CERTAIN REPRESENTATION ALGEBRAS

S. B. CONLON
(received 5 May 1964)

Introduction

Let A be the set of inequivalent representations of a finite group ¥
over a field &#. A is made the basis of an algebra & over the complex
numbers ¥, called the representation algebra, in which multiplication corre-
sponds to the tensor product of representations and addition to direct sum.
Green [5] has shown that if char & 1 |9] (the non-modular case) or if ¥
is cyclic, then & is semi-simple, i.e. is a direct sum of copies of €. Here
we consider two modular, non-cyclic cases, viz. where & is¥ (= Z,x Z,) or
s, (alternating group) and & is of characteristic 2.

Finally we consider the analogous case where the multiplication is
changed to the ordinary ring tensor product over the group algebra & (¥%).

I would like to thank Dr. G. E. Wall for indicating these problems.

1. Representation algebras of groups

Let £ be an arbitrary commutative ring with a unity, and let % (%)
be the group algebra of a group ¥ over a field &. The representation algebra
H(P, F, 9)(= &) is defined as follows. It is the Z-module generated by
the set of all isomorphism classes {#} of F(%)-modules! #, subject to
the relations

(1) {#} = {(A}+{4"},

forall #, .#', #" such that # = .#'®.#"', and equipped with the bilinear
multiplication given by

(2) {AHMy = (MM

Here .# X .#' is the module obtained from the tensor (Kronecker) product 2
of the representations afforded by .#, .#’. By the Krull-Schmidt theorem

for #(%)-modules, & is free as a #-module and the & (%)-indecomposable
classes form a #-basis. & is a commutative, associative algebra over 2,

1 We consider only modules # of finite #-dimension.
% See page 69 of [3] for the definition of tensor product representation.
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and has identity element {#,}, i.e., the class containing the trivial #(%)-
module.

When & is taken to be the field € of complex numbers, & (¢, &, ¥) is
semi-simple in the non-modular case, or when ¥ is a cyclic group (Green
[5]). In these cases there are only a finite number of different indecomposable
classes and so & is a direct sum of copies of €. In general the structure of &/
is more complicated, but we may still hope for semi-simplicity.

Green in [5] is more precise. When & = €, we define a G-character of o
to be a non-zero algebra homomorphism ¢ : & — €. & is then G-semisimple
if, given any non-zero element A € &, there exists some G-character ¢ of &/
such that ¢(4) # 0. We may define the G-radical of &7 to be the intersection
N #, of all maximal ideals .#, of &, such that <//.#, ~ €. Then & is
G-semisimpe if and only if the @-radical = (0).

Let #* be an extension field of #. Each & (¥)-module .# gives rise to
a F*(%)-module A* = F*Q, .#. We have the following

ProrposITION 1.3 A ~ M’ if and only if M* ~ M'*.
The mapping {#} — {#*} gives rise to a natural homomorphism

3) A€, F,G) - o€, F*, 9).

From proposition 1 it follows that this is actually a monomorphism. In
view of this natural embedding we shall use {#} to denote either {4} or
{#*}; the interpretation will be clear from the context.

Let o2 be a subgroup of ¢, let & be a F (3¢ )-module, and let .# be a
F(¥)-module. #? will denote the induced & (¥%)-module

F(9) Qs Z,

while .#,, will denote the & (##)-module obtained by restriction of the
module multiplications to the subalgebra 4 (/) of #(¥).4

PROPOSITION 2.5 Z?X M ~ (FXM,)°.

Proposition 2 shows that the subspace spanned by all the (¥, 5#)-
projective modules® is an ideal of 7.

In particular, taking s# = {E}, the trivial subgroup of ¢, we have that
the (& (%)-)projective modules span an ideal 2 of &/, which we shall call the
projective ideal of .

PROPOSITION 3. The projective ideal D is semi-simple and finite dimen-
sional.

REMARK. In the non-modular case, 2 = & and the proposition reduces

3 See p. 200 of {3] for the proof.

4 For further explanations, see [3].

5 See, for instance, theorem 38.5 (ii), p. 268 of [3].

¢ See definition 63.1 (p. 427), and theorem 63.5 (p. 429) of [3].
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to Green's result. We shall therefore assume in the proof that & is of
characteristic p 5 0.

