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Introduction 

Let A be the set of inequivalent representations of a finite group & 
over a field # \ A is made the basis of an algebra si over the complex 
numbers <€, called the representation algebra, in which multiplication corre­
sponds to the tensor product of representations and addition to direct sum. 
Green [5] has shown that if char !F \ \S\ (the non-modular case) or if ^ 
is cyclic, then si is semi-simple, i.e. is a direct sum of copies of *£. Here 
we consider two modular, non-cyclic cases, viz. where ^ isT^՝4(= Z 2 X Z2) or 
sft (alternating group) and is of characteristic 2. 

Finally we consider the analogous case where the multiplication is 
changed to the ordinary ring tensor product over the group algebra J r ( ^ ) . 

I would like to thank Dr. G. E. Wall for indicating these problems. 

1. Representation algebras of groups 

Let 8P be an arbitrary commutative ring with a unity, and let !F(f§) 
be the group algebra of a group <& over a field # \ The representation algebra s/(g*, <3) ( = s/) is defined as follows. It is the ^"-module generated by 
the set of all isomorphism classes {JK} of ^"(^)-modules 1 JH, subject to 
the relations 

(1) {Jt} = { u f ' } + { u f " } , 

for all J(, Jt', JK" such that J( = Jt' and equipped with the bilinear 
multiplication given by 

(2) {֊*}{֊*'} = {JlxJC}. 
Here x is the module obtained from the tensor (Kronecker) product 2 

of the representations afforded by Jl, '. By the Krull-Schmidt theorem 
for ^(0)-modules, sf is free as a ^-module and the ^(^-indecomposable 
classes form a ^-basis. s/ is a commutative, associative algebra over 

1 We consider only modules Jt of finite ^"-dimension. 

' See page 69 of [3] for the definition of tensor product representation. 
83 
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84 S. B. Conlon [2] 

and has identity element { F 9 } , i.e., the class containing the trivial ¿F{&)-

module. 
When 0> is taken to be the field of complex numbers, séi^S, !F, 9) is 

semi-simple in the non-modular case, or when ^ is a cyclic group (Green 
[5]). In these cases there are only a finite number of different indecomposable 
classes and so sé is a direct sum of copies of . In general the structure of sé 
is more complicated, but we may still hope for semi-simphcity. 

Green in [5] is more precise. When 0 = c€, we define a G-character of sé 
to be a non-zero algebra homomorphism <f> : sé - > c€. sé is then G-semisimple 
if, given any non-zero element A ese, there exists some G-character <f>oísé 

such that <¡>(A) 9¿ 0. We may define the G-radical of sé to be the intersection 
n J(a of all maximal ideals Jta of sé, such that sé\J(a «a 'tí. Then sé is 
G-semisimpe if and only if the ^-radical = (0). 

Let IF* be an extension field of IF. Each ^"(^)-module J( gives rise to 
a J ^ ^ - m o d u l e J ( * = J ^ * ® ^ ^ . We have the following 

P r o p o s i t i o n l . 3
 J( fa Jl' if and only if J¿* « Jl'*. 

The mapping { J l } ֊> { J l * } gives rise to a natural homomorphism 

(3) sé(&, y , 9) -> sé{<#, 9). 

From proposition 1 it follows that this is actually a monomorphism. In 
view of this natural embedding we shall use { J l } to denote either {Jl} or 
{Jl*}; the interpretation will be clear from the context. 

Let 2tif be a subgroup of IS, let JSf be a IF^Stf )-module, and let Jl be a 
J ^ ) - m o d u l e . <e* will denote the induced J*՝՝(̂ )-module 

<2W> ^ . 
while will denote the ^"(Jf)-module obtained by restriction of the 
module multiplications to the subalgebra J r ( ^ f ) of ^ " ( ^ ) . 4 

P r o p o s i t i o n 2 . 6 &*xJt s» {aCxJl^)9. 

