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NONLINEAR HYDROMAGNETIC CONVECTION
IN A MODERATE PRANDTL NUMBER FLUID

N. RlAHI

Nonlinear hydromagnetic connection is investigated using the

modal equations for cellular convection. The boundary layer

method is used assuming large Rayleigh number R , moderate

Prandtl number a and for different ranges of the Chandrasekhar

number Q . The heat flux F is determined for the value of the

horizontal wave number which maximizes F . For a weak field,

the inertial force dominates over the Lorentz force. F is

independent of Q , but it increases with if and a . For a

moderate field, the Lorentz force is significant. F increases

with R and a and decreases as Q increases. For a strong

field, the Lorentz force dominates over the inertial force. F

is independent of 0 , but it increases with R and decreases as

Q increases.

1. Introduction

The specific problem considered in this paper is that of the effect of

an imposed uniform magnetic field on a nonlinear convection in a moderate

Prandtl number a fluid at large Rayleigh numbers with

magnetic diffusivity . , „ , .. ,. . . .....
T = -rr~ ^—. —:—r—*- » 1 . Hydromagnetic convection is important in

thermal diffusivity J O ±-

many areas of geophysics and astrophysics. An example in geophysics is the

convective motion in the earth's fluid core (T » 1, a £ l) which is

believed to be responsible for driving the geodynamo. The purpose of the

present investigation is to provide us with further insights into the
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subject of nonlinear hydromagnetic convection in situations where T is

large and a is moderate, rather than provide a quantitative comparison

with particular natural situations.

We shall study nonlinear magnetic convection at moderate Prandtl

numbers under the so called modal equations of the equations for momentum,

heat and magnetic field. Briefly, these equations are constructed by

expanding the fluctuating quantities in a complete set of functions of the

horizontal coordinate, and then truncating the expansion. The single mode

equations are derived simply by retaining only the first term in the

expansion. For a more detailed discussion of these equations and their

derivations, we refer to the paper by Gough et al. [4]. The same system of

equations has been derived earlier, in a different manner, by Roberts [7]

using a procedure proposed by Glansdorff and Prigogine [3]. Numerical

computations of the single mode equations for thermal convection have

recently been carried out by Toomre et al. [9], and good agreement with the

observation and with the asymptotic results obtained by Gough et al. [4]

was found.

Recently, Riahi [6] studied nonlinear magnetic convection under so

called mean-field equations of the equations for momentum, heat and

magnetic field. These equations are derived by ignoring the interaction

between the fluctuation quantities but retaining the interaction between

the mean and the fluctuation quantities. The single mode mean-field

equations are identical to the modal equations (2.1a - 2.1c) given in the

next section when the parameter a is set to zero. Since the equation of

motion in the mean-field approximation (c = 0) becomes identical to the

equation of motion in the limit of infinite Prandtl number a , it must be

expected that the mean-field theory is most realistic in the case of large

a . The modal equations for a # 0 has some representation of the missing

nonlinear interactions of fluctuating quantities in the mean-field

equations and has the advantage that it restores the Prandtl number as a

parameter of the problem. In their studies of cellular convection, Gough

et al. [4] compared their solutions based on the modal equations with the

known solutions of the full equations for moderate Rayleigh numbers (Malkus

and Veronis, [5]; Schluter, Lortz, and Busse, LSI). They found that

accuracy is restricted to plan-forms for which c t 0 and otherwise to

a » 1 . Therefore, the modal equations (c # 0) are particularly
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suitable for the study of cellular convection in a moderate Prandtl number

fluid.

In the present study, we are interested in finding the solution which

maximizes the heat transport F . The flow that maximizes F determines

uniquely the horizontal wave number and gives an upper bound on the actual

F . Although, in general, the F that maximizes for the modal hydro-

magnetic equations is not necessarily that F which maximizes for the

original full hydromagnetic convection equations (for T » 1 ), it is

expected in light of previous upper bound studies, that the upper bound on

F based on the modal equations represents adequately the upper bound on F

based on the full Boussinesq hydromagnetic convection equations, provided

the Rayleigh number, though large, is restricted and bounded from above.

