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The foundational differences of steady and unsteady jets issued into a laminar boundary
layer crossflow are considered. Jets have been used widely for flow control applications,
due to their ability to enhance mixing and mitigate separation, but it is unclear what
role jet steadiness plays in flow control effectiveness. Here we compare experimentally
unsteady (synthetic) and steady rectangular jets issued into a flat-plate laminar boundary
layer with varying orifice pitch and skew. The coherent streamwise vortices produced
by unsteady jets were shown to be much stronger than those produced by steady jets,
despite producing similar flow patterns. These differences are rooted in how vorticity is
generated in the orifice, through either a Stokes layer (unsteady) or a Blasius boundary
layer (steady). Exploring the time- and phase-averaged vorticity transport equation reveals
that the time-varying vorticity term is the reason for the enhanced vortical structure.
When considering flow control metrics, we find that the unsteady jet produced greater
added momentum in the boundary layer and added vorticity when compared to a
momentum-matched steady jet. Both the steady and unsteady jets produced similar jet
penetration characteristics.

Key words: jets

1. Introduction

Jet flows are among the most studied flows in fluid mechanics. Steady jets have a wide
array of fundamental studies (List 1982; Gutmark & Grinstein 1999; Mahesh 2013),
while synthetic jets have been considered only more recently (Glezer & Amitay 2002). In
application, both steady and unsteady jets are used as flow control devices to prevent flow
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separation, to enhance mixing, for cooling and heat transfer, and in laminar and turbulence
transition (Compton & Johnston 1992; Mittal & Rampunggoon 2002; Pavlova & Amitay
2006; Pavlova, Otani & Amitay 2008; Kim, Kim & Jung 2012). Even outside of flow
control, steady and unsteady jets exist in nature and engineering as underwater propulsion
mechanisms (Van Buren, Floryan & Smits 2020), in biological flows (Krueger et al.
2009; Jiang, Costello & Colin 2021) and even atmospheric or geological flows (Kieffer
& Sturtevant 1984; Su et al. 2003). Here, our goal is to compare steady and unsteady jets
issuing into a laminar boundary layer to better understand their inherent differences in the
impact on the surrounding flow.

Steady jets are driven by a constant pressure source, which produces a time-invariant jet
of air emitting from the orifice. This jet of air generally begins enclosed by a laminar
shear layer, which breaks down subsequently due to instability, and descends into a
train of vortex rings and eventually turbulence (List 1982). The circular laminar jet is a
classical flow with exact solutions of the Navier–Stokes equations (Schlichting & Gersten
2017). For non-circular cross-sections, the jet flow develops and breaks down rather
three-dimensionally, due mostly to the jet asymmetries producing non-uniform advection
velocities (Gutmark & Grinstein 1999).

Unsteady jets have a time-varying velocity at the orifice and can be driven by an
oscillating or pulsed (Bidan & Nikitopoulos 2013) pressure source (or sometimes driven
by internal instability; Viets 1975; Koukpaizan, Glezer & Smith 2021). Note that the term
unsteady jet covers a wide array of jet types, including periodic jets and ones with a more
arbitrary velocity characteristic. In this work, the unsteady jet is periodic with a zero-mean
velocity at the orifice – a specific subset of unsteady jets often referred to as a synthetic
jet. Despite there being only one type of unsteady jet, we still use generalized language
(i.e. often calling it an unsteady jet instead of a synthetic jet) because, as we will show in
this paper, it is the general unsteady nature of the jet that is key in the differences between
flow fields produced by oscillating and steady jets.

In synthetic jets, the unsteady forcing produces puffs of high-velocity air and vortex
rings that advect away from the orifice (Smith & Glezer 1998; Van Buren, Whalen &
Amitay 2014). To form a coherent jet, the frequency and amplitude of the velocity at
the orifice need to be within a specific range (Holman et al. 2005). As with the steady
jet, the orifice geometry plays a critical role in the unsteady jet formation. For circular
orifice synthetic jets, the vortex rings advect normally downstream (Glezer 1988), but
when the orifice is rectangular, the vortex ring undergoes axis-switching and breaks down,
dependent characteristically on the slot aspect ratio (Dhanak & Bernardinis 1981; Van
Buren et al. 2014).

The direct comparison of steady and synthetic jets in a quiescent fluid has been studied
previously (Smith & Swift 2003; Van Buren & Amitay 2016). The main differences are
the rate of jet expansion, streamwise momentum generation, and vortical structures. The
unsteady nature of the synthetic jet leads to the need to choose a single jet velocity scale,
which is especially important when comparing directly to steady jets. The appropriate
velocity scaling method depends on the application of the jets (Van Buren & Amitay 2016).
Here, the unsteady jet velocity scale, Uo, is calculated using the average jet velocity over
the blowing portion of the cycle:

Uo = 1
T

∫ T/2

0
uj(t) dt = 1

T

∫ T/2

0
Up sin(2πft) dt = Up

π
, (1.1)

where T is the time period, uj(t) is the phase-averaged jet velocity at the orifice exit plane,
Up is the peak jet velocity at the orifice, and f is the actuation frequency of the jet. In a
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sense, this is saying that the blowing and suction portions of the jet are decoupled, and we
are comparing directly the blowing portion of the synthetic jet to the steady jet, effectively
ignoring the suction portion. While this is not perfect, we expect that the suction portion
plays a much more relaxed role in the resulting flow structure (Van Buren, Smits & Amitay
2017).

