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ON BASIC EMBEDDINGS OF COMPACTA INTO THE PLANE

NEZA MRAMOR-KOSTA AND EVA TRENKLEROVA

A compactum K C R2 is said to be basically embedded in R2 if for each continuous
function / : K —>• R there exist continuous functions g, h: R —¥ R such that f(x,y)
= g(x) + h(y) for each point [x, y) 6 K. Sternfeld gave a topological characterisation
of compacta K which axe basically embedded in R2 which can be formulated in terms
of special sequences of points called arrays, using arguments from functional analysis.
In this paper we give a simple topological proof of the implication: if there exists an
array in K of length n for any n € N, then K is not basically embedded.

1. INTRODUCTION

In his famous lecture at the International Congress of Mathematics in Paris in 1900,
Hilbert formulated 23 problems which, in his opinion, were important for further de-
velopment of mathematics. The thirteenth of these problems contained implicitly the
conjecture that not all continuous functions of three variables are representable as super-
positions of continuous functions of two variables. This conjecture was refuted in a series
of papers by Arnold [1, 3] and Kolmogorov [7, 6].

Their result can be stated in the following way. A compactum K C RN is said
to be basically embedded in R^ if for each continuous function / : K —¥ K there exist
continuous functions git...,g^ • R —> R such that f(xi,... ,xN) = g\(xi) H l-<?w(zvv)
for each point {x\,... ,XN) 6 K. Kolmogorov [6] proved that the cube I" can be ba-
sically embedded into R2n+1. This result was generalised by Ostrand [9] who proved
that every n-dimensional compact metric space is basically embeddable into R2n+1. His
result should be compared to the Nobeling-Menger theorem [5] which says that every
n-dimensional compact metric space K is embeddable into R2n+1. It is known that the
number 2n + 1 in this theorem can not be reduced, a famous counterexample was given
by Van Kampen [15] and Flores [4] who showed that the n-skeleton of a (2n + 2)-simplex
does not embed into R2n. But there certainly exist n-dimensional compact metric spaces
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which are embeddable into R2n, for example, this is true for every n-dimensional manifold
[14]. On the contrary, for basic embeddings Sternfeld [12] proved the following theorem.

THEOREM 1 . [Sternfeld] For n ^ 2 an n-dimensional compact metric space K
is not basically embeddable into R2n.

For N ^ 3, a compact metric space K is thus basically embeddable into RN if and
only if dim K < N/2. Clearly K is basically embeddable into R1 if and only if it is
embeddable into M1. It remains to characterise compact metric spaces that are basically
embeddable into the plane. This problem was first raised by Arnold [2] and the solution
was given by Sternfeld [13], who gave a characterisation of compacta which are basically
embedded into the plane, which was restated by Skopenkov [11] in the following way.

THEOREM 2 . For a compaction K C R2 t ie following conditions are equivalent:

(A) Let an array be a sequence of points in R2 such that each consecutive pair bounds

a vertical or a horizontal segment, and any two consecutive segments are orthogonal.

Then K does not contain any array ofn points for some n.

(B) T i e embedding K C R2 is basic.

(E) Let p and q denote the two projections, p(x,y) — x and q(x,y) — y, let \X\

denote the cardinality of X, and let

E(K) = {(x,y) e K | \p~1(x)nK\ > 2 and ^(y) DK\ > 2}.

Tien En{K) = E(E{... E(K) • • • ) )= 0 for some n.

Using Theorem 2, Skopenkov [11] gave a characterisation of finite graphs which are
basically embeddable into the plane which resembles Kuratowski's condition for a graph
to be planar: a finite graph is basically embeddable into the plane if and only if it does not
contain a circle, a pentod, or a cross with branched ends. He also gave a characterisation
of path-connected continua that are basically embeddable into the plane.

Despite these simple topological characterisations, the proof of Theorem 2 is not
direct, but uses advanced arguments and tools from functional analysis. It would be
therefore desirable to find a direct, topological proof, which would consequently also
provide an elementary proof of Skopenkov's characterisation. In this paper we describe
an elementary proof of the implication (B) =*• (A) which is direct and much shorter than
Sternfeld's original one. Our proof is by contradiction. For a compactum K C R2 which
contains an array of length n for any n € N we explicitly construct a function / : K —¥ R
which cannot be expressed as a sum f{x,y) = g(x) + h(y), where g,h: R —t R are
continuous functions.