Proor. In proposition 1 take #* to be algebraically closed. Then the
restriction of the monomorphism (3) to &, embeds 2 in the projective ideal
D* of A (€, F*, 9). 1t will therefore be sufficient to consider & algebraical-
ly closed.

Let o7y, -+, A, be the p-regular conjugacy classes of ¢ and let
X, e, (v=1,---,7). Any F(%)-module class {#} then defines a Brauer
character y, which is completely determined by the values 7 of the y(X,) e €.
Write
B, can then be extended linearly over ¥ to give a map §, : & — €. This is
readily verified to be a ¥-algebra homomorphism and so 8, is a G-character
of &,

Consider now the restrictions y, of the 8, to 9. As & is algebraically
closed, the number of different indecomposable projective modules (i.e.
indecomposable summands of the regular module) is equal to the number of
p-regular conjugacy classes 8, i.e. 7. Let {#,}, - - -, {#,} be these different
classes. The {#,} are a basis of 2. We prove that 2 is semisimple by showing
that [, ker y, = (0). Now this last is so if and only if the matrix (y,(#,))
is non-singular. But this matrix is precisely the matrix H on p. 599 of [3],
and is non-singular as the Cartan matrix C is non-singular.

CoRrOLLARY 4. If F is algebraically closed, D is isomorphic to the direct
sum of v copies of €.
COROLLARY 5. Z s an ideal direct summand of .

Proor. This follows directly from the fact that &/, 2 have unit
elements.

2. Representations of 7", over a field characteristic 2

All representations of the group ¥ (= Z,X Z,) over a field & of
characteristic 2 have been essentially determined by two authors [1], [6].
Let 77, have generators X, Y satisfying X2 = Y? = E, XY = YX, with E
the identity element. In the group algebra & (¥7,) write

P=X+E, Q=Y+E.
Then P* = Q? =0, PQ = QP and
F(Vy) ~ FIP,Ql(P%, Q) = £, say,

7 See pages 588, 589 of [3] for the definition of Brauer characters, etc.
8 See page 591 of [3].
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where (P2, ?) denotes the ideal generated by P?, Q2 in the polynomial ring
FP, Q]

The following discussion of indecomposable #-modules is independent
of the characteristic of &.

Let A — A(4) (4 € #) be a representation of #, where the matrices
A(4) have coefficients in % . One indecomposable such representation is the
regular representation whose #Z-module class we denote by D. The under-
lying #-module is both Z-projective and %-injective and so is a direct sum-
mand of any module in which it occurs as a submodule. The remaining
indecomposable representations all satisfy the condition

APIA(Q) = o.

As (A(P))*= (4(Q))*=0 in any case, by suitable choice of basis, 1(P),
A(Q) can be written in the form

AP =] .o AQ =L o

and so it is sufficient in describing an indecomposable representation to
give P, Q. The following cases 4,, B,, C,(n), C,(c0) arise.

(n+1) (n+1)
Ap: P=|1 0 , Q=0 '
.... 0 .I.. 0
o.o. (n) ..0. (n)
0 ..'. o ....
.1.0 .o.l
(n) {n)
Bn: P=11 , Q= o
o . .
Lo (n+1) .. (n+1)
l..l ...0
.o .'
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Both A,, B, can be interpreted as the class of the trivial R-module.

Let w = T™—ut,,_,T™1— - -

- —14, be an irreducible polynomial in the

indeterminate T over &, with degree & = m. Thus we define

Cp(n):

n blocks _ n blocks
, Q=M
] 0 . .
. n . . 0
. blocks o o n
0 °. . . blocks
l . .
O * - * .
N M
(m) (m)
,N= ,M=1 0 1
V..o
(m, 0 (m) : ‘ . * . (m)
(.)o e s v e : O. 1
! Ug Uy
(n) ) (n)
. t Q = .
. 0 . [o]
. . . . (n) L] . (n)
o . . L o - .

As a convention we shall say that the degree of oo is 1.