A jet issuing into a crossflow results in complex interactions and vortical structures.
A main salient feature of steady jets in a crossflow is a dominant counter-rotating vortex
pair that develops downstream (Fric & Roshko 1994). We will see that for the steady
and unsteady jets in this work, the counter-rotating vortex pair remains a major feature of
the transverse jet cases. Other secondary flow features of a steady transverse jet include
horseshoe vortices due to the boundary layer wrapping around the blockage, re-orienting
its vorticity, and the wall-normal wake vortices that extend from the wall to the jet flow
itself (Fric & Roshko 1994). (Most studies have focused on axisymmetric steady jets
in a crossflow, and, to our knowledge, no work has explored steady jets in a crossflow
from a rectangular orifice of varying orientation.) Unsteady jets issuing into a boundary
layer in the past have shown flow features similar to those of steady jets, with the salient
feature downstream being dominant streamwise vortices (Bidan & Nikitopoulos 2013).
For non-axisymmetric unsteady jets in a boundary layer, the downstream vortex structure
is highly dependent on the orifice orientation (Van Buren et al. 2016b). Up to this point, no
direct comparison of rectangular steady and unsteady jets in a crossflow has been made,
and furthermore, there is no justification in literature for why the two jet types perform
differently in preventing flow separation (De Giorgi et al. 2015), in reducing drag (Cui
et al. 2015), and in heat transfer (Pavlova & Amitay 2006; Farrelly et al. 2008).

In this work, we compare directly an unsteady and steady jet issuing from a rectangular
orifice into a laminar boundary layer. We vary orifice orientation, including multiple
pitch (ranging from wall-normal to more aligned with the flow) and skew (ranging
from either perpendicular or parallel to the freestream) angles. We will show that the
unsteady and steady jets share velocity field features, such as downstream deficit, but the
unsteady jet is much more capable of producing vortical structures for matched conditions.
Theoretically, we will explore how this difference is rooted in the fundamental difference
of the unsteady and steady jet formations. Finally, we will leverage these results for flow
control implications like boundary layer momentum addition, enhanced mixing, and jet
penetration.

2. Experimental methods

We study experimentally steady and unsteady jets issuing into a laminar flat-plate
boundary layer. The flow facility and methods match those of the studies found in Van
Buren et al. (2016a,b) – we use the same synthetic jet data with the addition of steady jet
data for direct comparison. Note that throughout the study, lengths are normalized by the
jet orifice width ho = 1 mm, and velocities are normalized by the wind tunnel freestream
velocity U∞ = 10 m s−1.

The wind tunnel used for this work is an open pull-down tunnel with a 0.1 m × 0.1 m ×
0.61 m test section. The freestream turbulence is 0.5 %, and the upper wall of the test
section is contoured to ensure that there is no streamwise pressure gradient. At the jet
location, the boundary layer is laminar with height δ0.95 = 3 mm. The jet apparatus was
designed to mount into the floor of the wind tunnel; a schematic can be found in figure 1.
The steady jet is driven via a constant pressure source, while the synthetic jet is driven via
a piezoelectric disk at frequency f = 1125 Hz with jet velocity amplitudes Up = 5, 10 and
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Figure 1. Jet apparatus used to house both jet types in the wind tunnel floor.

15 m s−1. To generate the synthetic jet, the piezoelectric disk oscillates sinusoidally, which
displaces fluid volume periodically, like a piston, inhaling and exhaling fluid through the
orifice. The jet orifice is rectangular, 18 mm × 1 mm × 6 mm, with varying pitch angles
α = 45◦, 65◦, 90◦ and skew angles β = 0◦, 45◦, 90◦. The jet blowing ratios are in the
range Cb = Uo/U∞ = 0.5, 1, 1.5, where the velocity is measured for the wall-normal
jet (α = 90◦) and the volumetric flow is matched, via matching the displaced volume
of the piezoelectric disk, to that case for all other orifice pitch angles (this is necessary
because the exit area of the jet varies with pitch angle). Subscripts x, y and z denote vector
components acting along the noted direction. See (1.1) for how the unsteady jet ‘average’
velocity scale is determined.

The velocity field was measured using stereoscopic particle image velocimetry to
provide two-dimensional planes transverse to the flow with three velocity components.
The system was a commercial LaVision system with a dual-head double-pulsed 120 mJ
Nd:YAG laser and 12-bit Imager Intenser CCD cameras. The flow was seeded with
a Martin Magnum 850 smoke machine generating particles 1–2 μm in diameter.
Measurement planes were taken upstream and downstream of the orifice with variable
spacing, from x = −10 to 20 every 1 orifice width, x = 20 to 40 every two orifice
widths, and x = 40 to 90 every five orifice widths. Data were processed using LaVision
software resulting in windows with 209 × 103 velocity vectors, with effective resolution
(‘probe size’ of measurement) 0.61 mm × 0.7 mm in the y and z directions, respectively.
For time-averaged results, 500 image pairs are averaged, and for phase-averaged results
(unsteady jet only), the data acquisition was phase-locked to the jet at phases φ = 0◦–315◦
every 45◦, and 250 image pairs are averaged. Guidelines provided by Adrian & Westerweel
(2011) were followed throughout the experiment to minimize measurement uncertainty.
Assuming a spatial error of 0.1 pixels (Adrian & Westerweel 2011), the errors in the
velocity measurements for the present experiment were ±0.2–0.6 m s−1, corresponding
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to time delays �t = 1–10 μs. Supplementary materials are available at https://doi.org/10.
1017/jfm.2022.413; for the experimental set-up, see Van Buren et al. (2016b).

3. Results and discussion

3.1. Flow field characterization
Our analysis begins with qualitative comparisons between the two jets, focused on the
changes in streamwise velocity, streamwise vorticity and coherent vortical structures.
There are a total of nine combinations of pitch and skew angles for the steady and unsteady
jets; detailing and discussing the flow field of each would not be within the scope of this
paper. Here we explore three representative orifice orientations in detail for both jets:
where the orifice is: (1) wall-normal to the wind tunnel floor, α = 90◦, and perpendicular
to the crossflow, β = 0◦ (see figure 2); (2) wall-normal to the wind tunnel floor, α = 90◦,
and parallel to the crossflow, β = 90◦ (see figure 3); (3) angled relative to the floor,
α = 45◦, and perpendicular to the crossflow, β = 0◦ (see figure 4). They represent the
most popular orifice orientation cases, most important for flow control implications that
we will see later on, and also the most extreme in terms of their impact on the flow. For the
complete collection of flow field contours, see the supplementary material accompanying
this paper.