Proposition 2 shows that the subspace spanned by all the (S?, ^ ) -
projective modules6 is an ideal of sé. 

In particular, taking J? = {E}, the trivial subgroup of 9, we have that 
the («^r(^)-)projective modules span an ideal 3) of sé, which we shall call the 
projective ideal of sé. 

P r o p o s i t i o n 3. The projective ideal 2i is semi-simple and finite dimen­
sional. 

R e m a r k . In the non-modular case, B = sé and the proposition reduces 

3 See p. 200 of [3] for the proof. 
1 For further explanations, see [3]. 
6 See, for instance, theorem 38.5 (ii), p. 268 of [3]. 
6 See definition 63.1 (p. 427), and theorem 63.5 (p. 429) of [3]. 
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[3] Certain representation algebras 85 

to Green's result. We shall therefore assume in the proof that J5" is of 
characteristic p ^ 0. 

PROOF. In proposition 1 take &՝* to be algebraically closed. Then the 
restriction of the monomorphism (3) to 2, embeds 2 in the projective ideal 
3L* of SI(#, ÍF*, @).LT will therefore be sufficient to consider !F algebraical­
ly closed. 

Let • • ·, Ctf r be the ^-regular conjugacy classes of '¡S and let 
X„ e X՝p (v = 1, · · ·, r). Any ^"(^J-module class {jt} then defines a Brauer 
character %, which is completely determined by the values 7 of the %(XV) e (€. 
Write 

P,W = X{X,). 
/?„ can then be extended linearly over <£ to give a map /?„: SÍ -> <S. This is 
readily verified to be a ^-algebra homomorphism and so /?„ is a G-character 
of SI. 

Consider now the restrictions yv of the /}„ to S>. As !F is algebraically 
closed, the number of different indecomposable projective modules (i.e. 
indecomposable summands of the regular module) is equal to the number of 
^-regular conjugacy classes8, i.e. r. Let {^x}, · · ·, {¿?r} be these different 
classes. The {¿P/I} are a basis of Si. We prove that Q¡ is semisimple by showing 
that |"|„ ker y„ = (0). Now this last is so if and only if the matrix 
is non-singular. But this matrix is precisely the matrix H on p. 599 of [3], 
and is non-singular as the Cartan matrix C is non-singular. 

COROLLARY 4. If & is algebraically closed, 3¡ is isomorphic to the direct 
sum of r copies of c£. 

COROLLARY 5. 3¡ is an ideal direct summand of SI. 

PROOF. This follows directly from the fact that SI, 2 have unit 
elements. 

2 . Representations of "T^ over a field characteristic 2 

All representations of the group IR

I(= Z2xZ2) over a field !F of 
characteristic 2 have been essentially determined by two authors [1], [6]. 
Let-T 4 have generators X, Y satisfying X2 = Y 2 = E, XY = YX, with E 
the identity element. In the group algebra ^R('FI) write 

P = X+E, Q = Y+E. 

Then P 2 = Q2 = 0, PQ = QP and 

&(rt) « &[P, Q]I(P\ Q2) = 31, say, 

' See pages 588, 589 of [3] for the definition of Brauer characters, etc. 
8 See page 591 of [3]. 
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86 S. B. Conlon 

where (P2, Q2) denotes the ideal generated by P 2 , Q2 in the polynomial ring 
&{P, (?]· 

The following discussion of indecomposable ^-modules is independent 
of the characteristic of «F՝. 

Let A ֊֊> X(A) (4 e J ) be a representation of 1%, where the matrices 
X(A) have coefficients in 3F. One indecomposable such representation is the 
regular representation whose ^-module class we denote by D. The under­
lying ^-module is both ^-projective and ^-injective and so is a direct sum-
mand of any module in which it occurs as a submodule. The remaining 
indecomposable representations all satisfy the condition 

X(P)X(Q) = 0. 