Here A,, B,, C.(x), D denote the module classes associated with the
respective representations. With the above convention on deg(oo), # can be
considered to range through all irreducible polynomials over %, together
with 0. @ for C,(n) (m # o) is an indecomposable Jordan block, with
invariant factorsz®, 1, 1, - - -, Indeed, once the 4,,, B,, D have been removed
in the break-up of a given module into indecomposables, the decomposition
of the remainder can be determined by elementary divisor techniques,

suitable allowance being made for C,(o0) °.

If #* is the algebraic closure of %, the representation afforded by

¢ See § 5 of chapter II of [4].
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the class C,, (=) may break up further over #*. Say & has characteristic p;
let the degree of inseparability of & be ¢, and let the reduced degree of = be
s, i.e. m == sp?; let a, - - -, a, be the different roots of # in #*. Then

@) _— LII (T—ag)”.
The invariant factors for @ in F* are
IIT—a)", 1,1,
and @ splits up into s different blocks each of size # - p*. We write
©) Cult) =g 3. Co. (T —22),

implying that we are considering #*(¥ ,)-module classes.

3. Tensor (Kronecker) products of the % (¥ ,)-module classes

Methods for calculating the tensor products of the & (¥",)-indecompos-
able modules have been given by Basev in [1] when the field & is algebraical-
ly closed of characteristic 2. The author has found that BaSev’s results are
correct except for the following case. Let ae #, ¢ 20,1 (or ). Then

we have
(6) C1(T+a)Cy(T+a) = Co(T+a),
(7 Co(T+a)C,o(T+a) = n(n—1)D+2C,(T+a) (n>1).

Our results can be extended to the case where & is not algebraically
closed by using proposition 1. Let #* be the algebraic closure of &#. Con-
sider, for instance, C,(x)C,(n) (# > 1), where n is given by (4) with = 2.

Cal)Colm) =4¢ 2 Cp.gt(THa,)Co (T +ay) (by 8),

a, =1

=g Z Cr.at (T+aa)cn ot (T+a.)
a=1

+ ZﬁC,, .9t (T—{—aa)C,l .ot (T—J[—ap)
as
But

@) Co.gt(T+2)Cr . gt(T+a5) = 4o (- 2%)(n - 24)D (@ % B),

and so
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Calw)Calm) =5u 3 [+ 2(n - 2~ 1)D+2C, (T +4,)]
S 12D (by (7), (),
=g, w(nm—1)D+2C (7),
where m = deg #. Thus by proposition 1 we have
Colw)Caln) = mm(wm—1)D-+2C, (x),

this being an equation in & (¥ ,)-module classes,
 Let =, denote either T, T+ 1, oo or any inseparable irreducible polyno-
mial over &, let m, denote any other irreducible polynomial; let = denote
the general irreducible polynomial of type 7, or =,.
The results are summarised in the following multiplication table.

n<n Ag By, Cn(n), degn=m D
Ay wn’D-4 Anyn n(n’4-1)D+An'—y nn'mD+Cu(n) (2n'4-1)D
By nw(n'+1)D+Bn'—n #n' D+ Bpyg’ nn'mD+-Cy(n) (2#’+4-1)D

Cnr(n') nwn'm’D+Co(n’) nn'm’ D+ Cn(n’) nmn'm’D, if n£n’ 2n'm’D

deg n’ = m’

nm{n'm—1) D+ 2Cn(n),
if 7 =n’, except that
Ci1(m2)C1(mz) = Ca(mz)

D (2rn+1)D (2n+1)D 2umD 4D

4. The representation algebra for ¥,

We shall now look at &7 (#, #,7",) = &, where & has characteristic 2.
We require that & should contain a subring isomorphic to Z[2-%].

Ay = B, is the identity I of &. Further Ip = 1D is an idempotent.
Thus Ip generates the projective ideal which is an ideal direct summand
with complement generated by I—Ip. Write

2n+-1

4d, =A4,I-Ip)=A,— D,
2 1
B, =B,(I—Ip)=B,—Tp
Cal) = Calm)I—1p) = Colw)— 27 D,
where deg # = m,. The multiplication table in the ideal (I —Ip) is then as

follows:
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n=w Aa Ba Cn ()

An Anyn Anren Cn (m)

Bn' Bn’.—n Bn+n' én(ﬂ)

(9)

Cur{n') Onr() O (') 0, i nAw.
2Cn (), if 7 =7/,
except that
C1(m2)C1{mz) = Calma).