Downstream development of the change in velocity field induced by the steady and
unsteady jet is shown in figures 2(a), 3(a) and 4(a). The baseline flow (i.e. no jet activated)
was subtracted from the flow field when the jet was active. In the wall-normal cases,
α = 90◦, both steady and unsteady jets create distinct regions of blockage extending far
downstream. Generally, this is a salient feature of wall-normal jets issuing into a flow field;
the incoming flow is redirected around the jet, and the jet produces a wake region with
velocity deficit. For the wall-normal case where the orifice is parallel to the freestream,
β = 90◦ (figure 3), the impact of the jet extends further from the wall and seems to detach
from the wall entirely downstream. Notably, for the unsteady jet, there are also regions of
accelerated flow neighbouring the deficit near the freestream. In the case where the jet is
directed downstream, α = 45◦ (figure 4), there are only large regions of direct increased
velocity. This is because the jet itself adds to the freestream. Finally, we notice that both
jets increase the velocity near the wall, especially for α = 90◦, β = 0◦ (figure 2), and these
regions of near-wall acceleration grow downstream as the wake diminishes. Generally, the
change in velocity field is quite similar between the steady and unsteady jets; however, the
regions of accelerated flow are more forceful for the unsteady jet.

When considering the vorticity field, shown in figures 2(b), 3(b) and 4(b), the steady
and unsteady jets are vastly different in strength. Note that for clarity, regions of very
low vorticity (−0.05 ≤ ωx ≤ 0.05) were suppressed. Both the steady and unsteady jets
produce paired regions of positive and negative streamwise vorticity, symmetric about
the orifice centreline. (For other orifice orientations, the vorticity is still similar but not
necessarily symmetric about the centreline, as in Van Buren et al. 2016b.) Steady jets
produce weaker vorticity concentrations, whereas unsteady jets exhibit much stronger
vorticity that persists further downstream and extends further into the freestream. The
unsteady jet vorticity coalesces to form quasi-steady streamwise rollers downstream of
the orifice (Van Buren et al. 2016a). Here, the strongest vorticity concentrations come
from the case where the jet is wall-normal, α = 90◦, and parallel to the flow, β = 90◦,
because more of the orifice, which emits the jet vorticity directly, is aligned with the
streamwise direction. The weakest vorticity concentrations come from the case where
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Figure 2. (a) Change in velocity, (b) streamwise vorticity, and (c) vortical structures for the steady (top) and
unsteady (bottom) jets for Cb = 1.5 at α = 90◦ and β = 0◦. The steady and unsteady jets share the same scale
except in (c).
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Figure 3. (a) Change in velocity, (b) streamwise vorticity, and (c) vortical structures for the steady (top) and
unsteady (bottom) jets for Cb = 1.5 at α = 90◦ and β = 90◦. The steady and unsteady jets share the same scale
except in (c).
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unsteady (bottom) jets for Cb = 1.5 at α = 45◦ and β = 0◦. The steady and unsteady jets share the same scale
except in (c).
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the jet is tilted into the flow, α = 45◦, because the orifice contains the least amount
of streamwise-oriented vorticity. In general, the vorticity field exhibits a stark contrast
between the two jet types – similar structures but different strengths.

One of the main features of jets in a crossflow is the coherent streamwise vortical
structures produced. We compare the vortex structure of the steady jets to the unsteady
jet using the Q-criterion (Hunt, Wray & Moin 1988), which represents the vorticity with
strain-dominant or rotation-dominant components. While the Q-criterion is typically a
scalar, we calculate the rotation from only the streamwise vorticity and give it the sign of
the local vorticity, which is deemed qx. Figures 2(c), 3(c) and 4(c) show the streamwise
vortex structure downstream development for the steady and unsteady jets. Note here that
the strengths of the structures were so different that we needed independent colour scales
for each, where the steady jet colour scale is 10 times lower than that of the unsteady
jet. As before with the vorticity, low-strength regions were suppressed for the unsteady
(−0.05 ≤ qx ≤ 0.05) and steady (−0.005 ≤ qx ≤ 0.005) jets. Clearly, the unsteady jet
produces a much stronger and more coherent streamwise vortex structure when compared
to the steady jets, for all geometries considered. The unsteady jet vortex pair extends
throughout the plotted domain, and strong vortices are present even 30 orifice widths
downstream. The unsteady jets also exhibit secondary streamwise vortical structures above
the main vortical structures (up to x = 15) for α = 90◦, β = 0◦ (figure 2c), that are not
present for the steady jet. These secondary structures are unsteady and decay more rapidly
than the streamwise rollers exhibited by both jets (Van Buren et al. 2016a). Asymmetric
vortical structures about z = 0 (figures 5i.c,ii.c) are caused by the jet pitch angle. The jets
are emitting to the side and creating vortical structures that are vectored away from the
orifice centre. Generally, it appears that the higher peak vorticity paired with the cyclic
nature of unsteady jets facilitates much stronger rotational structures. This is due to the
fundamental differences in jet formation: steady jets produce shear layers that break down
into vortex structure, whereas unsteady jets, like this synthetic jet, produce a train of vortex
rings that coalesce into a jet.