As (A(P) ) 2 = (X(Q))2 = 0 in any case, by suitable choice of basis, X(P), 
X(Q) can be written in the form 

A ( P ) = ,A(Q) = 

and so it is sufficient in describing an indecomposable representation to 
give P, Q. The following cases AN, BN, CN(N), C„(oo) arise. 

( n + l ) {n±H 
A N : P - 1 0 

• * 
• · 0 

• 
• 

• · 
(n) 

, Q = 0 1 
• · 

• · 
• · 

• 
• 

0 

• 
• · 

0 
• · • · • · 

1 0 

0 • · • • • · 
0 1 

(n ) 

f n ) ( n ) 

B „ : P Q = 
1 · 

( n + i ) 
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Both A0, B0 can be interpreted as the class of the trivial i?-module. 
Let 7i = Tm֊um_-LTm-x— • • • —u0 be an irreducible polynomial in the 

indeterminate T over J5", with degree n = m. Thus we define 

n blocks 

C „ ( » ) : P • 

where 

n blocks 

, Q M 
N * . 

• · 
0 

• · • • • 
0 » · 

* N*M 

n 
blocks 

Cn(») : P 

As a convention we shall say that the degree of oo is 1. 
Here A„, Bn, Cn(n), D denote the module classes associated with the 

respective representations. With the above convention on deg(oo), n can be 
considered to range through all irreducible polynomials over 9՜, together 
with oo. Q for Cn(n) (it # oo) is an indecomposable Jordan block, with 
invariant factors nn, 1,1,· · ·. Indeed, once the An, Bn, D have been removed 
in the break-up of a given module into indécomposables, the decomposition 
of the remainder can be determined by elementary divisor techniques, 
suitable allowance being made for C„(co) 9 . 

If 3F* is the algebraic closure of &, the representation afforded by 

» See § 5 of chapter II of [4]. 
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3 . Tensor (Kronecker) products of the J5֊(y /՝4)-rnodule classes 

Methods for calculating the tensor products of the J^^J- indecompos-
able modules have been given by Basev in [1] when the field 8 ? is algebraical­
ly closed of characteristic 2. The author has found that BaSev's results are 
correct except for the following case. Let a e / , «^¿0 ,1 (or oo). Then 
we have 

(6) C^T+a^T+a) = C2(T+a), 

(7) Cn(T+a)Cn(T+a) = n(n-l)D+2Cn{T+a) (n>l). 

Our results can be extended to the case where is not algebraically 
closed by using proposition 1. Let be the algebraic closure of Con­
sider, for instance, Cn(^)Cn(n) (» > 1), where n is given by (4) with f — 2. 

8 

Cn(a)C„{n) 2 Cn.2t(T+aa)Cn.st{T+afi) (by 5), 
a, 0=1 

a 

=** 2 Cn.2,{T+aa)Cn.2t(T+ax) 

+ 2Cn.2,(r+aa)Cn.2,(r+^). 
But 
(8) Cn.2,(T+aa)Cn.2t(T+afi) (« • 2')(» · 2*)D (a * /?), 
and so 

the class CM(jr) may break up further over !F*. Say !F has characteristic f; 
let the degree of ^separability of n be t, and let the reduced degree of n be 
s, i.e. m = sf։; let ax, · · ·, a։ be the different roots of n in J2"*. Then 

(4) n = jj {T-ay. 
o=l 

The invariant factors for Q in ^ * are 

mr֊«a)»\ 1,1,···, 
a 

and Q splits up into 5 different blocks each of size n ՛ pK We write 
s 

(5) Cn(n) —r, 2 C„.j,((r—aa), 

implying that we are considering &* (y/՝4)-module classes. 
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n ^ »' A„ Cn(n), degir = f» 

nn'D+An+n' «(« '+1)D-M» ' -B- «M'>njD-|-Cn(rt) (2w'+l)Z» 

