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Abstract

Kronecker classes of algebraic number fields were introduced by W. Jehne in an attempt to understand
the extent to which the structure of an extension K : k of algebraic number fields was influenced by the
decomposition of primes of k over K. He found an important link between Kronecker equivalent field
extensions and a certain covering property of their Galois groups. This paper surveys recent contributions
of Group Theory to the understanding of Kronecker equivalence of algebraic number fields. In particular
some group theoretic conjectures related to the Kronecker class of an extension of bounded degree are
explored.

1991 Mathematics subject classification (Amer. Math. Soc): 20B25, 12F10.

1. Introduction

1 A. Covering subgroups of finite groups In undergraduate courses in Group The-
ory, students are often asked to prove the following assertion: If U is a proper
subgroup of a finite group G then G is not equal to the set-theoretic union Ugec U8

of the conjugates of U. This is very easy to prove since the number of distinct
conjugates Ug, g e G, is equal to the index \G : NG(U)\ in G of the normaliser
NG(U) of U, and this in turn is at most \G : U\. Then as all conjugates U8 have the
same cardinality as U, and as each conjugate contains the identity element, we have
\UgeGU*\<\G:U\.\U\ = \G\.

The reason why G cannot be 'covered' by the conjugates of U is simply that there
are not enough of them. If we had available in G more subgroups isomorphic but not
conjugate to U, might it then be possible to cover G using these subgroups in addition
to the conjugates of £/? This is certainly possible in some cases. For example, if G
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18 Cheryl E. Praeger [2]

is the additive group of a finite dimensional vector space over a finite field, and if U
is the additive group of a non-zero proper subspace, then as every vector lies in some
subspace of dimension d := dim U, G is covered by the union of such subspaces. In
this example, for each pair (£/, [/') of additive subgroups of d-dimensional subspaces,
there is an automorphism of G, that is a nonsingular linear transformation of the vector
space, which maps U to U', so G is covered by the union of all images of U under
automorphisms of G. We shall call such subgroups U of G covering subgroups.

DEFINITION 1.1. Let G be a finite group, U a subgroup of G, and A a subgroup of the
automorphism group Aut G of G containing the group Inn G of inner automorphisms.
If the union UA = [JaeA Ua of the images of U under elements of A is equal to G
then U is said to be an A-covering subgroup of G. A subgroup is called a covering
subgroup of G if it is an (Aut G)-covering subgroup.

Questions about set-theoretic unions of subgroups of groups arise naturally in
connection with the Galois groups of certain extensions of algebraic number fields,
and such applications will be discussed later in the paper.

Rolf Brandl [3] studied various properties of covering subgroups. He looked in
particular at examples of covering subgroups of soluble groups and conjectured that
a group with a soluble covering subgroup must itself be soluble. Brandl showed that
a minimal counterexample to his conjecture had to be a non-abelian simple group.
The proof of the conjecture was completed by Jan Saxl [29] who showed that finite
non-abelian simple groups have no proper covering subgroups.

THEOREM 1.2. (Saxl) A finite non-abelian simple group has no proper covering
subgroups.

COROLLARY 1.3. (Brandl, Saxl) If a finite group G has a soluble covering sub-
group, then G is soluble.

It is easily seen that covering subgroups of a group G are those subgroups which
contain at least one element from every (Aut G)-conjugacy class in G. In applications
other than those discussed in the next subsection a generalisation of covering subgroups
has arisen, namely subgroups which contain at least one element from every (Aut G)-
conjugacy class of elements of prime power order in G (see [6, 9]).

DEFINITION 1.4. Let G be a finite group, U a subgroup of G, and A a subgroup of
Aut G containing Inn G. If U contains an element from every A-conjugacy class of
elements of prime power order in G, then U is said to be an A-prime-power-covering
subgroup of G. A subgroup is called a prime-power-covering subgroup of G if it is
an (Aut G)-prime-power-covering subgroup.
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[3] Kronecker classes of fields and covering subgroups of finite groups 19

Bob Guralnick [9] noted that similar techniques to those used in [29] could be used
to show that a finite non-abelian simple group has no proper prime-power-covering
subgroups.

THEOREM 1.5. (Guralnick, Saxl) A finite non-abelian simple group has no proper
prime-power-covering subgroups.

Theorems 1.2 and 1.5 have proved very useful in connection with the group theoretic
problems discussed later in this paper. One easy application of them is the following
result.