Let X = A,. Then X is invertible and

A,n=0
X“= n» = Y,
B, ,n<o,

with X"X™ == X"+ for all integers », m.
Clearly
XﬂC_n’(n) = Cn‘(n)!

for all #, =, and »' > 0. Put

L. = % 1(71),

I 2 = 3(Colm) —Co (1)) (n>1),
I1,n, = i‘(cz(nz)——\/2cl(n2)),

12 1y i’( 2(n2)+\/261(n2)),

Iﬂ , Mg = 2(67:(7"2) Cﬂ—l(n2)) (n > 2)-

The I, , are mutually orthogonal idempotents. Hence &/ can be written
1
A~ (3’ [X, )_(] +{ @91,,,,,}) ® 2Ip,

where X", , =1, , (all integers m) and where {®,, %I, .} is the direct
sum of ideals isomorphic to £.

The structure of .o is somewhat more complicated if 2 merely contains
a subring isomorphic to Z[}], or if # = Z. It can be proved that & is semi-
simple in the Jacobson sense if & is a Jacobson ring (Noetherian ring in
which every prime ideal is the intersection of maximal ideals), though the
quotients o//.# (.# a maximal ideal) may be very varied in nature.

THEOREM. (¥, F,7 ) ts G-semisimple.

ProoOF. €[X, 1/X] is a principal ideal domain and the maximal ideals
have the form (X —a), a € %, a + 0. Clearly ¥[X, 1/X] is G-semisimple and
so the G-radical of & is contained in
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{@¥I,,} &4,
Write ’
M p = (I—Ip),
Jn,ﬂ = (I—'In,ﬂ)'

Then /| #p, of|M, , are isomorphic to € and
Mpn (N Myqa)o ({DCI, .} ®€lp) = (0),

and so &7 is G-semisimple.

Thus there exists a set of G-characters ¢, on &/. We may think of a set
of coordinates {¢,(.#)} of a F(¥",)-module class {#}, which completely
determine {#} and which are compatible with direct sum and tensor
product of modules.

5. Representations of 2/, over a field % of characteristic 2

We regard o, (alternating group of 4 symbols) as being an extension
of "4 by a cyclic group of order 3. Thus we take generators W, X, Y satisfying

W3=X2=Y2=E, XY =YX,
W2XWt=W1lYW = XY,

where E is the identity element. ¥7, is the subgroup generated by X, Y.
Let # be an algebraically closed field of characteristic 2. By Higman's
theorem 1 in [7], every indecomposable & (s7,)-module is a direct summand
of the &F(o,)-module induced from an indecomposable & (¥ ,)-module.
We now look at such induced & («/,)-modules.
A F (¥ ,)-module £ (and the corresponding representation of #(¥",))
will be called stable in 7, if the & (¥",)-submodule

W®gyyZ of (L7,

is isomorphic to .#. We now find which indecomposable & (¥",)-modules
are stable in 27,.
Let
g - AG), G—IiG) (GeF (V)

be the representations afforded by the & (¥7,)-modules & and W ® &
respectively. Choosing bases appropriately, we can write

i(G) = A(W-IGW) (Ge F (V).
It P=X+E Q= Y+E, it is readily seen that
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A(P) = 4(Q)

Q) = A(P)+A(Q)+A(PQ),
and % is stable in &, if and only if the pair ((P), A(Q)) is similar to
(A(P), 4(Q)).