Bn' «(«'+l)X)+BB'_„ nn'mD+Cn(n) (2»'+1)X> 

C„'(5l') 
deg 71՛ = »»' 

n»'«'D+C»'(5j') ««'«s'X>-)-Cn'(3i') nmn'm'D, i i n ^ n ' 

nm{n'm֊l)D+2C„(n), 
if n = 7t', except that 
C I ( J I 2 ) C I ( « 2 ) = C2(jt2) 

2»'»»'D 

D (2M + 1)D (2«+l)D 2«»iJ3 4D 

4. The representation algebra for IR

T 

We shall now look at ¿4(0, &', Y՝4) == S/, where J 2 7 has characteristic 2. 
We require that & should contain a subring isomorphic to Z[2~I], 

A0 = B0 is the identity I of SI. Further IP = \D is an idempotent. 
Thus Id generates the projective ideal which is an ideal direct summand 
with complement generated by I—Id- Write 

AN = AN{I-ID) = AN֊ D, 
4 

BN = BN{I-IB) = BN֊ ^ D, 

CH(») = C„(»)(/-7i , ) = C » ֊ 2?, 

where deg N = MN. The multiphcation table in the ideal {I—Id) is then as 
follows: 

C » C » 2 [n · 2«(n · 2 ' - l ) Z > + 2 C „ . 2 « ( r + a a ) ] 

4 - S(S-L)N*2*'D (by (7), (8)), 

=5R. NM(NM — L)D֊\-2CN(N), 

where M = deg jr. Thus by proposition 1 we have 

CNWCNI71) = NM(NM— 1)D+2C„(ti), 

this being an equation in ^R(IR

4)-module classes. 
Let NX denote either T, T-j-l, oo or any inseparable irreducible polyno­

mial over let 7 t 2 denote any other irreducible polynomial; let N denote 
the general irreducible polynomial of type NX or T J 2 . 

The results are summarised in the following multiplication table. 
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90 S. B. Conlon [8] 

An 

Bn j Cnfa) Ân'—n O N ( 7 1 ) 

Bn' B՝n'~n Èn-\-n' Cn(n) 

Cn'(N') On'{n') CV(TI') 0, if N Ï £ JI ' . Cn'(N') On'{n') CV(TI') 

2G\[(TI), if 31 = Jî', 

except that 

Ol(3l2)Cl(3I2) = CZ(7L2). 

Let X = À X . Then X is invertible and 

Ân, n ̂  0, 
JB„, M < 0, 

with = for all integers », m. 
Clearly 

X * C N , ( ? I ) = £ „ . ( * ) , 

for ail n, n, and M' > 0. Put 

- f i , » ! = l A W . 
A,,a = i(C2K)֊֊V2̂ iK)). ^,,, = i(c2K)+V2CxW), 

= |(c,w֊cn.,W) (« > 2). 
The In„ are mutually orthogonal idempotents. Hence SI can be written 

S I \ X , ֊ ] + { ® ^ i n j ) Q P I D , 

where XmIn։ft — In>„ (all integers OT) and where {©„,„^1^} is the direct 
sum of ideals isomorphic to 3P. 

The structure of SI is somewhat more complicated if 2P merely contains 
a subring isomorphic to Z[-|], or if = Z. It can be proved that SI is semi-
simple in the Jacobson sense if 0> is a Jacobson ring (Noetherian ring in 
which every prime ideal is the intersection of maximal ideals), though the 
quotients SI\J( (Jl a maximal ideal) may be very varied in nature. 

T H E O R E M . sii^,9r,ir^ is G-semisimfile. 

P R O O F . ^[X, 1/X] is a principal ideal domain and the maximal ideals 
have the form (X—a), a e f . a ^ O . Clearly ^[X, 1/X] is G-semisimple and 
so the G-radical of S I is contained in 
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Write 
JKD = (I-ID), 

Then S/JJ/D, S//J/N։„ are isomorphic to # and 

O/D n ( • .*„ . . ) n ({ © «·ƒ„.„} ® ̂ / f l ) = (0), 

and so ^ / is G-serrusimple. 
Thus there exists a set of G-characters <F>A on S/. We may think of a set 

of coordinates {<J>X(J/)} of a Jr(f/՝4)-module class {J/}, which completely 
determine {J/} and which are compatible with direct sum and tensor 
product of modules. 