THEOREM 1.6. Let G be a finite group, A a subgroup o/Aut G containing Inn G,
and L/K an A-chief factor of G. Suppose that L/K is a direct power of a simple
group S. If U is an A-covering subgroup {respectively A-prime-power-covering
subgroup) ofG, then {U n L)K/K is an A-covering subgroup {respectively A-prime-
power-covering subgroup) of L/K and is a direct power of S, where A is the group
of automorphisms of L/K induced by A.

The case where U is an A -covering subgroup was proved in [25, Theorem 2.1],
see also [4] and [9, Section 6]. The proof for A-prime-power-covering subgroups is
similar; a sketch of the proof is given to illustrate the techniques, especially the way
in which Theorem 1.5 can be used.

PROOF. Suppose that U is an A-prime-power-covering subgroup. Then UK/K is
easily shown to be an A*-prime-power-covering subgroup of G/K, where A* is the
group of automorphisms of G/K induced by A, and consequently we may assume
that K = {1}. Then, since U contains a member of each A-conjugacy class in G of
elements of prime power order, U D L contains a member of each A-conjugacyXlass
in L of elements of prime power order, that is, U D L is an A-prime-power-covering
subgroup of L. If L is soluble then L is an elementary abelian p-group for some
prime p, S = Zp, and U n L is of course isomorphic to a direct power of S. So we
may assume that L = Si x . . . x Sk = Sk for some finite non-abelian simple group S
and integer k > 1. Let Vt be the projection of U fl L into 5, for 1 < / < k. If V, < 5,
for some /, then by Theorem 1.5, V = V,is not a prime-power-covering subgroup of
S = Sj, and so there exists an element s e S of prime power order which does not
lie in V" for any a e Aut S. It follows that the &-tuple {s,..., s) does not lie in any
A-conjugate of U D L. This contradiction proves that Vt = 5, for all i, and hence that
U n L is isomorphic to some direct power of 5.

An immediate corollary of this result is that the set of composition factors of U is
the same as that for G.
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COROLLARY 1.7. Let G, A, U be as in Theorem 1.6. Then G and U have the same
set of composition factors.

Examples of covering subgroups arising from elementary abelian groups were
given above. There are of course many examples of covering subgroups of insoluble
groups also. One of the smallest of these is the following.

EXAMPLE 1.8. Let G = Gx x . . . x G5 = A\, U = Gx x G2 x G3 x D where D is
a diagonal subgroup of G4 x G5, and A = Aut G = 55 wr S5. There are exactly four
55-conjugacy classes of elements in A5, and consequently at least two entries of each
element (gi,..., gs) e G are in the same 55-class. This means that each element of
G lies in some A-conjugate of U, and hence that U is an A -covering subgroup of G.

This example illustrates some fairly general features of insoluble groups with
covering subgroups. Suppose that U is an A-covering subgroup of G. The largest A-
invariant subgroup of U is the A-core UA := f>\aeA UaofU, and the covering property
might be expected to give structural information only about the quotient G/UA. So let
us assume that UA = {1}, that is, that U is A-core free. Clearly any maximal subgroup
of G containing U is also an A-covering subgroup so suppose that U is an A-core free
maximal subgroup of G. If G has an insoluble minimal A-invariant subgroup L, then
[27, Proposition 3.1] shows that L is the direct product of at least 5 minimal normal
subgroups N, of G, say L = Nx x . . . x Ns with s > 5, and for some distinct /, ; ,
U = D x ]"[,.. . Nt with D a diagonal subgroup of iV, x Nj. Example 1.8 is therefore
a minimal example exhibiting this behaviour.

IB. Kronecker classes of algebraic number fields We shall consider algebraic
number fields K (that is subfields of the field C of complex numbers which are finite
extensions of the field Q of rational numbers) and their rings of integers GK. (Recall
that GK is the ring of algebraic integers contained in K.) If K : k is an extension
of algebraic number fields, then we have a corresponding inclusion Gk c @K for the
rings of integers. Each prime ideal p of 6k, often called a 'prime of k\ corresponds
to an ideal p @K of 6K which factorises as a product \\ P"' of a certain number of
prime ideals P, of (?K ('primes of K') and the prime ideals /*, and their multiplicities
e, are uniquely determined by p up to the order of the factors in the product. Each
prime P of K occurs in the factorization of exactly one prime p of k, and P is called
a prime divisor of p in K. Further, given P, the prime p can be recovered by means
of the norm map N: K —>• k. The image of P is N(P) = pf for a certain positive
integer / , called the (relative) degree of P with respect to k.