The success of the previous upper bound studies of thermal convection which

have determined interesting features and similarities with observation as

well as useful bounds on F , encouraged us to undertake the present study.

The reader is also referred to Gough et at. [4] for a detailed discussion

in support of the studies based on the single-mode equations for cellular

convection.

The treatment here is for the steady case. Numerical studies by Weiss

[70] indicate that a steady state can be reached by a hydromagnetic

convective flow of finite amplitude. Of course, sufficiently strong

convective flows are time dependent, but the present study aims at

exploring the properties of nonlinear magnetic convection in the simpler

case of a steady state, which may be considered as an approximation in some

sense.

Before we start formulating the problem and presenting the technical

details, it is useful to place a brief physical discussion of the results

for the flow conditions with various external field strength. When the

imposed vertical field is weak the convection and the heat transport F

are unaffected and the fluctuating field is produced kinematically. The

Lorentz force is small and can be neglected from the momentum equation.

For a moderate field the Lorentz force is significant and partially reduces

the effects of inertial force on F so that F depends weakly on a .

The convective cells reduce in horizontal size and F is reduced. For a

strong field the Lorentz force is so large that it dominates over the

inertial force so that F becomes independent of 0 . The rigidity which
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is imparted by the external field tends to suppress the convection and the

heat transport is seriously reduced.

2. Mathematical Formulation

We consider an infinite horizontal layer of fluid of depth d

permeated by a uniform magnetic field of strength M in the vertical

direction. The upper and lower surfaces are assumed to be stress free and

are maintained at temperatures T and T + A7 (AT > 0) , respectively.

The modal equations of the hydromagnetic convection are derived from the

Boussinesq equations for momentum, magnetic field and heat by expanding the

fluctuating variables in the planform functions F (x, y) of linear

theory. The reader is referred to the paper by Gough et al. [4] for a

detailed derivation of the modal equations for thermal convection. The

nondimensional steady state forms of these equations, after eliminating

pressure and truncating the expansion by retaining only the first terms

are:

(2.1a) [D2-a2)2W = Ra2T + oa~1\2DW[D2-a2)W-i-i/[D2-a2)DW\ - tQ[D2-a2)Dh ,

(2.1b) T(D2-a2)^3 + DW = 0 ,

(2.1c) [D2-a2)T + (l-WT+F)W = C{2WDT+TDW) .

The advection of the fluctuating magnetic field h in (2.1b) and the non-

linear interactions of h with h and velocity vector U in (2.1a, b)

are neglected, since the present analysis is restricted to the parameter

range

(2.2) T » 1 ,

where T = — is the ratio of magnetic diffusivity to thermal diffusivity.

In the above equations, hj? and wF are the vertical components of h

and U respectively, TF is the deviation of the temperature from its

horizontal average, R = agbTd /KV is the Rayleigh number, Q = — — is

the Chandrasenkhar number, a = — is the Prandtl number, y is the
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magnetic permeability, p is the reference density (constant). V is the

kinematic viscosity, a is the coefficient of thermal expansion, and g

the acceleration due to gravity. Also, a is the horizontal wave number,

D = d/dz , F = < WT> is the heat flux, c = i o i , y) is the parameter

derived from the planform function F Ax, y) , the bars denote horizontal

average, and the angle brackets denote a further vertical average over the

whole layer. The constant o vanishes for rolls and rectangles and takes

—hthe value of 6 for the hexagonal planform. We shall assume a ? 0 and

consider the value such as 6 as representative value of a . For

a = 0 , the system (2.1) reduces to the so called mean field equations for

the magnetic convection, and the problem has recently been solved (Riahi

[6]).

It is convenient to rescale the dependent variables so that

(2.3) to = (FR)~*W , 8 = {R/F)*T , H = (Fi?)"*T^3 .