Now A(P)A(Q) = A(P)A(Q). For the representation afforded by the
class D we have 1(P)A(Q) # 0, and so 2(P)A(Q) # 0 and D is stable in &,.
If # is any module in the classes 4,, B,, C,(x), then so is W ® &, as
A(P)A(Q) = A(PQ) remains 0. In this latter case we must compare the pair
(2(Q), A(P)+A(Q)) with (A(P), A(Q)) under similarity, or, using the notation
of § 2, the pair (¢, P+@) with (P, @) under independent non-singular trans-
formations on both sides. This can be done using the invariants in § 5 of
chapter IT of [4]). Thus it can be shown that 4,, B, are stable in ;.
As & is algebraically closed, # (irreducible) has the form T-a, for 4 € #,
or o0. We write C,(a) for C,(n), where a ¢ F u {0}. By elementary divisors
(as mentioned in § 2 for @), we see that

(W Z}=C,(0)),
where & is in the class of C,(a), and where
1
B(a) = %
a
with the obvious interpretation when & = co or 0. Note that 6%(a) = a.
Thus C,(a) is stable if and only if
6(a) = a,

»

ie.
a’4-a+1 =0,

or a is a primitive cube root @ of unity in &. 6is a permutation on & u {o}.
We denote the typical class of transitivity by u = {a, 6(a), 6%(a)}. However
there are two additional classes, {w} and {w?}.

To obtain the indecomposable & (#7,)-modules we look at £+, where
& is an indecomposable # (¥,)-module. If & is not stable in &,, then
£ is indecomposable by the theorem in § 2 of [2]. Thus we obtain in-
decomposable & (&7,)-modules C}¥(u) such that

(C2(1))y, = Cal@)+C,(6(a))+C,(6%(a)).

If Z is stable in &/,, then £ splits up into 3 indecomposable, non-iso-
morphic & (&,)-modules #* (all superscripts will be considered to be in-
tegers modulo 3}, such that (#%), ~ %, asin proposition 3 of [2]. Thus we
obtain classes

(10) A3, A3,B2, C3(0), Ca(w?), D* (n > 0).
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In particular AZ may be taken to be the class corresponding to the 1-dimen-
sional representation
W — w® (x=0,1,2),
XY 1

Then we can suppose that A X {F*#} = {£*+£}. As the £~ are extensions of
&, in the corresponding representations it is only necessary to assign a
matrix A(W), to extend the matrix representations as detailed in § 2. If
A(W) is assigned to the representation afforded by £°, then the correspond-
ing matrix for #% is w*A(W). The author has constructed suitable matrices
A(W) corresponding to classes 4,, B,, D (all » > 0), but not for C,(w),
C,(w?) in general. However for C}(w) we take

Z(W)=_w 0],

| 0 w2

and for Cj(w) we take

w?

AW) =

0 w? 1

For C%(w?), C?(w?) we replace w by ? in these matrices. For A} we take
1 | ]

AW) = o0 1

1 1

It should be noted that in general we still have not chosen which of the
3 extensions £= of .# will be called #°. This choice will be exercised in the
next section.

6. The representation algebra for <7,

To obtain the structure of & (¥, #, o,), where & is algebraically
closed of characteristic 2, it is not necessary to find explicitly all tensor
(Kronecker) products. By proposition 3 and its corollaries it will only be
necessary to obtain the products of the & (,)-modules modulo the projec-
tive ideal 2 = (D°, D?, D?), and all equations in this section will be taken
to be modulo 9. Further by restricting the ring multiplications to & (77,)
and considering the corresponding products of the & (¥",)-modules, we see
that the multiplication table (9) must be valid on removing the super-
scripts a.
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Now
C () = (Cal@))s

when ¢ # o, »? and p = {a, 6(a), 6%(a)}, and so, using proposition 2, we
quickly obtain all products involving C%(x). Thus

ALCHu) = Ci k), BLC(u) = CI(n),

0, if ptu,
CH(u)CE (W) = { : ,
W)= ac ), i 5= i,

(11)

except that
CHp)CE(u) = CF(u) for all p= {1,0, o).

C¥(1,0,00)CE(Q1, 0, o) = 2CF (1, 0, ).

Also

We now choose A3(n > 1), Bi(n > 0;) to satisfy
A5 = (49)", AYBY =43, B)= (B)"

Thus we have

A° if n=m
AS B = m? =
nom {B?,,_,,, if n << m, etc.
A direct calculation shows that
(12i) G (@)Y (w) = CH(0),
(12ii) CY(0)Ch (w) = 2C(w).

