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EVANS-KURAMOCHI EXHAUSTION FUNCTIONS
ON NON-ALGEBROID RIEMANN SURFACES

J.E. SKEATH

1. Let %« denote a non-compact parabolic Riemann surface, and let
Dc¥ be compact and such that each frontier point of D is contained in a
continuum that is also contained in D. Under these conditions, Kuramochi
[2] (see also [3]) has established the existence of a function # on %A —D
satisfying

(a) #=0, harmonic on % — D,
(b) u vanishes continuously on fr D, the frontier of D,

(c) u tends to + co at the ideal boundary of 9.

Any such function will be called an (Evans-Kuramochi) exhaustion function
on A — D. An exhaustion function # on A — D will be said to satisfy the
k-condition if and only if there exists an integer %k such that the number of
components of the level loci {# = s} is bounded above by k independent of
s, 0<s<<+ oo

In [4] it was shown that an extension of the Denjoy-Carleman-Ahlfors
theorem in subharmonic form can be obtained for any surface admitting
an exhaustion function satisfying the k-condition for some k. Any n-sheeted
algebroid Riemann surface over the finite plane falls under this classification.
In this paper we construct a non-algebroid surface admitting an exhaustion
function satisfying the k-condition, thus answering in the affirmative a
question raised in [4]. As we shall see, the desired surface is closely related
to that constructed by Heins in [1, pp. 297-299].

2. Following Heins [1], we begin by constructing a non-algebroid
surface given as an explicit covering surface of the extended plane. Thus,
let {a,}7-, denote a sequence of positive reals such that @, > ¢ and inf a,/a,-, > 1.
Let {bip+s}a=e be such that a4 <bipse < @+ and let each segment
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[@in+1s Gin+s] be subdivided into an odd number (>1 + a,:,) of subsegments.
Define

E', the finite plane less the slits [a,,, @,,+;] and every alternate subseg-
ment Of [@y,+1, Guqse] starting with the second (all n);

E?, the region E! less the slits [— by,:9 — insi] (all 0);

0., the extended plane less the slit [— bypigy — Gunsil-

Let %A denote the Riemann surface formed by joining copies of E! and E?
along their common slits in the usual way, identifying the upper edges of
the slits of E! with the corresponding lower edges of the slits of E? and vice
versa. The remaining free edges of E? are identified with the opposite edges
of the slits of copies of the corresponding g,.

It follows as in [1] that every non-constant meromorphic function on
any end Q of ¥« (see [1] for terminology) takes on all values infinitely often
with the exception of at most two. Thus U is non-algebroid. We wish to
establish the following

TueorReM 1. Given {a,Ya, satisfying the above conditions, there exists {bynis)amo
SAtSFYING Aupsy < binrs < Uanse and a subdivision of [Gin+1s Gunso] N0 an odd number .
(> 1+ Gupsy) of subsegments (all n) such that the surface A constructed as above from
these quantities admits an exhaustion function satisfying the k-condition for k<2 on
A — D where D denotes the set of points over |z| <1 in the copies of E' and E™.

Before proceeding to the proof of Theorem 1, we establish the following
notation. If &, « « +,byns, are given such that @u,.; < binre < Ginie, 01 < m,
and if an odd number (>1 + @,.,) of subsegments subdividing [@in+1, @in+ol,s
0<n<wm, are given, let

E} denote the finite plane less the slits [y, @onei] for 0<<n<2m+1,
the slits [, Gum+s] for n=m+ 1, and every alternate subsegment starting
with the second of [@ns1, Qinse] fOr 0<<n <m;

E% denote the region E} less the slits [— bypipy — Qunsi] for 0 <<n <m;

g, as before, 0 <n <m.

Let %A,,, m=0 denote the surface formed from the above quantities as in
the construction of . Finally, let %., denote the surface constructed by
copies of E!, and E?, by identifying opposite edges in the usual way where
E!, = E?| = the finite plane less the slits [@,, @i+s] (all #).

Note that, since infa,/a,-, >1, any such %A,, m=—1, has harmonic
dimension one in the sense of Heins [1]. If ¥,, m=—1, is given, let D,
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denote the set of points in ¥, lying over |[z] <1 in the copies of E}, and
E%. Let p, denote the point in A, lying over z =e in the copy of E},
and let #,, denote the unique exhaustion function on %, — D, normalized
such that u,(p,) = 1.