5 . Representations of «J / 4 over a field J5" of characteristic 2 

We regard (alternating group of 4 symbols) as being an extension 
of y"4 by a cyclic group of order 3. Thus we take generators W, X, Y satisfying 

W3 = X2 = = E, XY = YX, 

W-*XW2 = W-TYW = XY, 

where E is the identity element. "TI is the subgroup generated by X, Y. 
Let !F be an algebraically closed field of characteristic 2. By Higman's 

theorem 1 in [7], every indecomposable ^"(j^4)-module is a direct summand 
of the ^(S/F) -module induced from an indecomposable #'(')^՝4)-module. 
We now look at such induced ^"(jj/4)-modules. 

A ^("T4)-module =2? (and the corresponding representation of S'^FS) 
will be called STABLE in S/T if the Jr(y/՝4)-submodule 

W®,LRJX of (J?«%T 

is isomorphic to We now find which indecomposable & ( y 4 ) -modules 
are stable in 

Let 
9 ֊> X(G), G->1(G) ( C 6 / ( f , ) ) 

be the representations afforded by the J r(f / ' 4 )-modules =Sf and W ® & 
respectively. Choosing bases appropriately, we can write 

1(G) = X(W֊՝GW) (G e - F C r j ) . 

If P = X+E Q = Y+E, it is readily seen that 
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Hp) = HQ) 
HQ) = x(P)+x(Q)+x(PQ), 

and «Sf is stable in s/t if and only if the pair (A"(P), A"(0)) is similar to 
(HP).HQ))-

Now Hp)HQ) = HP)HQ)- F o r t h e representation afforded by the 
class D we have X(P)X(Q) # 0, and so A(P)I((?) # 0 and D is stable in J / 4 . 
If ^ is any module in the classes A„, Bn, Cn(n), then so is W (g> 3s, as 
A(P)A(@) = A(P(?) remains 0. In this latter case we must compare the pair 
(X(Q), X(P)+X(Q)) with (X(P), X{Q)) under similarity, or, using the notation 
of § 2, the pair (Q, P+Q) with (P, Q) under independent non-singular trans­
formations on both sides. This can be done using the invariants in § 5 of 
chapter II of [4]. Thus it can be shown that An, B„ are stable in J / 4 . 
As 9՝ is algebraically closed, n (irreducible) has the form T+a, for « e ^ , 
or oo. We write Cn(a) for Cn(n), where « G / U {oo}. By elementary divisors 
(as mentioned in § 2 for Q), we see that 

{W®J§?} = Cn(0(«)), 

where =Sf is in the class of Cn(a), and where 

with the obvious interpretation when a = oo or 0. Note that Q3(a) = a. 
Thus Cn(a) is stable if and only if 

0(a) = a, 
i.e. 

a2-f-a-f-l = 0, 

or a is a primitive cube root co of unity in 8F. 6 is a permutation on J*" u {oo}. 
We denote the typical class of transitivity by /i = {a, 0(a), 62(a)}. However 
there are two additional classes, {co} and {co2}. 

To obtain the indecomposable #"(«s/4)-modules we look at where 
3? is an indecomposable ^ ( ^ J - m o d u l e . If =£? is not stable in s/t, then 
jSf« is indecomposable by the theorem in § 2 of [2]. Thus we obtain in­
decomposable #"(j^4)-modules C*(ju) such that 

(C։Wht = Cn(a)+Cn(d(a))+Cn(d2(a)). 

