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ON SOME INTEGRAL INEQUALITIES RELATED 
TO HARDY'S 

BY 

CHRISTOPHER O L U T U N D E IMORU 

ABSTRACT. We obtain mainly by using Jensen's inequality for 
convex functions an integral inequality, which contains as a special 
case ShunVs generalization of Hardy's inequality. 

1. Introduction. The following inequality, which is of wide application, is 
due to Hardy ([3], Theorem 319): 

(1-1) £ <*y[[ K(x, y)f(x) dxj < |Jo K(x, I)*"1/p d x ] P £ W dx, p ̂  1, 

where K(x, y) is non-negative and homogeneous of degree - 1 . The inequality 
is reversed if 0 < p < 1. 

Two special cases of inequality (1.1) are (i) the Hilbert integral inequality 
([3], Theorem 316) and (ii) the two useful inequalities due to Hardy ([3], 
Theorem 330): 

(1.2) | 0 " > ' _ r [ ( y / W ^ ] , > ^ ^ [ ^ Y ] P ( " ^ r [ x / ( x ) ] P d x ( r > 1 > 

and 
(l3) f°y~T[l" f {x)dx]dy-[w]Txr[x/ (x)]pdx (r<i} 

provided p > l . 
The inequalities are reversed if 0 < p < l . 
Various generalizations and applications of inequalities (1.2) and (1.3) and 

their series analogues in different areas of mathematics have appeared in the 
literature during the past decade (see for example [1], [3], [4] and [5]). 

A recent trend in inequalities is to establish, mainly by the Jensen inequality 
and its generalization due to Steffensen, some very general inequalities that 
include as special cases, many that are of independent interest and that were 
originally proved by quite different methods. The object of this note, therefore, 
is to obtain some generalizations of inequalities (1.2) and (1.3) from the Jensen 
inequality for convex functions. Indeed, our main result is a generalization of 
Shum's result [6] obtained by replacing x by g(x). 
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The result is as follows: 
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THEOREM. Let g be continuous and non-decreasing on [0, o°] with g(0) = 0, 
g(x)>0 for x>0 and g(00)=00. Let p ^ l , r^ 1 and f(x) be non-negative and 
Lebesgue-Stieltjes integrable with respect to g(x) on [0, b] or on [a, °°] according 
asr>l or r<\ where a>0 and b<0. Suppose 

F(x) = 
\X

Qf(t)dg(t) ( r > l ) 

/• oo 

f(t)dg(t) ( r<l ) . 
Jx 

Then 

(i 4 ) f 
Jo 

g{xy'F>{x) dg(x) + -^-g(b)1-rFp(b) 
r-\ 

P '" 
7 - 1 

gW" r[g(x)/(x)]p dg(x) ( r > l ) 

and 

(1.5) f g(x)- rF'(x)dg(x) + T f - g ( a ) 1 - r F ' ( a ) 

~ [ w ] " I «(xrr[s(x)^(x)]P ̂ (x) (r<1)' 
with both inequalities reversed if 0 < p < l . 

Equality holds in either inequality when either p = 1 or / = 0 . Tfte constant 
[pl(r- l ) ]p or [p/(l - r)]p is tfte fcesf possible when the left side of (1.4) or (1.5) is 
wnc/ianged. 

We note, however, that the left sides of inequalities (1.4) and (1.5) exist 
when the right sides do. 

2. Preliminary Lemmas. We shall make use of the following: 

LEMMA 2.1. Let g be continuous and non-decreasing on [a, &], where 
-oo<a<fe<oo. Let <p be continuous and convex and let h(x, t) be non-negative, 
JC>0, t>0 and À be non-decreasing. Let -&<j;(x)<ri(x)<tt, and suppose <p 
has a continuous inverse (which is necessarily concave). Then 

J 'b r fn(x) "I fb r-n(x) 

g(jc)"1 h(x, t) dk(t) dg{x)> g(x)-1 d\(t) 
a lh(x) J Ja hix) 

X<p 
J"n(x) 

£(x) 
<p-l[h(x,i)\dk(t) 

J'-n(x) 
dA(t) 

* w 

wirfi f/t£ inequality reversed if <p is concave. 
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In particular, if p > 1, 

(2.2) [W'f^fe'O dA(0] dg(x)> [WJ^W]1"' 

x[|Xft(x,r)1/pdA(r)]Pdg(x) 

and 

(2.3) j gW"^} ^UOdA(r)]dgU)>|00g(xr1[J0°dA(o]1"P 

x[[ft(x,r)1/pdA(0]PdgW 

with the inequalities reversed if 0 < p ^ l . 

Proof. Let <p be convex. Then Jensen's inequality says 

309 

(2.4) 

Consequently, 

"n(x) 

> T | ( X ) 

h(x, 0 dA(0 

fTl(x) 

J€(x) 

. J*(x) 
r-n(x) 

<tt(0 
Hix) 

J"nix) r-n(x) 

h(x,t)d\(t)> d\(t)(p 
£(x) h(x) 

J*n(x) 
V_1[fc(x, 

€(x) 
t)]d\(t) 

fn(x) 
dA(r) 

Jc(x) 

Inequality (2.1) follows by integrating the above inequality with respect to the 
measure g(x)"1 dg(x) on the set [a, 6]. 