To confirm that the vortex strength difference between steady and unsteady jets is
consistent for all orifice orientations, the vortex structure is plotted in figure 5 at x = 6
downstream of the orifice for the nine pitch angle and skew angle combinations. The
steady and unsteady jets are compared on the top and bottom of each plot, respectively.
To make qualitative comparisons, the unsteady jet vortex contours are much stronger than
the steady jet contours, and each is scaled independently – the steady jet contours are 50
times weaker than the unsteady jet contours. First, the unsteady jet vortical structures are
generally more cohesive, exhibiting larger and clearer structures. However, the unsteady
and steady jet vortex structures are largely similar in shape and organization. It is clear that
over the entire range of orifice orientations studied here, steady and unsteady jets produce
similar structures, but the unsteady jet produces much stronger versions of those structures.

The choice of velocity scaling is critical when comparing unsteady and steady jets,
and often different scalings are appropriate in different applications. Thus far, we have
considered only a single scaling of the oscillating jet velocity: the average of the blowing
cycle as described in (1.1). However, an argument can be made for other velocity scaling
parameters based on the peak jet velocity (Kral et al. 1997) or the jet momentum (Cater
& Soria 2002). For example, the jet momentum velocity scaling can be appropriate when
used to match jet circulation. For quiescent flows, the scaling of a synthetic jet and a steady
jet are compared in Van Buren & Amitay (2016). In Appendix A, we have explored several
different scaling parameters for a crossflow when comparing the steady and unsteady jets
on parameters such as wake, circulation and vortex structure. Interestingly, the momentum
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Figure 5. Contours of streamwise Q, qx, at x = 6 for Cb = 1.5 and each jet orientation: pitch angles
α = 45◦, 65◦, 90◦ (i–iii), and skew angles β = 0◦, 45◦, 90◦ (a–c). The upper portions of the graphs correspond
to steady jets, while the lower halves show the unsteady jets. Solid and dashed lines correspond to positive
(counter-clockwise) and negative (clockwise) rotation, respectively.

velocity scaling is best at making the circulation more comparable between the steady and
unsteady jets. However, no known traditional velocity scaling method caused the steady
jets to have more comparable vortex structure, thus there are inherent differences between
the two jet types that are not captured by scaling choice.

3.2. Theory and statistics
We seek a theoretical explanation for the difference in steady and unsteady jet impacts
– specifically, why the unsteady jet produces more prominent vortical structures. Here,
we use a simplified laminar flat-plate boundary layer flow model to estimate roughly the
flow on the inner walls of the jet orifice (Schlichting & Gersten 2017). In reality, the flow
through the orifice can be complex, with separation along the orifice walls as well as
inlet and exit effects. While there are major differences between simple theory and reality,
we still find boundary layer models useful in illuminating the key reason for the stark
differences between the peak vorticities produced by the unsteady and steady jets.

The differences in vorticity generation result from differences in the discharge
characteristics: synthetic jets produce trains of vortex rings, while steady jets produce
steady vortex sheets.

Consider the jet formation in the flow through the orifice. The vorticity produced by
the jets and added to the freestream is generated primarily on the inner orifice walls
housing the flow between the jet cavity and the external flow. In essence, the competition
of unsteady and steady jets is a competition of Stokes and Blasius boundary layers on
the orifice walls. The Stokes problem is that of a fully developed laminar flow due to an
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oscillating freestream above a flat plate, and Blasius studied a developing laminar flow due
to a steady freestream over a flat plate – both of which have known solutions (Schlichting
& Gersten 2017). Loosely, these are representative of the scenario for unsteady and steady
jets. Theoretical solutions have also been found for arbitrary wall velocities, showing that
generally, unsteady flows lead to higher velocity gradients and peak vorticity (Schlichting
& Gersten 2017). We can compare directly, analytically, the peak vorticities at the wall due
to these two flows. It is important to note that we focus on the peak vorticity, or vorticity
at the wall, as the main metric in comparing unsteady and steady jets here. We believe that
it is the higher peak vorticity in more concentrated areas that leads to the more prolific
vortical structures downstream. The vorticity at the wall for a Blasius boundary layer is

ωxB = 0.332

√
U3

o

νx
, (3.1)

and the peak wall vorticity for a Stokes boundary layer is

ωxS =
√

2πf
ν

Uo. (3.2)

The ratio of the two wall vorticities results in a non-dimensional parameter that
describes whether the steady or unsteady case has the dominant vorticity based upon input
parameters:

ωxS

ωxB

= 7.55

√
xf
Uo

. (3.3)

This is essentially a non-dimensional frequency, where the time scale of the oscillation
is compared to the time scale of the flight of a particle along the wall. Here, when the
frequency is high for the Stokes flow, or when the development length for the Blasius flow
is large, the oscillating boundary layer wall vorticity will dominate.

We compare the theoretical wall vorticity along our orifice wall for the steady and
unsteady cases in figure 6. For the frequency, jet velocity and geometry in this work,
this comparison indicates we should see peak streamwise vorticity values that are
approximately five times higher than the steady jet at the end of the orifice. This is borne
out by our results in figure 2, where the peak vorticity for the unsteady jet case is about
two times greater than in the steady case. This root difference in flow through the orifice is
the main contributor to differences in downstream vorticity and vortex structure that were
measured. The unsteady nature of the jet increases the generated vorticity intrinsically.

An interesting consequence of this is that among unsteady jets, the peak vorticity and
subsequent downstream steady vortex structure will be dependent on the jet frequency. It
seems that frequency (not associated with characteristic flow instabilities) might play a
role in flow control effectiveness.