We assert that Theorem 1 is a consequence of

THEOREM 2. Given {a,};-, satisfying the conditions of Theorem 1, there exists
a sequence {bineg)amo and a subdivision of [Gun+is Qunio] (@l n) satisfying the condi-
tions of Theorem 1 such that for all m, the normalized exhaustion function u,, on
A,, — D,, satisfies the following conditions.

I. un(p) = Anlogle(p)| + Bn + Hn(p)s if p lies in the joining of E) and
E% over 2| =7n = Gumss Where ¢ is the natuml projection map and

a) A,, B, are constants, A, >_%_;

b) H, is harmonic, |H,| < togr -, inf ayla, s

4
Q) Hup)| < - fnse < AL UIBE if elp)lan, aimil and nZzm + 1.

II. For each s, 0< s<<A, log #m + By + log -r—, the level locus {u, = s}
s contained in a relatively compact open subset Q of Uy — D,, less the points in
ELUEL over 2] = aym.q where Q is either

a) a region having genus one and connectivity two,
b)

c) the union of two disjoint doubly connected plane regions.

a plane region having connectivity three, or

II1.  u,, satisfies the k-condition for k< 2.

We remark that conditions I and II of Theorem 2 imply condition III.
In fact, if there exists s << A4,, log #,, + B, + --1-9%17— such that {u,, =s} has

three or more components, then by condition II some subset of these com-
ponents forms the boundary of a relatively compact subregion of %, — D,,

and thus u#, must be identically constant. If s=A, log 7, + Bn, + - lo i—r— R
then by condition 7 s >maxu, in the joining of E} and E} over |z| = r,.
Therefore, {u,, = s} lies in the joining of E} and E} over |z| >r,, and the
representation given by condition I is valid. Now if p, and p, are points

in the joining of E} and EZ over |z| >r, such that |c(p,)/c(p,)| =7, then
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by condition I we have

Unm(Dy) — (D)) = A logle(py) c(p)| + Hu(py) — Halpy)

= An log le(p2)/e(p)] — 2 log
> 0.

It follows that {u,, = s} lies over an annular region of the form R, < |z| < R,
with R,/R,<'v. Since 7 =inf a,/a,.,, {#, = s} is contained in a set £
satisfying either condition IIb) or condition IIc). Thus {«, = s} consists of
at most two components. Condition III is established.

Proof that Theorem 2 implies Theorem 1: Let ¥ denote the Riemann
surface constructed as in Theorem 1 from the quantities given in Theorem
2. Observe that, for all m, u, on ¥, — D, can be considered as a function
defined on %A — D less the points in the joining of E! and E? over [dy,+1, Gins+s)
for n=m+1, the points in the copy of E? over [— bi+sy — Gine,] for
n=m+ 1, and the points of ¢, for n=m + 1. In particular, for any com-
pact subset K of %A — D, u, is defined on K if m is sufficiently large.
Moreover, u,, >0 and u,(p%) =1 (all m) where p° denotes the point over
z=e¢ in E'. It follows that {#,|m=—1} is normal on ¥ — D, and thus
there exists a subsequence almost uniformly convergent to a harmonic func-
tion # >0 on ¥ — D, u(p®) =1. It is easily seen that # vanishes continuously
at the frontier of D. Since ¥ has harmonic dimension one and since 9 has
at least one exhaustion function on % — D, it follows that there is (up to
constant multiples) exactly one such exhaustion function, and that function
must be u. (It follows from this that the original sequence {u,}n--, con-
verges almost uniformly to # although this result will not be needed in
what follows.)

If u does not satisfy the k-condition for k<=2, then there exists an s >0,
s not a critical level of u, such that {# = s} consists of j(>2) components.
Take ¢ >0 such that A = {s —e=<u=s+ ¢} contains no critical levels of u.
Then A is compact and consists of j components, each conformally equivalent
to an annulus with # =s+¢ on one boundary component of each such
annulus and # = s —¢ on the other boundary component (cf. [4]). More-
over, for m sufficiently large, u, is defined on A, and we can assume
lu —un] <e2 on A. But then {u, = s} has at least one component in each
of the j(>2) components of 4, a contradiction.
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Before turning to the proof of Theorem 2, it will be convenient to have
the following two lemmas at our disposal.