The governing equations then take the following forms:

(2.1*a) (02-a2)20) = a26 + e(Fi?)V1[2Da)(D2-a2)a)+<o(D2-a2)D(o] - Q[D2-a2)DH ,

(2.1+b) \j£-<?)H + Dm = 0 ,

(2.1+c) (FR)~1[D2-a2)e + (l-we+F"1)w = c(W?)~*(2wDe+e«o) .

We shall use the following constraint to evaluate the heat transport

(2.5) F -
2 ,

< (l-uie r >
which is obtained by multiplying (2.1ic) by 9 and taking the vertical

average over the layer.

The boundary conditions to be considered for the free surfaces at

2 = 0, 1 are

(2.6) 0>=D 2U)=8 = ff=0 .

The subsequent analysis and solution of (2.U)-(2.6) supposes throughout

that both R and F are large. The magnitude of Q varies, and

different classes of solutions are found for different orders of magnitude
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of it. In each case the principle focus is on the unique solution that

maximizes F .

3. Solutions by boundary layer method

3.1. THE CASE OF A WEAK FIELD

The vave number a is supposed to be large (which can be justified a

posteriori), so that the convection cells are narrow. The solutions can he

obtained by matching asymptotic approximations in interior and three

distinct regions near each boundary. Without loss of generality, we shall

restrict ourselves to the discussion of the boundary layer structure near

the lower boundary, since the boundary layer structures near the upper and

lower boundaries are essentially identical.

In the interior of the layer, s is of order one. It is assumed that

(3.1a) a* « FR « a6a2 ,

(3.1b) Q « ak .

The governing equations (2.^a)-(2.1+c) yield, after using (3.1), the

following equations

(3.2a) a2w = 9 ,

(3.2b) u9 = 1 ,

(3.2c) ah = Dm .

(3.2a)-(3.2c) yield the following solutions

(3.3a) ID = a"1 ,

(3.3b) 9 = a ,

(3.3c) H = 0 .

Near the boundary and adjacent to the interior is an inertial layer, in

which inertial terms are significant. We define <J> = z/c as the variable

in the layer, where e denotes the thickness of the layer. We then find

from (2.I4), after applying matching conditions (matching the solutions to

the corresponding solutions in the interior), that the equations in the

inertial layer are
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(3.Ua) a2(0 = 6 - 3a3o) f j ,

(3.to) 0)6 = 1 ,

(3.Uc) ea2H = f .

where i t is found appropriate to assume that

(3.5a) E = eo"V3(Fi?)% » a"1 ,

(3.5b) S « a e2 .

The solution to (3.'•a) satisfying the boundary condition w = 0 at <j> = 0

satisfies the following equation

(3.6) - 3 a u ) + l o s ( l l ^ ) "••

(3.Ub, c) and (3.6) yield the following asymptotic results

(3.7a) w= a"V / 3 ,

(3.7b) 6 = a*"173 ,

(3.7c) 3H = e-V3<(.-2/3

as <t> * 0 . Closer to the boundary and adjacent to the inertial layer is

an intermediate layer of thickness a , in which vertical derivatives are

important in the momentum advection terms. Defining E, = az as the

variable in this layer, (2.1») and matching conditions (matching the

solutions to the correcponding solutions in the inertial layer) yield

= 0 ,(3.8a) 8

(3.8b) 0)9 = 1 ,

(3.8c) a(ijL

where i t is assumed that

(ijL . ^ 1 1 =

(3.9) Q « ( A ) 2 / 3

(3.8a)-(3.8c) yield the following results
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(3.10a) u = (JL)
X/Wl/65(3 log C

1)1'3 ,

(3.10b) 9 = w X

as £ -»• 0 ,

as £ •*• 0 .