3.2.1. Vorticity transport
Once vorticity is generated at the orifice walls, it is expelled by the jet into the flow. From
here, the vorticity transport can be used to show what specific flow features contribute
to the vorticity development downstream. First, consider the incompressible form of the
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Figure 6. Vorticity ratio between the Stokes and Blasius boundary layer solutions. Inset is the boundary layer
profile at the end of the orifice neck for both flow regimes.

streamwise vorticity transport equation (Tennekes & Lumley 1972):

∂ωx

∂t
+ ux

∂ωx

∂x
+ uy

∂ωx

∂y
+ uz

∂ωx

∂z
= ωx

∂ux

∂x
+ ωy

∂ux

∂y
+ ωz

∂ux

∂z

+ ν

(
∂2ωx

∂x2 + ∂2ωx

∂y2 + ∂2ωx

∂z2

)
. (3.4)

Our data set is limited in spatial resolution, with good resolution in the y and z directions,
but poor resolution in the streamwise x direction (due to the spacing of the acquisition
planes and the laser sheet thickness, ≈ 1 mm). As a result, we can adequately resolve
only the streamwise vorticity ωx and the three velocity components. Additionally, while
our resolution in the data plane y–z is good, it is not sufficient for second-order spatial
derivatives. So we are limited to exploring only the left-hand side of the vorticity transport
equation (3.4), which is the material derivative of the streamwise vorticity Dωx/Dt. We
move forward with our analysis with the reservation that we can describe only the vorticity
development and not the vortex tilting/stretching and viscous diffusion terms.

The unsteady jet has a known coherent frequency component, so we will employ the
triple decomposition of velocity into the mean ū, coherent ũ, and unsteady u′ components:

u = ū + ũ + u′. (3.5)

Note that this decomposes the vorticity similarly. Our data were acquired and either
time-averaged (denoted with overlined terms, e.g. x̄) or phase-averaged (denoted with
angle-bracket terms, e.g. 〈x〉). If we apply the triple decomposition (3.5) to the material
derivative in the vorticity transport equation (3.4), and then time-average, then we get

Dωx

Dt
= ∂ ūxω̄x

∂x
+ ∂ ũxω̃x

∂x
+ ∂u′

xω
′
x

∂x
+ ∂ ūyω̄x

∂y
+ ∂ ũyω̃x

∂y
+ ∂u′

yω
′
x

∂y

+ ∂ ūzω̄x

∂z
+ ∂ ũzω̃x

∂z
+ ∂u′

zω
′
x

∂z
. (3.6)
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Alternatively, if we phase-average, then we get〈
Dωx

Dt

〉
=

〈
∂ω̃x

∂t

〉
+

〈
∂ ūxω̄x

∂x
+ ∂ ūxω̃x

∂x
+ ∂ ũxω̄x

∂x
+ ∂ ũxω̃x

∂x

〉
+

〈
∂ ūyω̄x

∂y
+ ∂ ūyω̃x

∂y
+ ∂ ũyω̄x

∂y
+ ∂ ũyω̃x

∂y

〉
+

〈
∂ ūzω̄x

∂z
+ ∂ ūzω̃x

∂z
+ ∂ ũzω̄x

∂z
+ ∂ ũzω̃x

∂z

〉
.

(3.7)

The complete procedure for the averaging schemes can be found in Appendices B and
C. While we present the terms with the products of two unsteady fluctuations (e.g.
u′

xω
′
x), we do not have the sample size to explore statistically converged turbulence, so

we ignore these terms, though we anticipate that they will be insignificant because the
flow is laminar. These two equations – the time-averaged (3.6) and phase-averaged (3.7)
simplified vorticity transport equations with triple decomposition – describe our current
data set.

Figure 7 presents a comparison of the downstream development of all the terms of
the time-averaged vorticity transport equation (3.6). The terms were area-averaged at
each streamwise location. All terms generally peak near the orifice and tend to decay
downstream. Comparing the terms between steady and unsteady jets, the unsteady jet has
greater vorticity transport in all geometries. Interestingly, there are no standout dominant
terms; both the products of the means and the products of the coherent fluctuations are
contributing meaningfully to the downstream vorticity transport through all geometries.

In figure 8, the terms of the phase-averaged vorticity transport equation (3.7) are
compared. Note that these terms apply to only the unsteady jet as the steady jet does
not have any phase-locked variance. As with the time-averaged terms, the phase-averaged
terms are area-averaged at each streamwise location. Here, the time-derivative vorticity
term is clearly dominant throughout the downstream development across all geometries.
This indicates that the time-varying vorticity term is a major contributor to vorticity
transport with the unsteady jet and is the culprit for the enhanced flow vorticity when
compared to the steady jet. This ties back to the Stokes and Blasius comparison that
predicted that time-varying velocities lead to much higher peak vorticity that is inherently
time-varying.

In the phase-averaged vorticity transport, the pitch angle has a large impact on the overall
vorticity generated. When the unsteady jet is angled into the flow, the time rate of change
of vorticity is lowest – less than half of the wall-normal case. This is because as the jet
is angled, the orifice vorticity gains a larger component in the wall-normal direction, so
there is less injection of streamwise vorticity. The added vorticity is less sensitive to skew
angle.

3.3. Flow control implications
Finally, we consider the implications of these results to flow control application. We look
at three parameters: (1) added momentum into the boundary layer, which is a measure of
flow separation resilience; (2) added vorticity strength, which indicates enhanced mixing
and turbulence; and (3) wall penetration, which is a metric that has been considered more
recently for targeted structure control. All three parameters guide implementation methods
as flow control devices.