Lemva 1. If U, is given, m=—1, and if ¢, denotes the indirectly confor-
mal map from U, onto iself determined by ¢,(p) =7, B as defined below, then
Um © O = Un. Moreover, in the joining of EL and E} over the slits on the positive
real axis, the two determinations of wu, agree.

Derinition: If a point p in U, corresponds to a point z in EL, E or
oy 0==m=m, respectively, then § denotes the point in %, corresponding
to Z in E}, E% or g, 0=mn=m, respectively. The obvious modifications
are made for points of %, over slits, e.g., if p,, p, denote the two points
of %A, in the joining of E} and EZ over a point in (@, @,+:), then 5, = p,
and P, = p,.

Proof of Lemma 1: Since ¢,, is indirectly conformal, u,, o ¢,, is harmonic.
Moreover, #, © ¢,(pn) = 1. Since U, has harmonic dimension one, it follows
that u, 0 ¢, = #n. The remaining assertion of the lemma is an immediate
consequence of this property.

LemMA 2. Let h, harmonic on |z| > R, be such that |h] < M, limh(z) = 0.

2MR
= R .
Then |h(z)| < o] + R Jor lz] > R
Proof of Lemma 2: The proof follows by a direct application of Har-
s . .. . . _.1~, —1 ) kl,
nack’s inequalities to the functions M h( p ) and M+ h( . ) for |z] < o
Proof of Theorem 2: The proof is by induction on m. The case m = —1
is trivial. Here the normalized exhaustion function #., on %UA.,— D_, is
given by u-,(p) = loglc(p)] where ¢ is the natural projection. Assume there-
fore that %,_,(m==0) is given such that u,., satisfies conditions I, IT and
III of Theorem 2 with m — 1 replacing m. With this assumption, we show
there exists bumiss @ums1 < Dimis < @ums, and a subdivision of [@ymi1, @unss] INtO
an odd number (>1+4 a@,,,) of subsegments such that u, on %A, — D,
satisfies the conditions of Theorem 2.
Thus, let byu.,(n) = <1 — -%)amﬂ + <%>a4m+2, n=12++-. Let v, an
integer, be such that @;,+./2 < v < @p.s and let 6 = @iy — Gumsy)/v.  Note
that 20 +1>1+4 @y, and that 6 >1 — % , r=infa,/a,_,. Let a;=a,,.,+73,

j=0,+-+,y, and introduce a;n), j=0,--+,y, and n =1,2, - -+, such that
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(1) @< ay(n) < ay(n) < ey, all n;

i) e <ejmn)<e; j=2,---,v and all »;

(ii1) }Lij)l;loaj(n) =a; J=0,+-,u,

For each n, the points a,, ay(n), a;(n), a5, + + +, a,(n),a, subdivide [@m+1y Gumes]
into 2y - 1 subsegments. Let A7 denote the Riemann surface constructed
in the usual manner with this choice of subintervals for [@um+i, @um+z), the
subinterval [— bypn+2(n), — Gim+1]s @ copy of the extended plane slit along
[— bimso(tt)y — @um+1), and the information given from «A,_,. Let u; denote
the normalized exhaustion function on A% — DrZ.

The functions uZ, n=1,2, ---, can be considered as defined on
WUp-y — Dp-y less the appropriate subsets (dependent on #). Since up >0
and #2(pn,-,) =1 (all »), the family {upr}s., is normal on UA,., — D, less
the point of E%., over — a4,,., and less the points in the joining of Ej._,
and EX_, over aj; j=0,-++,v. Hence there exists a subsequence almost
uniformly convergent there to a positive harmonic function # such that
w(Pm-1) = 1.  Moreover, it is easily seen that u« is bounded in some neigh-
borhood of each of the points deleted from 9, — D,.,. Thus « can be
extended to a function harmonic on ¥,.,— D,_,. Also, # vanishes con-
tinuously at frD,_,. Since %,., has harmonic dimension one, it follows
that # = #p-;.