LEMMA 2.2. Let g be as in the theorem and let S = ( l - r ) /p where r^\ and 
p>\. Suppose 

0(x) = 

[Xg(rr(1-p)(1+8)/(0pdg(0 (r>l) 

f°°g(0-(1-p)(1+6)/(0Pdg(0 (r<l), 
Jx 

where f is non-negative and Lebesgue-Stieltjes integrable with respect to g on 
[0, b] or on [a, o°] according as r>\ or r < l , a > 0 and b>0. Then 

(2.5) g ( M 8 « ( « * ( - « - V - W ' T O ) (r> i) 
and 
(2.6) g(a) 5e(a)s8 p- 1g( f lfF(a) ( r<l ) , 

witfi tfte inequalities reversed if 0 < p ^ 1. 
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Proof. First, we show that the integrals defining 0 exist under the hypothesis 
that the integrals on the right sides of inequalities (1.4) and (1.5) exist. 

Since 
g(0-<1-pX1+a)/(op=g(tf-iypig(t)p-y{tn 

we have, on using the non-decreasing property of g, when r > l , 

(2.7) 0< 0(x) = [Xg(0(r-1)/p[gp-r(0/P(0] dg(t)* g(x)(r^1)/p[V~ W ( t ) dg(t). 

Similarly, if r < l , then 

(2.8) o<0(*) = J g(0(r~1)/p[gp"r(0/p(0]dg(0^gW(r-1)/p^[ gp-r(tydg(t). 

Hence, the existence of the integrals on the right sides of inequalities (1.4) and 
(1.5) implies the existence of the integrals defining 6(x). 

Now let <p(u) = MP, p > 1, 

ft(x,r) = g(x)sg(0p(1+s)/(0p 

and 

dX(t) = g(t)-(1+8)dg(t) 

in the Jensen inequality (2.4). Then, if r > l , 

gibfoib)=g(&)8[bg(r(1-p)(1+s)/(op dg(t) 

= \ h(b, t) dHO 

~ i[dm]"[[fit) dgit)]Pg(b)S 

= (-5-1)1-pg(fc)-8+Spg(fe)8F(fc)p. 

Consequently, 
g(6)^(fe)>(-5-1)1-"g(ft)8pF(ft)p. 

A similar argument shows that 

giayoia^ô^giarFiay. 

This proves inequalities (2.5) and (2.6) when p ^ l ; when 0 < p < l , Jensen's 
inequality is reversed; hence so are inequalities (2.5) and (2.6). The lemma is 
proved. 

We remark on passing that inequalities (2.5) and (2.6) are strict unless p = 1 
or h(x, t) is independent of t, and the latter is the case when / = 0 . 
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LEMMA 2.3. With notation as in Lemma 2.2, we have for p ^ l , 

(2.9) J V x r ^ t o d g f r ) ^ ^ ( r> l ) 

and 

(2.10) rg(xr10(x)dg(x)^Sp-irg(<xr-1F(x)pdg(<x) ( r< l ) 
Ja Ja 

with the inequalities reversed if 0 < p ^ l . 

Proof. With the definitions of the functions 6, h and A in the proof of 
Lemma 2.2, we obtain from inequalities (2.2) and (2.3) the assertions of the 
lemma. 

This completes the proof of the lemma. 

3. Proof of Theorem. From the inequalities (2.7) and (2.8), we have 

limg(x)s0(x) = O, ( r>l) , 
x-»0 

and 
limg(x)ô0(x) = O, ( r<l ) . 

X — * c o 

Consequently, we obtain on using integration by parts, 

(3.1) ^g(x)s-10(x)dg(x) 

= 8-1g(b)sd(b)-8-1[bg(xr-1[g(x)f(x)Ydg(x) ( r> l ) 
Jo 

and 

(3.2) f g(x)s-^(x)dg(x) 
Ja 

= (-8-l)g(a)s0(a) + 8-1 fg(x)*-1[g(x)/(x)]1' dg(x) (r< 1). 
Ja 

Combining inequalities (2.5), (2.9) and (3.1) on one hand and inequalities (2.6), 
(2.10) and (3.2) on the other hand gives the desired assertion of the theorem. 

Since the conditions for equality in inequalities (1.4) and (1.5) follow from 
those for inequalities (2.5) and (2.6), it follows from our earlier observation 
that equality holds in inequalities (1.4 and (1.5) if either p= 1 or / = 0 . 

Suppose K(p, r, b) is the best possible constant in inequality (1.4). It is easily 
shown by taking /(x) = g(x)~

1+eHr~1)/p where e>0, in inequality (1.4), and then 
letting e-»0+, that K(p, r, ft)^[p/(r- l)]p. For inequality (1.5), the correspond
ing result follows by taking /(x)= g(xr1_e(r~1)/p. 
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Consequently, the constants [p/(r-l)]p and [p/(l-r)]p are the best possible 
in inequalities (1.4) and (1.5) respectively when the left sides of these inequalities 
are unchanged. This completes the proof of the theorem. 

REMARK 1. Taking g(x) = x in the theorem produces Shum's results, namely 

(3.3) | x-rF(x)p dx + - ^ b'-'FibY < {^zif\ *"'[*/(*)? dx (r > 1). 

and 

(3.4) ^x-rF{xydx + ̂ ra
1-rF{ar^(z^^ X-r[xf(x)]pdx, ( r< l ) , 

where 

f{t)dt ( r> l ) 
F(x) = f 

p oo 

fit) 
Jx 

dt ( r<l ) . 

REMARK 2. It is readily seen that if g is absolutely continuous, then we 
obtain from the theorem inequalities involving integrals of functions and their 
derivatives. 
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