The added momentum near the wall within the boundary layer is tied directly to
the flow’s ability to resist separation (Smith 2002). The baseline normalized near-wall
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Figure 7. Downstream development of the vorticity terms for Cb = 1.5. Here, (a–c) represent a fixed skew
angle (β = 0◦) and increasing pitch angle (α = 45◦, 65◦, 90◦). Additionally, (d) and (e) correspond to a fixed
wall-normal pitch angle (α = 90◦) with skew angles β = 45◦, 90◦, respectively. Inset are pie charts showing
the term contributions over the entire streamwise domain.

momentum, P̄δ0.95 , was calculated according to

P̄δ0.95 = 1
(2lo)ho

∫ zmax

zmin

∫ δ0.95

0

U2
x

U2
xb

dy dz, (3.8)

where the subscript b refers to the baseline case. Note that in the equation, we have
added the bounds in the y integration to be within the near-wall region, defined by the
baseline boundary layer, whereas for the z direction we consider the entire data window.
Figure 9(I) shows the downstream development of the added momentum in the boundary
layer for the steady and unsteady jets. Downstream of the orifice, the boundary layer
momentum was heavily influenced by the orifice orientation. Both the steady and unsteady
jets created local increases and decreases in momentum. Downstream, away from the
orifice, the unsteady jet generally adds momentum into the boundary layer, while the
steady jet has little impact. For most cases, the unsteady jet produces greater boundary
layer acceleration than the steady jet. This is likely due to the enhanced vortex structure of
the unsteady jet pulling high momentum fluid into the boundary layer, much as a vortex
generator would. (Interestingly, synthetic jets are better vortex generators than actual
passive vortex generators; Van Buren, Whalen & Amitay 2015.) However, this is not the
only mechanism for adding boundary layer momentum. For orifice pitch angles where the
jet is more aligned with the flow, the jet can add streamwise momentum directly. These
are the cases where we see a net acceleration in the boundary layer for the steady jet.
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Figure 8. Phase-averaged vorticity equation streamwise development for Cb = 1.5. Here, (a–c) represent a
fixed skew angle (β = 0◦) and increasing pitch angle (α = 45◦, 65◦, 90◦). Additionally, (d) and (e) correspond
to a fixed wall-normal pitch angle (α = 90◦) with skew angles β = 45◦, 90◦, respectively. Inset are pie charts
showing the term contributions over the entire streamwise domain.

However, there are outlier cases where the steady jet exceeds the unsteady jet, specifically
the streamwise-aligned orifice orientations (β = 90◦). This is because in these cases, the
steady jets produce their strongest vortical structure, more comparable to the unsteady
jet vortex structure. Added boundary layer momentum is dependent on jet trajectory and
vortical structure generation, among other things, thus it is difficult to find clear behaviours
with parametric changes in orifice orientation. Even in more detailed investigations of
unsteady jets with similar geometries, there is a lack of clear trends with orifice orientation
(Van Buren et al. 2016b).

Next, we consider the jet mixing, which can not only delay separation (Rediniotis
et al. 1999), but also enhance heat transfer (Farrelly et al. 2008) and enhance turbulence
(Compton & Johnston 1992). Here we represent mixing through the flow streamwise
enstrophy

εx = 1
2

∫∫
ω2

x dy dz, (3.9)

which is essentially the strength in vorticity and is calculated over the entire domain. The
downstream development of the enstrophy is shown in figure 9(II). For both jets, enstrophy
peaks near the orifice and decays downstream. This behaviour follows the same trend
shown in the vorticity flow visualization in figure 2(b). It is quite clear that – throughout
the entire parameter space and measurement domain – the unsteady jet dominates the
added vorticity to the flow. This is no surprise; to this point, the theme of the results has
been the unsteady jet’s capability to produce strong, coherent vortical structures compared
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Figure 9. Flow statistics development downstream of the orifice: (I) normalized near-wall added momentum,
(II) enstrophy, and (III) boundary layer normalized jet penetration for Cb = 1.5. Each row represents a single
jet orientation: pitch angles α = 45◦, 65◦, 90◦ (i–iii) and skew angles β = 0◦, 45◦, 90◦ (a–c).

to the steady jet. This is due to the fundamental differences in how the unsteady jet is
generated (see § 3.2).

Finally, a parameter often explored in jets is the wall-normal penetration, which has
implications for specific types of flow control that target structures away from the wall,
e.g. large-scale motion control in turbulent boundary layers. The scaling of synthetic jet
penetration has been studied extensively (Berk et al. 2018; Jankee & Ganapathisubramani
2021). Jet unsteadiness affects the jet trajectory, and when the distance between pulses
U∞/f nears the jet slot size, steady jet scaling arguments can be applied to unsteady jets
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(Berk et al. 2018). While there are multiple methods for determining jet trajectory, for
simple comparison we use the wall-normal centroid of the change in spanwise-averaged
streamwise velocity (spanwise-averaging denoted by 〈�Ux〉z):

yc =

y=ymax∑
y=0

y 〈�Ux〉z

y=ymax∑
y=0

〈�Ux〉z

. (3.10)

For this specific parameter, the jet location was non-dimensionalized by the baseline
boundary layer height δ0.95 so that it is easy to assess how well the jets are able to penetrate
the boundary layer. The wall-normal penetration of the jets is shown in figure 9(III). In one
case, figure 9(III(iii, c)), the unsteady jet wake leaves the measurement domain, skewing
the resulting trajectory calculation. This region begins around x = 20 and is represented
with a dashed line. Generally, the steady and unsteady jets are able to penetrate above the
boundary layer at this blowing ratio. The differences between the steady and unsteady jets
here are subtle. For most cases, the unsteady jet slightly exceeds the steady jet. However,
the steady jets with an orifice skew angle more aligned with the flow penetrate further into
the freestream than the unsteady jets. Ultimately, the penetration is largely similar for both
steady and unsteady jets, which is tied directly to the similar velocity fields produced – as
was characterized in § 3.1.

4. Summary and conclusions

Steady and unsteady rectangular jets were issued into a laminar boundary layer and
explored experimentally using stereoscopic particle image velocimetry. The jet orifice
orientation was varied in pitch (from wall-normal to more aligned with the flow) and skew
(from across to along the flow). Multiple jet strengths were tested, though they produced
no difference in trends, only differences in the strength of the jet impact. All data are made
available through supplementary material associated with this work.