It is reasonable to extend the question of basically embedded sets from continuous

functions to other categories of functions, for example C", smooth, Lipschitz, In the
smooth cetagory, Repovs and Zeljko [10] proved that there exists a K which is basically
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embedded in R2 and a C°° function f(x,y) such that for every decomposition f{x,y)

= g(x) + h(y) the functions g and h are only C1.

We would like to thank Arkadiy Skopenkov and Dusan Repovs for motivation for
this paper. Our thanks to Arkadiy Skopenkov also go for the extensive conversations on
the topic of this paper and for many helpful suggestions.

2. S O M E EXAMPLES AND T H E STATEMENT O F T H E RESULT

Let C(X) denote the set of real valued continuous functions on X with the supremum
norm.

D E F I N I T I O N 1: We say that a set K c R2 is basically embedded in R2 (or that
the embedding K C R2 is basic) if for each function / € C(K) there exist functions
g, h € C(R) such that for all ( i , y) € K:

In this paper we shall consider compact sets, so we may assume without loss of
generality that K C I2, where I : - [-1,1].

It is easy to see that any embedding of the one, two or three point set in I2 is basic.
The following example shows that there exist embeddings of the four point set which are
not basic.

E X A M P L E 1. Let / be a continuous function on the four point set

and assume that f(x,y) — g(x) + h(y) for some g,h £ C(E). Let g(xi) = : at and
h(yi) =: fa, i = 1,..., 4. The set A is basically embedded if and only if the system of
linear equations in the unknowns a*, Pi,

has a solution for every choice of values f(xi, j/j). If the four points in A form a quadri-
lateral with sides parallel to the coordinate axes, so that for example ot\ — a^, 03 — a^,

Pi = Pi, and P2 = Pz, then the resulting system in the unknowns a\,a.$,P\ and /32 is
degenerate, and therefore does not have a solution for every choice of values /(x,-,j/j),
i — 1 , . . . , 4. Thus, the four point set forming a quadrilateral with sides parallel to the
axes is not basically embedded in I2.

D E F I N I T I O N 2: A sequence of points {aj jg/ in R2, where / = { 1 , . . . , n} for some
n € N or / = N, is called an array if each two consecutive points a{ and a^+i are distinct,
each segment [at, a i + 1] is parallel to one of the coordinate axes, and each two consecutive
segments [ai_i, at] and [ait di+i] are orthogonal to each other. A finite array consisting of
n points such that ai = an is closed.
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E X A M P L E 2. The sequence ax := (xi,j/i), a2 := (x2,yi), a3 := (x2,y2), o,A := (xuy2),
a5 := (xi,j/i) is a closed array. As we have seen in Example 1 the set {<ii, a2 ,a3 ,a4} is
not basically embedded in M2.

The main result of this paper is an elementary proof of the following theorem.

THEOREM 3 . If a compact set K C I2 contains an array of n points for every
n € N then the embedding K C I2 is not basic.

Every closed array can be periodically extended to an array of n points for every
n EN. We first consider this special case.

LEMMA 1 . If a compact set K C II2 contains a closed array then the embedding
K C I2 is not basic.

PROOF: Let K contain the closed array Am = {<ii}iLi- We may assume that all
points except the first and the last are distinct, that is, a* ^ a, for all i ^ j,{i,j}
^ { l , m } . Let [01,02] be parallel to the x axis.

Let / £ C(K) and let us assume that there are functions g,h € C(H) such that
f = g + h. Since Am is an array, we obtain the following system of equations for the
values g{xi) and h(yi), where X{ and y< appear as coordinates of points of the array:

f(a2i)=g(xi+1)-{-h{yi), i < ( m

Depending of whether m — 2k + 1 is odd or m — 2k is even, one of the following two
possibilities occurs:

f(a2k) = 9(xi) + h(yk) Qr /(o2*-i) = g(xk) + h(yi)
f(a2k+i) = g(xi) + /i(j/i) f(a2k) = g(xi)

In both cases,

(1)

Since there certainly exist functions in C(K) that do not satisfy equation (1), K is not

basically embedded in I2. D

E X A M P L E 3. It follows that an ellipse

with axes parallel to the coordinate axes is not basically embedded in R2 since every
point which is not a vertex lies on a closed array of length 5.

E X A M P L E 4. We shall call the bipartite graph Kx^ the X-graph. The following em-

bedding of the X-graph:

Xx := {(x,y) € I2 | x + y = 0} U {(i,y) e I2 \ x - y = 0}

https://doi.org/10.1017/S0004972700037874 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700037874


[5] Embeddings of compacta 475

is not basic, since it contains a closed array. The following embedding of the X-graph

X2 := {(x,0) € I2} U {(0,2/) £ I2}

is basic, though. If / € C(X2) then f — g + h where

5 ( z ) : = / ( z , 0 ) - / ( 0 , 0 ) , s e n

Hy):=f(0,y), ye I.