There is a further thinner layer closer to the boundary, in which

thermal conduction is significant in the heat equation and 6 is brought

to its zero boundary value. We define 6 as the thickness of the layer

and T\ = a/6 as the variable in the layer. The governing equations and

matching conditions then give the following equations in the thermal layer:

(3.11a)

dr\

(3.11c) (•Fi?)~16~2 d—7r + (1-0)6)u =

In deriving (3.11), i t i s found that we must have the following conditions

(3.12a) FRA2&2 = 1 ,

(3.12b) a& « 1 ,

(3.12c) ahk « a'1 A2 ,

where

(3.12d) A --

The solutions to (3.11) satisfying (2.6) are

(3.13a) a) = AT) ,

(3.13b) H = -(%)64n2 ,
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(3.i3c)

where

en /• 2 . 2 ^ •
24 Ji

(3.13d) y2 = 1 + e"2 .

To determine F , we must evaluate the expressions < |V6| > and

o
< (1-0)9) > in (2.5). Within the boundary layer approximation, using the

results above and keeping only the leading order terms, we find that

(|V9|2> =ak

-3— I dr\ and (l-ri9) dr\ in

the thermal layer, respectively. Using (3.1*0 in (2.5) and maximizing F

with respect to a. , yield the following results

(3.15a) e =

(3.15b) a = 1^-

(3.15c) 6 =

(3.15d) F --

where

(3.15e)

Various assumptions including (3.1), (3 .5) , (3-9) and (3.12) lead us to the
following conditions for the validity of the solutions

(3.16a) [IT1 log /?)1 / 6 « 0 « fl^dog i?)"1 ,

(3.16b) Q « (/?a~1)3'5[logfai?'1)]1'^ .
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3.2. THE CASE OF A MODERATE FIELD

The solutions for this case can be obtained by matching asymptotic

approximations in the interior and four distinct regions near each

boundary. The interior and the inertial layer discussed in the last

section are unchanged and (3.l)-(3.7) hold again. Closer to the boundary

and adjacent to the inertial layer is a magnetic layer, in which Lorentz

force becomes significant and balance the inertial and buoyancy forces. We

define \\) = z/y as the variable in this layer, where Y denotes the

thickness of the layer. The governing equations (2.U) and matching

conditions then give the following equations in the magnetic layer:

Y6 - 3ca"1(?i?)%'a) 4r + S ^r = 0 ,(3.17a)

(3.17b)

(3.17c)

where it is assumed that

(3.18a) a"1 « y =

0)6 = 1 ,

yah - * ,

l3a

3 / U ™ * - - * « e ,
(3.18b) aJ « FRay .

(3.17a)-(3.17c) yield the following asymptotic results

(3.19a) to =

(3.19b) 6 =

-1

(3.19c) H = (f

Closer to the boundary and adjacent to the magnetic layer is an

intermediate layer of thickness a . Defining £ = az as the variable

in this layer, (2.U) and matching conditions yield

(3.20a)

(3.20b) 0)9 = 1
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(3.20c)

where i t is assumed that

(3.21a) ay « FRo(log, ay)J/ ,

(3.21b) a2 « Q .

The solutions to (3.20) are

U/3
(3.22a) u =

(3.22b) 6 = uf1 ,

(Fi?)-1/6(|) (orJ^dog arr)h ,

(3.22c) H = [|] [|] (F/?)-1/6a-V2/3(log crr)%[l-exp(-C)] .

There is a further layer closer to the boundary and adjacent to the

intermediate layer, in which thermal conduction is significant and 9 is

brought to its zero boundary value. Using the same notations as those used

in Section 3.1, the governing equations (2.It) and matching conditions yield

(3.1l)-(3.12b), (3.13a), (3-13c)-(3.13d) and the following expressions for

A and H ,

(3.23a) x .

(3.23b) H = a~lAn .