Note that #,.,< a,, and thus the representation of u,., given by
condition I of Theorem 2 is valid in the joining of E)_, and FE2_, over
[@ims Qim+sl. By Lemma 1, the two determinations of u,., agree in the
joining of E)., and EZ_, over [ain, Gims:s), and therefore the same is true
for H,_,. Thus, if a€[tm, @msl, let wm (), Hni(a), respectively, denote
the common value of the two determinations of wu_y, Hn-;, respectively,

over a. If a,BEams Gmss] and B> a + <1 — }, > , then

(1) um—x(ﬁ) - um—l(a) = An_y log (5/05) + H, —1(.8) - Hm—l(a)

1—L>— <l—%>log2

14
> Amey log(l + — o

>M>0

1

since - < Ap-y, 1<r7, and 1< @< a < ;. In particular, min{|um-,(a,)
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— Umy(ap)]tk#=j} >M>0. We can choose disjoint closed disks 4; in
Gimry = |2] =< @yms, such that e;e4;, 7=0,.--,u and such that, if K, denotes
the points in the joining of E}_, and E}_, over 4;, then

(2) Max { [ tm-1(P) — thm-s(ay)]: pEK}< M, j=0,-

Moreover, we can assume ajn)E4; all j, all n. Let 4 denote a closed
disk in E2_, containing the point of E., over — G, 4 lying over
Ay < 2] < @ymes. I em >0 is given, there exists a k such that «% is defined
on Wyy — Dy — 4 — UKJ and such that |uf — #m-,| <eé&n at the points in
the joining of E}_, ajnd Ei_, over |z] =7+ ¥w(m = Gimss) union the points of
the frontier of 4U( .U K;. We will show that if e, is taken sufficiently small
and k is chosen as ];i)ove, then #f(= u,) on UL — Di(= A, — D,) satisfies the
conditions of Theorem 2. Henceforth, write u} = #,, UL = A, and DE = D,.
We assume, in particular, that

(3) 0<em<-ﬁi;

(4)  An-ylog@yn + Bp-i + *lggL' + en < An-1log@umey + By — J—Of’; 5

(6)  Am-y logmss + Bu-y + ngglf < Aun-1log@mis + Bnoy — *qu’; — Em.
Since Amp-, >—;}Z~ and inf a,/a,., = », the conditions in (4) and (5) can be met.
Further restrictions on ¢, will be imposed later.

By the maximum principle, we have |#n — #n-,| < e, in the joining of
E\_, and E%_, over |z2| =7, Let h, denote the unique bounded harmonic
function defined in the joining of E}., and E?_, over [z| > 7, with boundary
values u, — An-y log#m — Buey — Hu-;.  Note that |k,] <&, and that %, has
a limit at the ideal boundary of %A, since .-, has harmonic dimension
one (cf. [1]). Thus we can write %, = fn + b. where b, is constant, |b,|<em,
fn is harmonic, |fx| <2, and f, tends to 0 at the ideal boundary of °,_,.
The function

Mm(P) - Am—] 10g7’m - (Bm-1 -+ bm) - (]{m—l(p> + fm(fp))

is positive harmonic and tends to 0 at the points in the joining of E}_, and
E%_, over |z] =7m and hence is a multiple of log|c(p)/rnl where ¢ is the
natural projection map. We have
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Un(p) = Amloglc(p)] — (An — An-y) logrm + (Ba-y + bn) + (Huoi(D) + (D))
= Anloglc(p)| + Bn + Hu(p), where

(6) Bn= — (An— An_y) log¥n + (Bu_; + bn) and
Hy = Hui(p) + fr(®), (D) > 7me

Since |#n — tm-,] < & in the joining of EL_, and E.., over |[z] =r-rn we

have

I(Am - Am—l) 10g7’ + bm + fml < énm
or
(7) [(Am - Am—-l) IOgrl < 2&n.

Moreover, if F,, denotes the function defined on [z]| > 7, as the sum of the

two determinations of f., then F, is harmonic, |F,| < 4&, and lim F, = 0.

Z—00

It follows by Lemma 2 that

| Fn(2)] <l7‘818% for [z] > 7m.