3. PROOF OF THEOREM 3

It remains to consider compact sets containing arrays of any length, but no closed
arrays. The following lemma represents a crucial step in the proof of this case.

LEMMA 2 . Assume that a compact set K c I2 contains no closed arrays, but
contains an array ofm points for every m € N. Tien tiere exists a sequence of functions
{/}£L3 C C(K) of norm 1 suci tiat for each n ^ 3 tie following property holds: if
f € C(K) is such that f = g + h for some g,h 6 C(I) and | | / - / n | | < 1/n, tien \\g\\ > n.

PROOF: Since K contains no closed arrays, the points of every array Am, m e N,
are all distinct.

To define the function /„, we take an array A2n+4 = {aj}2"*4 of length 2n + 4, put

/„(*) := (-1)', i = l , 2 , . . . , 2 n + 4,

and extend /„ continuously to K.
Let / 6 C{K) be such that \\f - fn\\ < 1/n. Then

/ ( * ) = ( - ! ) ' • (

for all i. Assume that / = g + h for some g, h e C(l). Without loss of generality let
«i — (xi,yi),a2 = (x2,yi),a3 = (x2,y2), et cetera and let us denote g{xi) —: 7. We
consider the values of g, h in the points a* of the array A2n+4.

For the point ai we have /(ii,j/i) = - 1 — <5i, s(zi) = 7 and /i(t/i) = f{x\,y\)
- 9{x\) = - 1 - 7 - <*i- For a2 we have f(x2,yi) = 1 + S2, g(x2) = f(x2,yi) - h{yx)
= 2 + 7 + (61 + S2) and h(yi) = - 1 - 7 - 61. For a2n+4 we have f(xn+3, yn+2) = 1 + 62n+4,

2n+4 2n+3

g{xn+3) = (2n + 4) + 7 + £ & and ft(j/n+2) = -(2n + 3) - 7 - £ £.

If |7| > n then clearly |<7(zi)| > n. If I7I ^ n and n ^ 3 then
2n+4

2n + 4
2n + 4 - n > n.

So in both cases, \\g\\ > n for n ^ 3. U
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P R O O F : [Proof of Theorem 3] The proof will be by contradiction. So let us suppose
that for every n 6 N there exists an array of length n in K and the embedding K C I2

is basic. Since K is basically embedded there are no closed arrays by Lemma 1. By
Lemma 2, there exists a sequence of functions {/n}£Li C C(K) of norm 1 such that for
each n ^ 3 the following is true: if / € C(K) is of the form / = g + h for some g,h e C(I)
and it has the property that \\f — fn\\ < 1/n, then the norm of g is greater than n.

The idea of the proof is the following. We shall construct a sequence of numbers
{An}£Li from (0,1] and an ascending sequence of natural numbers { a , , } ^ such that the
series

(2)
t = i

is convergent in C(K) but its sum F € C(K) is not expressible in the form F = G + H

for any G,H € C(I). Denote the partial sums of the series (2) by

The construction of the sequences {An}^.j and {sn}^.x is by induction. Let Ai := 1
and Si := 3. Assuming that An_i and sn_i have already been constructed, let

( 3 ) A " - 2 ( S n _ 1 ) 2 '

Because the set K is basically embedded, there exists a representation of the partial sum

Fn-i = Gn-i + Hn-i, C?n_i, i/n-i £ C(fi)-.

Let sn be a any number in N such that sn > sn_i and

(4) Ansn> ||Gn_i||+ii.

oo

Let us consider the series ]T) Aj/Si we have constructed. Since sn ^ n + 1, it follows

by (3) that
A n ^

n2

for all n € N. Therefore,

so the series converges in C{K) to its sum

t = i
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For each n G N, we have

E w iî n = E A<
"i=n+l t=n+l i=n+l

oo ^ °° 1
[ £~i o77 W( \2 7 \2 "̂  ^ n + 1 2-^i Oi = ^ A " + l j

so

(5) ||F - Fn|| < 2An+1.

Let F = G + H for some G,H € C(I) and let n € N. Then

||F - FB|| = \\F - Fn-t - A,,/.J| = A J ^ " / " - 1

Let us denote

By (5),

ii/ / II < 2Xn+l

By Lemma 2, this implies that for any representation / = g + h we have ||g|| > sn. Since

/ - F ~ F"-1 - ^ ~ G"-1 + ^ ~ J/""1

/An y\n / \ n

is such a representation, it follows that

| |G-GB_i
> sn.