The maximization of F proceeds as before, and we find the following

asymptotic results

(3.2l*b) a = ( |)4 ,

(3.2UO V=(f)1 / 3(ff( |) :

H!/3
(f) i?-
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(3.2Ue)

Various assumptions considered in this section lead to the following

conditions for the validity of the solutions

(3.25a) {to-^lloetplT1^ « Q « tf^ [logM"V/3)]

for iT1 / 6[log(a/rV/ 3)]1 / 6 « a < [iog(ai?-V/3)]-% ,

(3.25b) ( A T 1 ) 3 ' ^ ^ ^ 3 ) ] 1 ' 1 0 « Q « [ ( r f

for [log(ai?-1e5/3)]-% « a « [fl log ( o i f V / 3 ) ] 1 / 6 •

3.3. THE CASE OF A MODERATELY STRONG FIELD

The above boundary layer solutions in the range (3.25) was based

essentially on the condition that a « 6 . Now as Q further increases

beyond the ranges (3.25), it can be a new condition that a = 6 . Thus,

the thermal layer merges with the intermediate layer. The solutions in

this new thermal layer are then found to be

(3.26a) 0) = Ar\ ,

(3.26b) H = a"1/l[l-exp(-n)] ,

A,
(3.26c) 6 = 2A

U+l
u - 1

1/Ueu

where A is defined in (3.23a).

The maximization of F can proceed as before, and we find the

following results:

)*((3.27a)

(3.27b)

(3.27c)

- 2T/^(|)*(f)

£ = —

a =
ZR [log(<22/?

.5/2

,-U/3 2/3

1-5/2

)3 .

(3.27d) 6 = a- 1
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(3.27e)

where

(3.28)

Various assumptions considered in this section lead to the following

conditions for the validity of the solutions

(3.29a) R3/hlloS(Q
2F-h/3a2/3U « Q « (^^[logte

(3.29b) i?"1/8 « a « [log^-^V/ 3 )]"* .

3.4. THE CASE OF A STRONG FIELD

For Q larger and beyond the range (3.29a), the condition that the

magnetic layer thickness y should satisfy (3.18) no longer holds, and we

can then have a new condition in which

(3.30) a"1 « 6 « 1 .

The detailed analysis for (3.30) (though omitted here) indicates that the

value of a which maximizes F satisfies the relation

(3.31) a ~ (foR-yilloeiRQ-1)-]-1'6 .

The solutions can be obtained by matching asymptotic approximation in

interior and two distinct regions near the boundary. In the interior of

the layer the buoyancy and Lorentz forces balance, although the inertial or

viscous forces could become significant too. The governing equations yield

the following equations in this region

(3.32a) Ao = a2H ,

(3.32b) u6 = 1 ,

(3.32c) -a2u + 9 - 3ca"1(Fi?)^uDu + QDH = 0 ,
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where i t is assumed that

(3.33a) Q « FR ,

(3.33b) ah « Q ,

(3.33c) FRa6 2 Q3o2 .

(3.32a)-(3.32c) yield the following asymptotic results as z -*• 0 :

(3.3M u = az{2Q~X log s"1)* ,

(3.3l»b) 6 = w"1 ,

(3.3Uc) H = a-1{2Q-1 log z~X)h .

Closer to the boundary and adjacent to the interior is a thermal layer, in

which termal conduction is significant and 6 and UJ satisfy the boundary

conditions (2.6). We define r\ = 2/6 as the variable in the layer, where

6 is the thickness of the layer. The governing equations and matching

conditions then yield the following equations

(3.35a)

(3.35b)

(3.35c)

where i t is assumed that

(3.36a)

(3.36b) (FR

£ • • •
. 2a dm

a 2 6 = Fi?(l

FRA* = a

)*Aa26 « 0G

(3.36c) 1 « a6 « /y<2)% ,

(3.36d) Ax = a6(26"1 log 6"1)* .

(3.35a)-(3.35c) are satisfied by
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(3.37a)

(3.37b)

(3.37c)

H =

e =

A further thinner layer near the boundary is needed to adjust the solution

to satisfy the correct boundary condition on H . This is a new magnetic

layer, in which Lorentz force is dominant in the momentum equation. We

define t, = az as the variable in the layer, where a turns out to be

the thickness of the layer. We then find from (2.U) and matching conditio

conditions that

(3.38a)

(3.38b)

(3.38c)

- i ^ - 0

dt ~ ° '

£

- i = 0 .

