, Hardy and Cowling–Price follow
from the Gelfand–Shilov theorem proved above.

Theorem 5.2 (Morgan’s theorem) Let f : X → C be measurable and assume that

| f (x)| ≤ C1e−aσ(x)p

Ξ(x)(1 + σ(x))n for all x ∈ X,(5.7)

‖ f̂ (λ)‖2 ≤ C2e−b|λ|q

for all λ ∈ a∗ ≡ R,(5.8)

where C1,C2 and a, b are positive constants, n is a nonnegative integer, 1 < p <∞ and
1
p

+ 1
q

= 1.

(i) If (ap)
1
p (bq)

1
q > 1, then f = 0 almost everywhere.

(ii) If (ap)
1
p (bq)

1
q = 1 and p 6= 2, then f = 0 almost everywhere.

(iii) If p = q = 2 and (ap)
1
p (bq)

1
q = 1, that is ab =

1
4
, then f is a constant multiple

of the heat kernel.

Proof Let a =
αp

p
and b =

βq

q
. Then f and f̂ satisfies Theorem 5.1 for some suitable

N . The condition (ap)1/p(bq)1/q ≥ 1 translates as αβ ≥ 1. Thus (i) and (ii) follow
from Theorem 5.1(i) and (ii). For (iii) again we use the proof of Theorem 5.1(iii)–

(iv) to conclude that f̂δ, j(λ) = Pδ, j(λ)e−bλ2

. But because of the condition (5.8) of

this theorem, Pδ, j is a constant. But this implies that only for trivial δ = δ0, can f̂δ, j

be nonzero, and the spherical Fourier transform of f is Ce−bλ2

(see the argument at
the end of the proof of Theorem 5.1, (iii)–(iv)). That is, f is a constant multiple of

the heat kernel at t = b.

Morgan’s theorem implies the well-known Hardy’s theorem as a particular case
(p = q = 2). To stress this point we will write it as a separate theorem.

Theorem 5.3 (Hardy’s theorem) Let f : X → C be measurable and assume that,

| f (x)| ≤ C1e−aσ(x)2

Ξ(x)(1 + σ(x))n for all x ∈ X,(5.9)

‖ f̂ (λ)‖2 ≤ C2e−b|λ|2

for all λ ∈ a∗ ≡ R,(5.10)

where C1,C2 and a, b are positive constants, n is a nonnegative integer.

(i) If ab > 1
4
, then f = 0 almost everywhere.

(ii) If ab =
1
4
, then f is a constant multiple of the heat kernel.
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Theorem 5.4 (Cowling–Price) Let f : X → C be measurable and assume that for

positive constants a, b and nonnegative integers m, n,

∫

X

(| f (x)|eaσ(x)2

Ξ(x)
2

p1
−1

)p1

(1 + σ(x))m
dx <∞(5.11)

∫

a
∗

(‖ f̂ (λ)‖2eb|λ|2

)p2

(1 + |λ|)n
µ(λ) dλ <∞,(5.12)

where 1 ≤ p1, p2 <∞,

(i) If ab > 1
4
, then f = 0 almost everywhere.

(ii) If ab =
1
4
, then f is a K-finite function of the form described in Theorem 3.1. In

particular, if dX < n ≤ dX + p2, then f is a constant multiple of the heat kernel.

Proof Let us first assume p1 and p2 are greater than 1. Let q1 and q2 be respectively
the conjugates of p1 and p2, that is 1

pi
+ 1

qi
= 1, i = 1, 2. Using the estimate of Ξ(x)

given in Section 2, we note that

Ξ(x)
2

q1

(1 + σ(x))
m ′
q1

is in Lq1 (X) if m ′ > 3. Therefore it follows from condition (5.11) in the hypothesis

that

∫

X

| f (x)|eaσ(x)2

Ξ(x)
2

p1
−1

(1 + σ(x))
m
p1

Ξ(x)
2

q1

(1 + σ(x))
m ′
q1

dx =

∫

X

| f (x)|eaσ(x)2

Ξ(x)

(1 + σ(x))N1
dx <∞,

where N1 =
m
p1

+ m ′

q1
. Similarly using (3.9), we see that if n ′ > 1 + mγ + m2γ , then

∫

a
∗

| f̂ (λ)eb|λ|2

(1 + |λ|)N2
µ(λ) dλ <∞

where N2 =
n
p2

+ n ′

q2
.