If J ? is stable in then J ? * 1 splits up into 3 indecomposable, non-iso-
morphic 1F(S4 i)-modules £CA (all superscripts will be considered to be in­
tegers modulo 3), such that ( ^ a ) ^ 4 ^* S6', as in proposition 3 of [2]. Thus we 
obtain classes 

(10) A"0,A"n,B"n,C*n(co),C:(w2),D- (n > 0). 
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In particular may be taken to be the class corresponding to the 1-dimen-
sional representation 

W ֊> co' (a = 0, 1, 2), 
X, Y ֊> 1. 

Then we can suppose that Al X = {SC'+P}. As the jS?a are extensions of 
in the corresponding representations it is only necessary to assign a 

matrix X(W), to extend the matrix representations as detailed in § 2. If 
X(W) is assigned to the representation afforded by JS?°, then the correspond­
ing matrix for Ji?a is to'X(W). The author has constructed suitable matrices 
A(W) corresponding to classes An, Bn, D (all n > 0), but not for Cn(co), 
C„(o>2) in general. However for Cj(co) we take 

k{W) = co 0 
0 co2 

and for C\(co) we take 

1 -l 
0 

CO2 

0 CO 0 
co2 1. 

A(W) 

For Cl(co2), Cl(a>2) we replace co by co2 in these matrices. For A\ we take 

1 
1—

1 o • 

A 0 1 
u 1 1. 

It should be noted that in general we still have not chosen which of the 
3 extensions 2" of Se will be called JS?°. This choice will be exercised in the 
next section. 

6 . The representation algebra for j / 4 

To obtain the structure of &', «s/4), where F is algebraically 
closed of characteristic 2, it is not necessary to find explicitly all tensor 
(Kronecker) products. By proposition 3 and its corollaries it will only be 
necessary to obtain the products of the ^"(j?/4)-modules modulo the projec­
tive ideal 2 — (P°, D1, D2), and all equations in this section will be taken 
to be modulo 2. Further by restricting the ring multiplications to tF("T4) 
and considering the corresponding products of the ^r(')^"4)-modules, we see 
that the multiplication table (9) must be valid on removing the super­
scripts a. 
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A direct calculation shows that 

(12i) C^CKco) = Cl(co), 

(12u) C?(«»)C; (CB) = 2C?(O>). 

As yet C(co) (n > 2) have not been specified. Say 

Cl(co)C*n(o>) = C{(co)+Cin. 

Then f) — y or not. Choose C„(co) so that one of the following relations is true 

(13i) r 0 , . r 0 , f2C?(»), or 
( 1 3 I I )

 C

1 H C „ ( A > ) = J C , W + C 2 I ( A ) ) 

If n{> 1) is such that (13i) is true then for n ^ m ^ 1, the associativity 
of multiplication implies that 

(i4i) cinciw = 2C!(«>), 

while if (13ii) is true, then 

(14ii) C°m(co)Cn(co) = C I . H + C L H . 

Again a direct calculation shows that 

AlCKco) = C\(w). 

Now 

c:w = (cn(«))*. 
when a ^= to, co2 and /* = {«, 0(a), 02(«)}, and so, using proposition 2, we 
quickly obtain all products involving C*([i). Thus 

A'mC*(ri = C:W, BmC*<j*) = Ct(fi), 

C*(A*)C*(^) = 
except that 

C*(fi)C*{fz) = CFFO) for all /< ^ {1, 0, oo}. 
Also 

C*(l, 0, oo)C*(l, 0, oo) = 2C*(1, 0, oo). 

We now choose Al(n > 1), Bn(n > 0;) to satisfy 

A°n=(A°)՝, A\B\ = Al, Bl = (B\)\ 
Thus we have 

n m ՝ B°m_n, if n<m, etc. 
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By associativity of multiplication we prove in succession that 

(A\Cl{co) = Cl{a>), 

(15) A°nC°{°>) = Cm{a>), 

{ B°mCl(co) = t V » 

(superscripts are modulo 3) . 
Similarly 

Aici(o*) = c! (« .«) , 
and so 

A°mCl(co>) = C j > » ) , 

B*mC°{m*) = C֊2™(«>2). 1 TJO f՝0/„,2\ /~-2»»/ 

We now look at the structure of ^ = <£/('&', &, s/t). The projective 
ideal 3> is isomorphic to # © <ë@ eS. The complement to @> in .s/ is isomorphic 
to ^ = j / / ^ , and so to find 38 we continue as above modulo S . 

is the identity element of 38. Let M be a primitive cube root of unity 
in %', and write 

ƒ , = i(A*+u*Al+u»A') (f3 = 0, 1, 2) . 