Qualitatively, both jets produced similar effects on the velocity field, including the
strength and size of the deficit region downstream of the orifice. Despite this, unsteady
jets formed stronger vorticity than the steady jet counterpart. As a result, the unsteady jet
produced much stronger and more cohesive vortex structures than the steady jet, though
they both produced similar qualitative vortex organization. This behaviour was consistent
for all orifice orientations and blowing ratios in this study. Note that we tested multiple
velocity scaling methods to ensure that these differences were not merely rooted in the
definition of average unsteady jet velocity.

The reason why unsteady jets produced considerably more coherent vortex structure
than steady jets was rooted in the fundamental vorticity generation mechanism. As flow
passes through the jet orifice, the no-slip condition produces a boundary layer – either a
Blasius boundary layer for the steady jet, or a Stokes layer for the unsteady jet. A simple
theoretical analysis showed that the Stokes layer intrinsically produces higher vorticity
than the Blasius layer, and thus the unsteady jet ejects more vorticity into the crossflow
than the steady jet for matched velocity conditions. These results were then further
confirmed via analysis of the vorticity transport equations in either their time-averaged or
phase-averaged form. This stronger vorticity couples with the fact that steady jets produce
shear layers that break down into vortex structure, whereas unsteady jets, like the synthetic
jet, start with vortex structures that form a jet downstream (Van Buren & Amitay 2016).

942 A56-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

41
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.413


F.A. Tricouros, M. Amitay and T. Van Buren

To summarize the flow control implications, unsteady jets added more momentum to
the boundary layer than steady jets, likely due to the enhanced coherent vortex structure.
This indicates that unsteady jets will be more capable at mitigating separation, especially
in a transverse configuration. The best cases for added momentum were low pitch angles
(α = 45◦) where the jet momentum is more directly aligned with the streamwise direction.
Unsteady jets, by far, produced more enstrophy from streamwise vorticity, indicating that
unsteady jets will be more capable of inducing flow mixing. The best orifice orientation
for added streamwise vorticity was when the orifice was along the flow (β = 90◦), due
to the long edge of the orifice, which contains more orifice boundary layer vorticity,
being in the streamwise direction. Finally, steady and unsteady jets produced similar
penetration characteristics, indicating that the penetration is tied to the velocity field.
Higher jet penetrations occurred when the orifice was along the flow (β = 90◦) because
the cross-sectional area of the jet was smallest and least impacted by the crossflow.

While in application the jet choice is certainly up to the user, there are clear foundational
differences between steady and unsteady jets when issued into a crossflow that should be
considered.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.413.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Frank A. Tricouros https://orcid.org/0000-0003-0505-1977;
Michael Amitay https://orcid.org/0000-0003-1366-0406;
Tyler Van Buren https://orcid.org/0000-0002-2186-8613.

Appendix A. Velocity scaling methods

We have been discussing a velocity scaling method where the unsteady jet output was
defined as the average velocity over the blowing cycle, (1.1). However, an argument can be
made for at least two additional scaling metrics: (1) the peak velocity of the jet, Up; and
(2) the average momentum velocity over the whole cycle.

To compare each method, we look at the velocity difference, streamwise vorticity and
vortex structure. To compare each flow statistic more easily, the area averages of the
absolute values were used; see figure 10. The velocity difference stands out as the most
impacted feature when compared to previous discussions. The steady jet has a much
greater impact on the velocity field for both alternative scaling methods. We can compare
directly our original scaling method here by looking at the first case for the steady jet and
the final case for the unsteady jet. The similar velocity difference between these two cases
was originally shown through the flow field visualization in § 3.1.

When matching peak jet velocity, the steady jet produced more vorticity than the
unsteady jet. Here, we quantify the vorticity production in a similar manner to how
circulation is calculated, as an area average, except that we use the absolute value of
vorticity. However, for the momentum scaling, the unsteady jet was either about equal
or better at generating vorticity. For all velocity scaling methods, the rotational structures
are stronger for the unsteady jets. This is despite the stronger vorticity from steady jets
when matching peak velocity. Higher vorticity does not necessarily translate to stronger
and more coherent vortex structures.
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Figure 10. Average values of (a) velocity difference, (b) streamwise vorticity, and (c) vortex structure, over
the entire domain. The labelled output velocities refer to matched (1) peak jet velocity, Up, and (2) average
momentum velocity over the whole cycle, 2Up/π.

Appendix B. Reynolds-averaged vorticity equation

Here, we apply Reynolds-averaging (Reynolds 1895) to the vorticity equation to derive
the equation used in § 3.2.1. While a simplified version was presented, this derivation is
done using tensor notation, where i is the free index and j is the dummy variable. Due to
the coherent fluctuations for the unsteady jets, triple decomposition of the velocity field is
used instead of double decomposition. First, we begin with the vorticity equation for an
incompressible fluid (Tennekes & Lumley 1972):

Dωi

Dt
= ∂ωi

∂t
+ uj

∂ωi

∂xj
= (ωj · ∇)ui + ν ∇2ωi. (B1)

In addition to this equation, the continuity equation for an incompressible fluid is also
used:

∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
= 0. (B2)

Using the product rule, the continuity equation can be isolated, and we also see that the
first three terms on the right-hand side look like terms that appear in the vorticity equation:

∂uxωx

∂x
+ ∂uyωy

∂y
+ ∂uzωz

∂z
= ux

∂ωx

∂x
+ uy

∂ωy

∂y
+ uz

∂ωz

∂z
+ ωx

[
∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z

]
.