As yet C*(w) (n > 2) have not been specified. Say
G (@)C(w) = CL(w)+C] (o).
Then # =  or not. Choose C3(w) so that one of the following relations is true
(13i) [ 2C}(w), or
(13ii) ~ | Clw)+Ci ).

If #n(> 1) is such that (13i) is true then for » = m = 1, the associativity
of multiplication implies that

Cl(w)Ca(w)

(14i) Co(@)Ch(w) = 2C; (@),
while if (13ii) is true, then
(14ii) Cr(@)Ca(w) = Cp (@) +Cr (o).

Again a direct calculation shows that

43¢ (w) = Ci(w).
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By associativity of multiplication we prove in succession that

A1Co(0) = Ca(w),
(15) 47,Co (o) = CT (o),
B, Ca(w) = C;"(w)

(superscripts are modulo 3).

Similarly
A7C(0?) = Ci(w?),
and so
0 0 2} — 2m (9
9) (4356 = Crrat
B C(w?) = C,2™(w?).

We now look at the structure of & = (¥, ¥, ;). The projective
ideal 2 is isomorphic to € ® € ® €. The complement to @ in & isisomorphic
to # = A2, and so to find # we continue as above modulo 2.

A3 is the identity element of #. Let  be a primitive cube root of unity
in ¢, and write

Jp = 343+ A3+ A7) (=0,1,2).
Then
Ag = ]o+]1+]2,

and the J, are mutually orthogonal idempotents.

Write
(17) { Ang=A%]s, Ba.y=BpJ,s
Crp(@) = Ch(w)Js, Cpp(@?) = Ch(w?)]s-
Then
AnJs=u"t4,,, etc.
and
0, if as B,
ApgAmg =
natimp {A(M,,,,, if «=p, etc.
Further
Calw), if p=0
18 * — n ’ ’
(1) crwr={ " L 520

Finally the elements (17) and C¥(u) together form a basis of # over ¥.
We now look at the 3 ideal direct summands of & generated by the J,.
Set Yy = Ay, 1/Ys = B,y; then Y3 = 4, etc., and the subalgebra of # ],
generated by 4,;, B,; may be written €[Y}, 1/Y,], Y, being regarded as an
indeterminate over . From (15) and (16)
Y7 Cop(w) = u™mC p(w),
Y3Cop(w?) = wmCop(0?),
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for m any integer, and
Cnﬂ(w)cn’ﬂ(wz) =0,
for all positive n, »'. From (12i), (12ii), (14i),
Cip(@)Cip(w) = Cyp(w),
C1p(0)Cop(w) = 2C14(w)
Cop(0)Cap(w) = 2Cy(w).
As in § 4, set
I5(@) = $(Capl@)+v2 Cyp(w))
Ipy(w) = %(Czp(w)—\/‘? Cip(®)),
and these are mutually orthogonal idempotents. For » > 2, if we have the
situation of (13i), then
Crp(@)Crp(@) = 2C,4(w),
and we write ~
Cnﬂ(w) = %Cnﬁ(w)
In case (13ii), we have
Crp(@)Crp(w) = (WP +u=2#)C,4(w),
and we write

Coplw) = C,p(w).

u Py
Then the C,4(w) are idempotents. To obtain orthogonal idempotents we put
Iyp = Cyp(w) —I1p(0) —I34(w),

I'nﬂ(w) == Cnﬂ(w)_c(n-—l)ﬁ<w)'

Then all the I,,(w) are mutually orthogonal idempotents. I, ;(w?) are simi-
larly defined. From (11), (18), we can proceed asin § 4 and I,o(u) are defined.
Hence &/ has the following structure.

(v [ s, ons)

¢=w, 0% p

o(9,[¢[v ] +{ o @)
o ovou, o

and for n > 3

where
Y3 I, (%) = w2 "], 4(0%),

Yolno(p) = Ino(p);
the last term is the projective ideal 2.
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As in § 4 this is G-semisimple. As far as G-semisimplicity is concerned
we may now drop the restriction that & is algebraically closed. For, if not,
let #* be the algebraic closure of &#. Then, by (3), & (¥, F, ;) can be
regarded as embedded in o/ (%, F*, &,). Thus the restriction of the G-
characters to the subalgebra will ensure the G-semisimplicity of &7 (%, &, &/,).

