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Jacobson Radicals of Skew Polynomial
Rings of Derivation Type

Alireza Nasr-Isfahani

Abstract. We provide necessary and sufficient conditions for a skew polynomial ring of derivation type
to be semiprimitive when the base ring has no nonzero nil ideals. This extends existing results on the
Jacobson radical of skew polynomial rings of derivation type.

1 Introduction

Throughout this paper, R denotes an associative ring (not necessarily with unity), α
is an automorphism of R, and δ is a derivation of R, that is, δ is an additive map such
that δ(ab) = δ(a)b+aδ(b), for all a, b ∈ R. We denote by R[x;α] the skew polynomial
ring of automorphism type whose elements are the polynomials

∑n
i=0 rixi , ri ∈ R,

where the addition is defined as usual and the multiplication is subject to the relation
xa = α(a)x for any a ∈ R. Also we denote by R[x; δ] the skew polynomial ring
of derivation type whose elements are the polynomials

∑n
i=0 rixi , ri ∈ R, where the

addition is defined as usual and the multiplication is subject to the relation xa =
ax + δ(a) for any a ∈ R. The upper nil radical (i.e., sum of all nil ideals), the Jacobson
radical, and the set of all nilpotent elements of R are denoted by Nil∗(R), J(R), and
Nil(R), respectively.

Amitsur [1] showed that J(R[x]) = ( J(R[x]) ∩ R)[x], and J(R[x]) ∩ R is a nil
ideal of R. In particular, if R has no nonzero nil ideals, then R[x] is semiprimitive.
Subsequently, there has been a great deal of work examining the Jacobson radicals of
more general ring extensions, such as skew polynomial rings (of automorphism type
or derivation type). In [2], S. S. Bedi and J. Ram proved that J(R[x;α]) = I ∩ J(R) +
Ix + Ix2 + · · ·+ Ixn + · · · , where I = {r ∈ R | rx ∈ J(R[x;α])}. They also showed that
even if R is commutative and reduced (i.e., has no nonzero nilpotent element), then
R[x;α] can be nonsemiprimitive. For skew polynomial rings R[x; δ] of derivation
type, Ferrero, Kishimoto, and Motose showed that J(R[x; δ]) = ( J(R[x; δ])∩R)[x; δ].
But it is still unknown if J(R[x; δ]) ∩ R must be nil. Although this is still open in
general, there exist some partial answers for this problem. Jordan [7] proved that if
R is a right Noetherian ring with unity then J(R[x; δ])∩ R is nil. In [5], Ferrero et al.
showed that J(R[x; δ])∩R is nil if R is commutative. Also it was shown in [3,10] that
J(R[x; δ]) ∩ R is nil if one assumes either that R is reduced or satisfies a polynomial
identity or satisfies the ascending chain condition on right annihilators.
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A ring R is called strongly π-regular if R satisfies the descending chain condition
on principal right ideals of the form aR ⊇ a2R ⊇ · · · , for every a in R. Strongly
π-regular rings were introduced by Kaplansky [8] as a common generalization of
algebraic algebras and artinian rings. Strong π-regularity has roles in module the-
ory and ring theory. In this paper we show that J(R[x; δ]) ∩ R is nil if and only if
J(R[x; δ])∩R is a strongly π-regular ring if and only if J(R[x; δ])∩Nil(R) is an ideal
of R. As a corollary we extend some known results.

One drawback of Amitsur’s Theorem is that it does not determine what J(R[x])∩R
really is, other than that it is a nil ideal. An interesting problem is to determine
whether J(R[x]) ∩ R is indeed equal to Nil∗(R). In fact, it is equivalent to another
famous problem in ring theory called Kothe’s Conjecture. E. Snapper showed that
for a commutative ring R, J(R[x]) = Nil(R[x]) = Nil(R)[x]. In this paper we also
extend Snapper’s Theorem and show that J(R[x; δ]) = Nil(R[x; δ]) = Nil(R)[x; δ] =
Nil∗(R)[x; δ] = Nil∗(R[x; δ]) if and only if Nil(R) is a δ-ideal of R and Nil(R[x; δ]) =
Nil(R)[x; δ]. As a corollary we show that if R[x; δ] is NI ring, then

J
(

R[x; δ]
)
= Nil

(
R[x; δ]

)
= Nil(R)[x; δ] = Nil∗(R)[x; δ] = Nil∗

(
R[x; δ]

)
.

2 Main Results

In this section we prove the main results of the paper.
To fully describe the multiplication in skew polynomial rings of derivation type

R[x; δ], we must iterate the rule xa = ax + δ(a), which leads us to the formula xia =∑i
j=0

(i
j

)
δi− j(a)x j for each positive integer i and a ∈ R. We use this formula in the

proof of the next theorem.

Theorem 2.1 Let R be a ring and δ a derivation of R. Then the following are equiva-
lent:

(i) J(R[x; δ]) ∩ R is nil;
(ii) J(R[x; δ]) ∩ R is a strongly π-regular ring;
(iii) J(R[x; δ]) ∩Nil(R) is an ideal of R.