Then 
= J o + / i + / 2 > 

and the Jfi are mutually orthogonal idempotents. 
Write 

(17) 

Then 

and 

Further 

AnB — Anjf, B n B — B°Je 

Cnfi(a>) = C í e , » ) / , , CnB{o?) = C J I W , . 

AlJ, = u-*Anfi, etc. 

_ | 0 , if 
\ A l m ^ „ if « = /3, etc. 

(18) C * f c i ) / , = { 0 * 
C*(p), if /3 = 0, 

if / ? # 0 . 

Finally the elements (17) and C*(fi) together form a basis of 38 over <£. 
We now look at the 3 ideal direct summands of 3S generated by the Jf. 

Set YB = A 1 B , 1/Yg = B1B; then Y£ = A m e etc., and the subalgebra of 38JB 

generated by A n B , B n B may be written ^[Yfi, being regarded as an 
indeterminate over From (15) and (16) 

=u-ffmCne(to), 
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for m any integer, and 
C„fi{(o)Cn.fi{œ2) = 0, 

for all positive n, n'. From (12i), (12ii), (14i), 

Cif{oi)C1B((a) = C2ff{co), 
Clfi{a>)C2fi{to) = 2Clfi(io) 
C20(co)C2fi(m) = 2C2fi(<a). 

As in § 4, set 
hfiH = i ( C v ( a » ) + V2C v (a))) 
* ï j M =î{C2fi(0>) — V2Clfi(a>))> 

and these are mutually orthogonal idempotents. For n > 2, if we have the 
situation of (13i), then 

C n / ? H C « £ H = 2CnS{co), 
and we write 

In case (13ii), we have 

and we write 
C . , ( « 0 M » ) = (« H , +«-*')C^(a.), 

Then the Cnf(co) are idempotents. To obtain orthogonal idempotents we put 

hfi = C3fi{co)—Ilfi(w)—T2fi(m), 
and for « > 3 

Infi[o)) = Cnfi{co)-Cln_1)fi{(o). 
Then all the ln0(u>) are mutually orthogonal idempotents. I„ff{co2) are simi­
larly defined. From (11), (18), we can proceed as in § 4 and/ n 0 ( J u) are defined. 

Hence s/ has the following structure. 

• C s . [ * [ T ' - f J + { · " - < * ՛ ) ] ) 
where 

Y ? J „ K ) = u-*<>mIn/։(co°)։ 

the last term is the projective ideal S t . 
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As in § 4 this is G-semisimple. As far as G-semisimplicity is concerned 
we may now drop the restriction that 9? is algebraically closed. For, if not, 
let F* be the algebraic closure of TF. Then, by (3), sf(<8, 9?, S/T) can be 
regarded as embedded in S/Ç&, F*, SI^). Thus the restriction of the G-
characters to the subalgebra will ensure the G-semisimplicity of SF IF, S/J. 

THEOREM. SIIFË, 9?, J Z / 4 ) is G-semisimple for all fields 9? of characteris­
tic 2. 

7. Ring-tensor-product representation algebras 

Given a commutative ring SI and two ^-modules J(, JL' then the tensor 
product 

can also be defined to be an ^-module. This product is then commutative, 
associative and distributes over direct sum ©. If we now take the set of 
^-modules which satisfy the ascending and descending chain conditions, 
this set is closed under ©, <g> and the Krull-Schmidt theorem is applicable. 
If 9* is any commutative ring with an identity element, then, as in § 1, 
we can define the representation algebra SI՝(9>, 9t) to be the free ^-module 
generated by the set of all ^-indecomposable isomorphic classes {J(}, 
equipped this time with the multiplication 

{ U F } { ֊ * ' } = {JK®AJH'}. 