THEOREM. (€, F, ,) is G-semisimple for all fields F of characteris-
tic 2.

7. Ring-tensor-product representation algebras

Given a commutative ring # and two Z-modules .#, .#’ then the tensor
product
MRy M

can also be defined to be an #-module. This product is then commutative,
associative and distributes over direct sum @. If we now take the set of
Z-modules which satisfy the ascending and descending chain conditions,
this set is closed under @, ® and the Krull-Schmidt theorem is applicable.
If & is any commutative ring with an identity element, then, as in § 1,
we can define the representation algebra &/ (2, Z) to be the free #-module
generated by the set of all #-indecomposable isomorphic classes {4},
equipped this time with the multiplication

MMM} = (M @y M'}.

If # is a Dedekind domain, then the indecomposable #Z-modules of
finite length have the form

2|2z,
where 9, is any non-zero prime ideal of #. Further it is readily seen that
n m_ | (0), if a«a#p,
#12: Da A2} = 2|25 ™™, it a=f.
Write then
Ial = {%/-Qa})
Ian = {g/-g:}_{'%/g:_l} (” > 1)'
Then

AP, R = & PI,,.
a,nz1
This algebra does not have an identity.

Another case which can readily be deduced from the above is that of
the quotient of the Dedekind domain & by an ideal J = 123+, where
only a finite number of #, are strictly positive (#, > 0). Then the indecom-
posable #/.#-modules of finite length have the form
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R|9T=, wmy=1,++mn,, when n,=1.
Again e
AP, %I = & ( @19’1‘,,,,,).
This algebra has finite rank over £ and has an identity.

We now take Z = F [P, Q]/(P?, 02), asin § 2 (¥ of arbitrary charac-
teristic). We assume for simplicity that & is algebraically closed. Then the
different classes are 4,, B,, C,(a), D, where a e # u {w0}.

The multiplication table under ®, is as follows.

n=m |An Bna Cnla) D
Ap (n+1)(m+1)A4p m+2)(n—1)Ao+Am—nt1 | (n+1}ndo Am
B m(n+1)4o
(m > n)
(n—1)(m—1)do+Bmin-1 | n(m—1)404+Cn(a) | Bm
(n+2)(n—1)do+4,
(m = =)
#(m—1)40+Cn(a)
(@ =a’)
Cm(a’) | (n+1)mdo m(n—1)A49+Cm(a’) —————— | Cu{&)
nmAg(a #~ a’)
D An By Cnia) D

D is the identity element in & = &/ (%, #). A,, B, are obvious idem-
potents and
D = Ay+[B,—A4,]+[D—B,]
is a splitting of the identity into mutually orthogonal idempotents. The
elements 4,, D— B, generate ideal direct summands each isomorphic to %.
Write i, = (Bi—Ay)4,,
‘Bn = (By—4,)B,,
Co(a) = (B;—4,)C,(a).
Then the multiplication table in the ideal (B,—A4,) generated by B,—A4, is

as follows.
n=m| An ] By Cnla)
A-m 0 Am—n+1 0
0 (n > m)
B, _ Bpina Cnla)
A1 (m=n)

Cula) (a=a’)

Om(@)| © Cola’) —_—
0 (a 5~ a’)
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Place T = B,. Then B,,, = T" Place I,, = C,(a), I,, = C,(a)—
Ca-1(@) (n > 1). Then the ideal generated by the {C,(a)} is @g ns0% sq-
The subalgebra generated by the {B,} may be written €[T], where the
identity element is B;. Write U, = A,,. Then the structure of the ideal
(B;—4,) may be written

CT)+(®%U,)+( ® €L.),

n>0 a,n>0
where

UﬂIma = 0: UnUm - 0:
TUm+1 = Um: TIma = Ima:

and the I,,, are mutually orthogonal idempotents.

The Jacobson radical of this algebra is nonzero as it contains U, (U2 = 0).
Hence, a fortiori, &/ (%, #) is not G-semisimple. When the characteristic of
& is 2, we get a direct comparison between the two kinds of representation
algebras that can be formed from % (¥",)-modules.
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