However, by Lemma 1, the two determinations of f, agree in the joining
of Ei_, and EA., over [@u, Gimss), #=m + 1. Thus

| Fnl2)] < ij"{";— for 2€[aum, Qs n=m+ 1.

It now follows directly that if &, >0 is chosen sufficiently small, then u.,,
An and H, satisfy condition I of Theorem 2.
It remains to establish condition Il for u,. Thus, let s be such that

0<s<Am10grm+Bm+£4gL.

Case 1. 0<s<<An-qilogmss + Bp-y — _l%lgr_ .

Case 2.
Am"l log@m+1 + Bm-l - iQLLgL =s= Am—l log@m+y + Bm~1 + *E)fl’— .
Case 3.

Am’—l 10ga4m+2 + Bm-‘l + "1£4gL <s< Am logrm + Bm + _lifr_ .
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Note by condition I that, if &, is sufficiently small, then #n-, > An-,
log@mey + By — alfoL + &, in the joining of El_, and E2., over |z]| = @umi.
Thus if s is in Case 1 and ¢, is sufficiently small, then {s—&, << ttn-, < s+&u}
is contained in UA,-; — Dn-, less the points in the joining of E}., and E2_;
over |z| == am+,;, a subset of U, — Dn_, which can also be considered as a
subset of A,,—D,. Moreover, for such s we have {u, = s}C{s—&n<Um-;<<S+&n}.
Thus, the facts given in conditions I and II for #«,., can be used to assure,
if &, is sufficiently small, that {um. = s}, s in Case 1, satisfies condition II.
We omit the details of the proof and turn to Case 3 which, as we shall see,

is similar to Case 1. If g, is sufficiently small, note that by condition I we

logr.
4

over |[z| = @y and note that by condition I, (6) and (7) we have

u,n_1>Amlogrm+Bm+~19fr—+ en in the joining of EL_., and E._, over

have #m.; < Am-, 10g@mss + Bm-y + - — &n in the joining of EL., and E}_,

2] = 7+ ¥m(< @msy). For sin Case 3, we have then that {s —en < ttm_; < s + €n}
lies in the joining of EL., and E._, over ., < |2| < @m:s; a subset of
U1 — Dn-; which can also be considered as a subset of U, — D, and which,
in addition, is a region satisfying condition II(b). Since

{ttm, = sYC{s — n < thm-y << s + &n}

for s in Case 3, it follows by the above that condition II is satisfied for
such s. We turn then to the more interesting Case 2. Note by (4) and (5)
that

(8) if s is in Case 2, then {u, = s} lies in the joining of E} and EZ over

A < 2| < @Qunyy union op.

Let A denote the set of points in the joining of E, and EZ over (¢um, @um:s),
and let ¢, = min ¢(AN {#un =s}), b, = max c(AN{u, = s}) where ¢ is the natural
projection map and s is in Case 2. Observe that

9) if peANnK; for some j, then by (2) and (3) we have

(D) = thmesla)| < -

10) if peA— CJKj, then by (3) we have
=0

[ thn(P) — tmer(p)] < 2 .
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Inequalities (9) and (10) together with (1) imply that the interval [a,b,]
intersects at most one 4;. It follows from this and (8) that, for s in Case
2, {um = s} is contained in a relatively compact subregion 2 of U — D, less
the points in the joining of E} and EZ over [z]| > am.; where 2 has genus
one and connectivity two. Thus, u. satisfies condition II. The proof of
Theorem 2 is complete.

BiBLiOGRAPHY

[ 1] M. Heins, Riemann surfaces of infinite genus, Ann. of Math., vol. 55 (1952), pp. 296-317.

[2] Z. Kuramochi, Evans’ theorem on abstract Riemann surfaces with null boundaries. I and II.,
Proc. Japan Acad. vol. 32 (1956), pp. 1-6 and 7-9.

[ 3] M. Nakai, On Evans potential, Proc. Japan Acad., vol. 38 (1962), pp. 624-629.

[4] E. Skeath, An extension of the Denjoy-Carleman-Ahifors theorem in subharmonic jform, Trans.
Amer. Math. Soc., vol. 119 (1965), pp. 535-551.

Swarthmore College
Swarthmore, Pennsylvania

https://doi.org/10.1017/50027763000013775 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013775