When either p = 1 or p2 = 1, then the above two inequalities are evident. Thus

this becomes a particular case of Theorem 5.1 when p = q = 2, N = max{N1,N2}
and a =

α2

2
, b =

β2

2
. Note that the conditions ab > 1

4
and ab =

1
4

in the hypothesis
translate as αβ > 1 and αβ = 1 respectively, when we fit them in Theorem 5.1. The

result now follows from Theorem 5.1(i), (iii) and (iv) in a fashion similar to what was
used in the previous theorems in this section. We omit the details to avoid repetition.

In the above theorem, we may take either p1 or p2 or both to be infinity. The

condition (5.11) with p1 = ∞ means that g(x) = | f (x)|eaσ(x)2

Ξ(x)−1(1 + σ(x)−m is
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a bounded function on X for m as above. Hence g(x)Ξ(x)2/(1 + σ(x))N1 is integrable
where N1 = m ′ > 3 as described above. That is, as above,

∫

X

| f (x)|eaσ(x)2

Ξ(x)

(1 + σ(x))N1
dx <∞.

Similarly for p2 = ∞ we arrive at

∫

a
∗

| f̂ (λ)|eb|λ|2

(1 + |λ|)N2
µ(λ) dλ <∞

for N2 = n ′ > 1 + mγ + m2γ , since | f̂ (λ)|eb|λ|2

is bounded on a∗. Note that the case
p1 = p2 = ∞ of the Cowling–Price theorem implies Hardy’s theorem.

Some parts of these theorems were proved independently on symmetric spaces.
Part (i) of Hardy’s theorem was proved in [4, 6, 23], while part (ii) was proved in

[19, 25]. Part (i) of Cowling–Price theorem was proved in [20, 22] and part (ii) was
proved in [21]. Part (i) of Morgan’s theorem was proved in [22].

6 Concluding Remarks

In his thesis, Demange [5] further generalized Theorem 1.2:

Theorem 6.1 (Demange) For two nonzero functions f1, f2 ∈ L2(R), if

∫

R

∫

R

| f1(x)|| f̂2(λ)|e|x||λ|
(1 + |x| + |λ|)d

dxdλ <∞,

∫

R

∫

R

| f2(x)|| f̂1(λ)|e|x||λ|
(1 + |x| + |λ|)d

dxdλ <∞,

then f1(x) = P1(x)e−αx2

and f2(x) = P2(x)e−αx2

for some positive constant α and

polynomials P1, P2.

A careful reader will observe that using our technique, this theorem can be ex-
tended to symmetric spaces, with the following interesting consequence:

Consider two rank 1 symmetric spaces X1 = G1/K1 and X2 = G2/K2. Let dx and

dy be the G1 and G2 invariant measures on X1 and X2 respectively. Let µi(λ)dλ be
the corresponding Plancherel measures for Xi and let σi , Ξi be the σ and Ξ functions
on Xi , for i = 1, 2. Let f1 ∈ L2(X1) and f2 ∈ L2(X2) be two nonzero functions.

Theorem 6.2 Let f1 and f2 as above satisfy

∫

X1

∫

a
∗
2

| f1(x)|‖ f̂2(ν)‖2eσ1(x)|ν|
Ξ1(x)

(1 + σ1(x) + |ν|)d
dxµ2(ν)dν <∞,

∫

X2

∫

a
∗
1

| f2(y)|‖ f̂1(λ)‖2eσ2(y)|λ|
Ξ2(y)

(1 + σ2(y) + |λ|)d
dyµ1(λ)dλ <∞.
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Then f1 is a derivative of the heat kernel h1
α of X1 and f2 is a derivative of the heat kernel

h2
α of X2 for some instant α > 0.

We take X1 = X2 = X and obtain the following corollary.

Corollary 6.3 Let two nonzero functions f1, f2 ∈ L2(X) satisfy

∫

X

∫

a
∗

| f1(x)|‖ f̂2(λ)‖2eσ(x)|λ|
Ξ(x)

(1 + σ(x) + |λ|)d
dxµ(λ)dλ <∞,

∫

X

∫

a
∗

| f2(x)|‖ f̂1(λ)‖2eσ(x)|λ|
Ξ(x)

(1 + σ(x) + |λ|)d
dxµ(λ)dλ <∞.

Then f1 (respectively, f2) is a derivative of the heat kernel hα for some instant α > 0.

The proof of this theorem proceeds along entirely similar lines to that of the proof

of the main theorem of this article; we therefore omit it.

Acknowledgement We thank the referee for making several suggestions which im-
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