(B3)

Terms inside the square brackets are the same terms that appear in the continuity equation,
therefore, that bracketed section is equal to zero. This procedure allows for terms to be
combined inside the partial derivative:

∂uxωx

∂x
+ ∂uyωy

∂y
+ ∂uzωz

∂z
= ux

∂ωx

∂x
+ uy

∂ωy

∂y
+ uz

∂ωz

∂z
. (B4)

We can leverage this to obtain a new form of the vorticity equation:

∂ωi

∂t
+ uj

∂ωi

∂xj
= ∂ωi

∂t
+ ∂ujωi

∂xj
. (B5)

This form is used for both the time- and phase-averaging. Due to the large number of
terms, applying the triple decomposition and time-averaging is done to one side of the
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equation at a time. We start with the material derivative:

∂ω̄i

∂t
+ ∂ω̃i

∂t
+ ∂ω′

i
∂t

+ ∂ ūjω̄i

∂xj
+ ∂ ūjω̃i

∂xj
+ ∂ ūjω

′
i

∂xj

+ ∂ ũjω̄i

∂xj
+ ∂ ũjω̃i

∂xj
+ ∂ ũjω

′
i

∂xj
+

∂u′
jω̄i

∂xj
+

∂u′
jω̃i

∂xj
+

∂u′
jω

′
i

∂xj
. (B6)

Time averages of fluctuation terms and uncorrelated fluctuation products are equal to zero
(Reynolds 1895). The following non-zero terms remained:

∂ ūjω̄i

∂xj
+ ∂ ũjω̃i

∂xj
+

∂u′
jω

′
i

∂xj
. (B7)

The above procedure was then repeated for the right-hand side of the vorticity equation:

ω̄j
∂ ūi

∂xj
+ ω̃j

∂ ūi

∂xj
+ ω′

j
∂ ūi

∂xj
+ ω̄j

∂ ũi

∂xj
+ ω̃j

∂ ũi

∂xj
+ ω′

j
∂ ũi

∂xj
+ ω̄j

∂u′
i

∂xj
+ ω̃j

∂u′
i

∂xj
+ ω′

j
∂u′

i
∂xj

+ν

[
∂2ω̄i

∂x2
j

+ ∂2ω̃i

∂x2
j

+ ∂2ω′
i

∂x2
j

]
. (B8)

Enforcing the same rules as before, this now reduces to four terms:

ω̄j
∂ui

∂xj
+ ω̃j

∂ ũi

∂xj
+ ω′

j
∂ui′

∂xj
+ ν

∂2ω̄i

∂x2
j

. (B9)

The two sides can now be placed back into the original vorticity equation:

∂ ūjω̄i

∂xj
+ ∂ ũjω̃i

∂xj
+

∂u′
jω

′
i

∂xj
= ω̄j

∂ ūi

∂xj
+ ω̃j

∂ ũi

∂xj
+ ω′

j
∂ui′

∂xj
+ ν

∂2ω̄i

∂x2
j

. (B10)

The left-hand side was presented in § 3.2.1, where i = 1 and j = 1, 2, 3, giving nine terms
in total.

Appendix C. Phase-averaged vorticity equation

We start again with the vorticity equation for incompressible fluids:

∂ωi

∂t
+ ∂ujωi

∂xj
= ωj

∂ui

∂xj
+ ν

∂2ωi

∂x2
j

. (C1)

As was done with the time-averaging, terms are combined inside the partial
derivative. Isolating the material derivative, substituting the triple decomposition and
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phase-averaging:〈
∂ω̄i

∂t
+ ∂ω̃i

∂t
+ ∂ω′

i
∂t

+ ∂ ūjω̄i

∂xj
+ ∂ ūjω̃i

∂xj
+ ∂ ūjω

′
i

∂xj

〉

+
〈
∂ ũjω̄i

∂xj
+ ∂ ũjω̃i

∂xj
+ ∂ ũjω

′
i

∂xj
+

∂u′
jω̄i

∂xj
+

∂u′
jω̃i

∂xj
+

∂u′
jω

′
i

∂xj

〉
. (C2)

Following the procedure from Hussain & Reynolds (1970) results in the following
non-zero terms: 〈

∂ω̃i

∂t
+ ∂ ūjω̄i

∂xj
+ ∂ ūjω̃i

∂xj
+ ∂ ũjω̄i

∂xj
+ ∂ ũjω̃i

∂xj

〉
. (C3)

Similarly, for the right-hand side we have〈
ω̄j

∂ ūi

∂xj
+ ω̄j

∂ ũi

∂xj
+ ω̄j

∂u′
i

∂xj
+ ω̃j

∂ ūi

∂xj
+ ω̃j

∂ ũi

∂xj
+ ω̃j

∂u′
i

∂xj
+ ω′

j
∂ ūi

∂xj
+ ω′

j
∂ ũi

∂xj
+ ω′

j
∂u′

i
∂xj

〉

+
〈
ν

∂2ω̄i

∂x2
j

+ ν
∂2ω̃i

∂x2
j

+ ν
∂2ω′

i

∂x2
j

〉
. (C4)

Reducing to six terms after eliminating all zero terms gives〈
ω̄j

∂ ūi

∂xj
+ ω̄j

∂ ũi

∂xj
+ ω̃j

∂ ūi

∂xj
+ ω̃j

∂ ũi

∂xj
+ ν

∂2ω̄i

∂x2
j

+ ν
∂2ω̃i

∂x2
j

〉
. (C5)

Presented as a complete equation, we have〈
∂ω̃i

∂t
+ ∂ ūjω̄i

∂xj
+ ∂ ūjω̃i

∂xj
+ ∂ ũjω̄i

∂xj
+ ∂ ũjω̃i

∂xj

〉

=
〈
ω̄j

∂ ūi

∂xj
+ ω̄j

∂ ũi

∂xj
+ ω̃j

∂ ūi

∂xj
+ ω̃j

∂ ũi

∂xj
+ ν

∂2ω̄i

∂x2
j

+ ν
∂2ω̃i

∂x2
j

〉
. (C6)

The material derivative side was used in § 3.2.1, where i = 1 and j = 1, 2, 3.
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