If 9t is a Dedekind domain, then the indecomposable ^-modules of 
finite length have the form 

where J a is any non-zero prime ideal of SI. Further it is readily seen that 

Write then 

Then 

/ (0), if a ^ /3, 

I MTMN՝M\ if « = /3. 

IUN = {mia-D-imzT1} (« > !)· 

= © 91 M . 
A, « ^ 1 

This algebra does not have an identity. 
Another case which can readily be deduced from the above is that of 

the quotient of the Dedekind domain 9t by an ideal J = 1111՛, where 
only a finite number of na are strictly positive (na > 0). Then the indecom­
posable ^/./-modules of finite length have the form 
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0l\&™", ma = 1, · · · , na, when na ^ 1. 
Again 

ST{9, 3T\J) = © ( © 0IAMJ. 
at TNA—X 

This algebra has finite rank over 0 and has an identity. 
We now take 0t = ^[P, Q]/{P2, Q2), as in § 2 (J^ of arbitrary charac­

teristic). We assume for simplicity that is algebraically closed. Then the 
different classes are An, B„, C„(a), D, where ae&՝ v {co}. 

The multiplication table under <g)a is as follows. 

N ¿»1 AN CN(A) D 

AM ( * + l ) ( m + l ) ^ 0 (m+2) (« - - l )^o+^f l . -n + i {M + L)NA0 AM 

BM »»(»+1)^0 
(M > ») 

(N—L)(M — L)A0+BM+N-I N{M— L)AO+CN{A) BM 

BM 

(N+2)(N-L)A0+A1 

(M = N) 

(N—L)(M — L)A0+BM+N-I N{M— L)AO+CN{A) BM 

CM(A') (N+L)MAO M{N-L)A0+CM(A') 

N(M-L)A0+C„(A) 
(A = a') 

CM{A') CM(A') (N+L)MAO M{N-L)A0+CM(A') 
NMAO [A^A') 

CM{A') 

D A„ BN CN (a) D 

D is the identity element in st = séÇtf, 01). AB, Bx are obvious idem-
potents and 

is a sphtting of the identity into mutually orthogonal idempotents. The 
elements A0, D—Bt generate ideal direct summands each isomorphic to <€. 
Write J . 

AN — \P\~AO)AN> 
Bn = {Bx-֊A9)Bn, 

Cn{a) = (B.-A^CM-
Then the multiplication table in the ideal (Bx—AQ) generated by Bx—A0 is 
as follows. 

« M AN 0N(A) 

AM 0 AM—N+X 0 

BM 
0 (« > M) 

AI (M = N) 
BM+N—1 CN{A) 

CM{A') 0 
CN(A) (A = a') 

0 {AJT A') 
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Place T = 752. Then BN+1 = T". Place I L A = C^a), I N A = C \ » -
£n-i(f l) (M > !)· Then the ideal generated by the {£„(«)} is © a i „ > 0 ^ n a -

The subalgebra generated by the {E„} may be written ^[T], where the 
identity element is 5 1 . Write UN = A N . Then the structure of the ideal 
(B^—Aq) may be written 

nT] + (®VUn) + ( © « 7 „ . ) . 

n>0 o,n>0 
where 

E / n I m a = 0, U„Um = 0, 
TUm+1 = LTm, T / m o = 7 m a , 

and the are mutually orthogonal idempotents. 
The Jacobson radical of this algebra is nonzero as it contains Ux(U\ = 0). 

Hence, a fortiori, &/C%, !%) is not G-semisimple. When the characteristic of 
IF is 2, we get a direct comparison between the two kinds of representation 
algebras that can be formed from .F(y՝4)-modules. 
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