Proof (i)⇒(ii). This is obvious.
(ii)⇒(i). Assume that J(R[x; δ]) ∩ R is a strongly π-regular ring and let a ∈

J(R[x; δ]) ∩ R. We show that a is nilpotent. Since by Dischinger’s result in [4]
the strongly π-regularity is left-right symmetric, the descending chain ( J(R[x; δ]) ∩
R)a ⊇ ( J(R[x; δ]) ∩ R)a2 ⊇ · · · stabilizes. Thus there exists a positive integer n
such that an ∈ ( J(R[x; δ]) ∩ R)an+1. Then xan ∈ J(R[x; δ]), and so there exists
g(x) = b0 + b1x + · · · + bt xt ∈ R[x; δ] such that

(2.1) xan + g(x) = xang(x).

If ang(x) = 0, then by multiplying equation (2.1) on the left by an we have anxan = 0,
and so a2n = 0. Now assume that ang(x) 6= 0, then there exists a largest integer
m ≥ 0 such that anbm 6= 0. Multiplying equation (2.1) on the left by an gives us
anxan +anb0 +anb1x + · · ·+anbmxm = anxanb0 + · · ·+anxanbmxm. On the other hand,
since an ∈ ( J(R[x; δ])∩R)an+1, we have a2nbm 6= 0. Therefore the left-hand side of the
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equation has degree m, but the right-hand side has degree m+1. So m = 0 and hence
anxan + anb0 = anxanb0. Then a2n = a2nb0. Since an ∈ ( J(R[x; δ]) ∩ R)an+1, there
exists b ∈ ( J(R[x; δ]) ∩ R) such that an = ban+1, and so we can see that an = bian+i

for each integer i ≥ 1. Thus an = bna2n = bna2nb0 = anb0, and so anxan + anb0 =
anxanb0 + anb0 = anxanb0. Then an = anb0 = 0, and the result follows.

(i)⇒(iii). If J(R[x; δ]) ∩ R is nil, then J(R[x; δ]) ∩ Nil(R) = J(R[x; δ]) ∩ R, and
the result follows.

(iii)⇒(i). Assume that J(R[x; δ])∩Nil(R) is an ideal of R and let a ∈ J(R[x; δ])∩R.
We show that a is nilpotent. Now ax ∈ J(R[x; δ]), and so there exists f (x) = a0 +
a1x + · · · + at xt ∈ R[x; δ] such that

(2.2) f (x) + ax = f (x)ax.

If the degree of f (x) is zero, then it is easy to see that a = 0, and the result follows.
Now assume that the degree of f (x) is nonzero. Assume that each coefficient of a f (x)
is nilpotent. Since J(R[x; δ]) ∩ Nil(R) is an ideal of R, then it is easy to see that each
coefficient of a f (x)ax is also nilpotent. Multiplying equation (2.2) on the left by a
gives us

(2.3) a f (x) + a2x = a f (x)ax.

The coefficient of x in the left-hand side of equation (2.3) is aa1+a2 and the coefficient
of x in the right-hand side of equation (2.3) is aa0a+aa1δ(a)+aa2δ

2(a)+· · ·+aatδ
t (a).

So we have aa1 +a2 = aa0a+aa1δ(a)+aa2δ
2(a)+ · · ·+aatδ

t (a) and then a2 ∈ Nil(R),
since J(R[x; δ])∩Nil(R) is an ideal of R. Now assume that there exists a largest integer
0 ≤ m ≤ t such that aam is not nilpotent. The coefficient of xt+1 in the left-hand
side of equation (2.3) is zero, and the coefficient of xt+1 in the right-hand side of
equation (2.3) is aat a. Thus aat a = 0, so aat is nilpotent and hence m 6= t . By
equation (2.3), aa0 = 0 and so m 6= 0. Thus t > m > 0. The coefficient of
xm+1 in left hand side of equation (2.3) is aam+1, and the coefficient of xm+1 in the
right-hand side of equation (2.3) is aama +

(m+1
m

)
aam+1δ(a) + · · · +

( t
m

)
aatδ

t−m(a).
Thus aama ∈ J(R[x; δ]) ∩ Nil(R) and so aamaam ∈ J(R[x; δ]) ∩ Nil(R), which is a
contradiction, and the result follows.

By Theorem 2.1 and [5, Theorem 3.2] we have the following corollary.

Corollary 2.2 Let R be a ring with no nonzero nil ideals and δ a derivation of R.
Then the following are equivalent:

(i) R[x; δ] is semiprimitive;
(ii) J(R[x; δ]) ∩ R is a strongly π-regular ring;
(iii) J(R[x; δ]) ∩Nil(R) is an ideal of R.

In a commutative ring, the set of nilpotent elements form an ideal. This property
is also possessed by certain noncommutative rings, which are known as NI rings.
Note that the class of NI rings contain a large class of noncommutative rings such as
2-primal rings, (PS I) rings, (S I) rings, one-sided duo rings, reversible rings, sym-
metric rings, and reduced rings (for more details see [9]). By Theorem 2.1 we have
the following corollary, which is a generalization of [5, Theorem 3.3].
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Corollary 2.3 Let R be a NI ring and δ a derivation of R. Then J(R[x; δ]) ∩ R is nil.