II A n II

Then by (4),

and therefore
""" n.

This implies that the norm ||G|| is greater than n for all n € N, which is not
possible. D

According to Skopenkov [11] one of the forbidden subgraphs in a graph that is basi-
cally embeddable into the plane is the circle. We conclude this paper with an elementary
proof of this fact using Theorem 3. First let us look at two special cases.

An array Am C K of finite length m which cannot be extended to a longer array by
adding points at the beginning or at the end will be called a maximal array. A closed
array of n points such that the beginning and ending segments are orthogonal can be
extended to an array of arbitrary length, so it is not contained in a maximal array.

https://doi.org/10.1017/S0004972700037874 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700037874


478 N. Mramor-Kosta and E. Trenklerova [8]

EXAMPLE 5. Let Ci C I2 be an ellipse with axes rotated with respect to the coordinate
axes:

Ci := {(x, y) | ax2 + bxy + cy2 = l } , ac - b2 > 0, o + c > 0.

Let Am = {a,}?^ be an array of length m in Ci ending with a horizontal segment, and
let am = (xm, ym). Clearly ym cannot be an extreme value of the projection to the y axes
q(C2), since this would imply that the horizontal line through am intersects C% only in
this one point, contradicting the fact that am_i is a different point in C2 on the same
horizontal line. If xm is not an extreme value of p{C2), then the vertical line through
am intersects C2 in a second point which we denote by am+i — (zm+1,ym+1), where
xm+i = xm (which can possibly coincide with some a*, i < (m — 1)). Thus Am can be
extended to an array of length m + 1. A similar argument can be used if the array Am

ends with a vertical segment. Given an array Am ending in one of the extreme points,
the opposite array Am with a0 = am,... ,am — a0 can also be extended until it possibly
reaches an extreme point with respect to one of the coordinates. This shows that all
maximal arrays begin and end in one of the four extreme points of the ellipse.

Since vertical and horizontal lines intersect C2 in at most two points, there is only
one maximal array starting in any extreme point, so Ci contains at most two maximal
arrays each connecting two of the four extreme points. Since these two arrays contain at
most finitely many points, there must exist a point on the ellipse that is not in any one
of these two arrays. Any array starting at this point can thus be extended to an array
of arbitrary length. By Theorem 3, the ellipse C2 is therefore not basically embedded in
the plane.

Figure 1: An infinite array in a slanted ellipse

The argument used in the Example 5 does not work in general, as the following
example shows.

EXAMPLE 6. Let T be the triangle with one horizontal and one vertical side. Then
every point on T lies on a maximal array of length at most 5, as Figure 2 shows.

COROLLARY 1 . A simple closed curve C is not basically embedded in the plane.
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Figure 2: An array of length 5 containing the point a

PROOF: The characteristic property of simple closed curves that we use is that every
horizontal or vertical line through a point which is not an extreme point with respect to
the y or x coordinate respectively, intersects C in at least two points. If o is an end point
of a maximal array in C, then a must be extreme with respect to one of the coordinates,
for example with respect to x. Let us assume that a is not extreme with respect to y. If
there exists a point b on C, different from a such that p(b) = p{a), then an array ending
in a can either be extended by adding b (if the final segment is horizontal) or by adding
a point from C on the horizontal line through a (if the final segment is vertical). Thus,
all maximal arrays in C begin and end in points which are both extreme with respect to
the y or x coordinate, and such that the horizontal or vertical line, respectively, through
these points has no other intersections with C. There are at most four such points on C.

If there exists a point on C which is not an element of a maximal array of finite
length, then C is not basically embedded by Theorem 3. Assume therefore, that every
point on C is an element of a maximal array of finite length. Since there are infinitely
many points on C and every such array contains only finitely many points, there must
be infinitely many such arrays. Since there are only four possible beginning and ending
points, infinitely many of these arrays must begin in the same one of these points which
we denote by c and also end in the same one of the remaining three points which we
denote by d. Let A = {ai}"_l and B = {bj}^ be two of these arrays, and let aik and bj,
be the last points of A and B that are different. Then one of the coordinates of the points
aik and bj, must be the same, so the union {aJJ^p U {fy,->}j'=o *s a n a r r a y i beginning and
ending in the point c. By Lemma 1, C is not basically embedded. D
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