(2.6) and (3.38a)-(3.38c) are satisfied by

(3.39a) a) = (aS)~1A1£, ,

(3.39b)

(3.39c)

9 =

H = (6a'f)-1>l1[l-exp(-C)] .

The maximization of F proceeds as before, and we find the following

results:

(3-fcOa) 6 =

Various assumptions considered in this section lead to the following

conditions for the validity of the solutions:
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e"1)]* « o « [log^e"1)]"* .

4. Discussion

The boundary layer analysis has shown that it is appropriate to divide

the parameter space into four different regions. For a weak field, F is

independent of Q , but it depends strongly on R and a . It also

increases with a and R . The stabilizing effect of the field is so

small that the maximizing flow behaves as if there is no field. The

horizontal scale of convection cells is also independent of Q . It is

seen from the conditions (3.16) for the validity of the solutions that

increasing the effects of the inertial forces can widen the range for a

weak field. For example, as a approaches the lower limit [R log if)

in (3.l6a), the upper limit for Q approaches M (log fl)2'15 which is

the largest possible upper limit for Q , provided a lies in the range

(3.l6a). For a moderate field, the horizontal cells size decreases. F

increases with R and 0 and decreases as Q increases. It depends,

however, weakly (through a logarithmic term) on o . A new magnetic layer

is formed, in which the Lorentz force is comparable in^magnitude with

either inertial or buoyancy force. In contrast to the case of a weak

field, it is seen from (3.25) that increasing the effects of the inertial

force can not widen the range for a moderate field. This is due to that

fact that for a moderate field the Lorentz force is significant enough to

dominate over the inertial force. Thus, decreasing a in the ranges

(3.25a), (3.25b) does not have significant effects on the flow properties

and conditions. For a moderately strong field, the behavior of the flow is

intermediate between cases of a moderate and strong field. The dependence

of F on O is weak and is essentially the same as in the case of a

moderate field, but its dependence on Q and R is similar to the case of

a strong field. The horizontal wave number now decreases with Q . For a

strong field, the magnetic layer mentioned above disappears. However, a

new thin magnetic layer is developed which is responsible to bring the

fluctuating field to its correct boundary condition. F decreases as Q

increases and is independent of o .

In a recent study on magnetic convection, Riahi [6] investigated the
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case a = 0 . It is clear that in this case the dependence of the flow on

o disappears and the results are believed to describe correctly the

average properties of the flow at sufficiently large a . Thus, it is not

surprising if one finds some similarities between the results of the

present study and the case e = 0 only at sufficiently large Q . Indeed

for sufficiently large Q , the dependence of F on Q and R is

qualitatively similar in both cases e = 0 and a # 0 . But the ranges

for o and Q , the convection cells' size, dependence of the flow

properties on a and other results are different.

The approximation T >> 1 made in this paper which eliminates the

advection of magnetic field and the onlinear interactions of fluctuating

field and velocity in the induction equation is responsible for ruling out

the possibilities of sub-critical instability (Busse, [1]) and magnetic

flux expulsion by convection (GaIloway, et al. , [2]).

Numerical studies for three dimensional nonlinear magnetic convection

have not yet been done, but the two dimensional problem has recently been

studied numerically by Weiss [10] who found, for example, that for

R = 105 , 0 = 1 , T = 0.2. for cells with length 0.5 that steady

convection exists for Q S 2.16 * 10 (in agreement with (3.**l)) and for

2
Q - 1.25 x 10 , the field no longer has any dynamical significance (in

agreement with (3.l6)). Our study is based on the maximized nonlinear

asymptotic state (if » 1) and T » 1 , whereas Weiss' study is concerned

with moderate values of R and T . It is not expected that there will be

many other similarities between the results of these two studies.
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