A ring is called locally finite if every finite subset in it generates a finite semigroup
multiplicatively. Finite rings are clearly locally finite, and an algebraic closure of a
finite field is locally finite but not finite. By [6, Proposition 2.1 and Lemma 2.4],
subrings (not necessarily with identity) of locally finite rings are locally finite and
every locally finite ring is strongly π-regular. So we have the following corollary.

Corollary 2.4 Let R be a locally finite ring and δ a derivation of R. Then J(R[x; δ])∩R
is nil.

It is known that each two-sided ideal of a strongly π-regular ring R is strongly
π-regular. So we have the following corollary.

Corollary 2.5 Let R be a strongly π-regular ring and δ a derivation of R. Then
J(R[x; δ]) ∩ R is nil.

Note that each algebraic algebra is strongly π-regular (for more details see [8]),
and so if R is an algebraic algebra, then J(R[x; δ]) ∩ R is nil.

Let L be a Lie algebra acting on R as derivations and U (L) be the universal envelop-
ing algebra of L. The construction of R[x; δ] using a single derivation can be extended
to construct the smash product R#U (L) (for more details on R#U (L), see [3]).

Corollary 2.6 Let R be an algebra with no nonzero nil ideals and L a Lie algebra
acting on R as derivations. Then J(R#U (L)) = 0 in all of the following cases:

(i) R is NI;
(ii) R is locally finite;
(iii) R is strongly π-regular:
(iv) R is algebraic algebra.

Proof Assume on the contrary that J(R#U (L)) 6= 0. Then by [3, Proposition 3.7],
J(R#U (L))∩R 6= 0. Now let 0 6= x ∈ L, and let δ be a derivation of R corresponding
to x. Thus, by [3, Lemma 3.8], J(R#U (L)) ∩ R[x; δ] ⊆ J(R[x; δ]). But in all cases
we have J(R[x; δ]) = 0, and so 0 6= J(R#U (L)) ∩ R ⊆ J(R#U (L)) ∩ R[x; δ] ⊆
J(R[x; δ]) = 0 which is contradiction. Then J(R#U (L)) = 0, and the result follows.

Proposition 2.7 Let R be a ring and δ a derivation of R. Then

J(R[x; δ]) = Nil(R[x; δ]) = Nil(R)[x; δ]

if and only if Nil(R) is a δ-ideal of R and Nil(R[x; δ]) = Nil(R)[x; δ].

Proof If J(R[x; δ]) = Nil(R[x; δ]) = Nil(R)[x; δ], then by [5, Theorem 3.2],
J(R[x; δ]) ∩ R = Nil(R), and the result follows. Now assume that Nil(R) is a δ-
ideal of R and Nil(R[x; δ]) = Nil(R)[x; δ]. Since Nil(R) is an ideal of R, by Theorem
2.1 J(R[x; δ]) ∩ R is nil and so by [5, Theorem 3.2], J(R[x; δ]) ⊆ Nil(R)[x; δ] =
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Nil(R[x; δ]). Since Nil(R[x; δ]) = Nil(R)[x; δ] and Nil(R) is δ-ideal, Nil(R)[x; δ] is a
nil ideal, and so Nil(R)[x; δ] ⊆ J(R[x; δ]).

Proposition 2.8 Let R be a ring and δ a derivation of R. If R[x; δ] is NI, then
J(R[x; δ]) = Nil(R[x; δ]) = Nil(R)[x; δ] = Nil∗(R)[x; δ] = Nil∗(R[x; δ]).

Proof Assume that R[x; δ] is NI. It is easy to see that Nil(R) is an ideal of R. Let a ∈
Nil(R). Since Nil(R[x; δ]) is ideal, ax+δ(a) = xa ∈ Nil(R[x; δ]) and so δ(a) ∈ Nil(R).
Thus Nil(R) is a δ-ideal of R. Also (R[x; δ])/(Nil(R)[x; δ]) ∼= R/(Nil(R))[x; δ],
and R/(Nil(R)) is a reduced ring. Then (R[x; δ])/(Nil(R)[x; δ]) is reduced, and so
Nil(R[x; δ]) ⊆ Nil(R)[x; δ]. Since Nil(R[x; δ]) is ideal, Nil(R[x; δ]) ⊇ Nil(R)[x; δ]
and so Nil(R[x; δ]) = Nil(R)[x; δ]. Thus by Proposition 2.7, J(R[x; δ]) =
Nil(R[x; δ]) = Nil(R)[x; δ]. Since Nil(R[x; δ]) is ideal, Nil∗(R[x; δ]) = Nil(R[x; δ])
and Nil(R) = Nil∗(R) and the result follows.

The following corollary generalizes Snapper’s Theorem.

Corollary 2.9 Let R[x] be a NI ring. Then J(R[x]) = Nil(R[x]) = Nil(R)[x] =
Nil∗(R)[x] = Nil∗(R[x]).
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