This theory may be found in many standard reference books on algebraic number
theory, for example Serge Lang's book [21]. The basic problem we shall discuss is: to
what extent is an extension K : k of algebraic number fields determined by the nature
of the prime factorization in K of the primes ofk? The first positive contribution was
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due to Kronecker [20] who in 1880 showed that two extensions K : k and L : k of the
same (rational) prime degree have the same Galois hull (sometimes called the normal
closure) if every prime of k has the same number of prime divisors with relative degree
1 in K as in L. In particular, if AT : k is a Galois extension of prime degree, then K : k
is completely determined (among field extensions of k of the same prime degree) by
the number of prime divisors in K of relative degree 1 of each prime p of k. This
result led to a very fruitful development in algebraic number theory. We define the
Kronecker set of a field extension as follows.

DEFINITION 1.9. The Kronecker set of an extension K : k of algebraic number
fields is the set D (K : k) of all primes of k having at least one prime divisor of relative
degree 1 in K.

Kronecker showed that a Galois extension of prime degree is determined by its
Kronecker set, and in 1916 Bauer [1] was able to show that all finite Galois extensions
are characterised (in the class of Galois extensions) by their Kronecker sets. However
in 1926 Gassmann [8] produced an example of two nonconjugate extensions of the
field of rational numbers, each of degree 180, which had the same Kronecker set. This
example of Gassmann effectively stopped work in the area for almost 40 years until,
in the 1960's, Kronecker's basic concepts and ideas were again studied by several
mathematicians (see [13]). Wolfram Jehne [13] introduced the concept of Kronecker
equivalence of algebraic number fields.

DEFINITION 1.10. Two extensions K and L of an algebraic number field k are said
to be Kronecker equivalent over k, written K ~ t L, if the Kronecker sets D(K : k)
and D(L : k) differ by only a finite set of primes, that is, K ~* L if and only if
D(K : k) and D(L : k) have finite symmetric difference.

Clearly Kronecker equivalence is an equivalence relation; the equivalence classes
are called Kronecker classes, and the Kronecker class over k containing K is denoted

1C. Kronecker classes and groups Wolfram Jehne [13] showed that it is possible
to translate the notion of Kronecker equivalence into a precise statement about Galois
groups. Suppose that K and L are finite extensions of an algebraic number field k,
and let M be a finite Galois extension of k containing K and L. Let A be the Galois
group of M : k and let t/, V be the 'fixed groups' of K, L (that is the Galois groups
of M : K, M : L) respectively. Then Jehne showed that

K ~ t L if and only if UA = VA,

where we write UA = \Ja€A U" and VA = \Ja€A V. In particular, if K : k is Galois
then UA = U and in this case K and L are Kronecker equivalent over k if and only if
U = VA, that is, V is an A -covering subgroup of U.
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Moreover, this group theoretic condition is a sufficient condition for the existence
of Kronecker equivalent extensions of algebraic number fields in the following sense.
If ,4 is a group with subgroups U, V such that UA = VA, then there is an algebraic
number field k and a finite Galois extension M of k such that the fixed fields K, L
of U, V respectively are Kronecker equivalent over k. However, given A and its
subgroups U, V, and given an algebraic number field k, it is not clear whether a Galois
extension M of k exists with these properties. Certainly, if U is a normal subgroup
of A, and if an extension K : k of algebraic number fields is given with Galois group
A/U, then a Galois extension M : k with M containing K and with Galois group A
may or may not exist; its existence may depend on arithmetic properties of K : k.
Examples of this have been given by Norbert Klingen (see Theorem 3.2) for K : k of
degree 4.

Jehne [13,14] began a systematic investigation of Kronecker classes using this link
with group theory, aiming to understand their structure and the behaviour of some of
their fundamental invariants. He observed [13, p. 286] that each Kronecker class X
over k contains only a finite number of minimal fields (that is, minimal by inclusion)
and that each of these minimal fields generates the same Galois hull M (Jf) over
k, called the Galois hull of Jf. Thus two important invariants of Jf are the width
o)(JO, that is the number of M(JO-conjugacy classes of minimal fields in X, and
the socle number /x(JT), that is the number of M(JO-conjugacy classes of subfields
of M(Jf) which lie in JT.

We illustrate these concepts with two examples. The first one, related to Gassmann's
example, gives three Kronecker equivalent pairwise nonconjugate extensions of the
rationals, two of which are extensions of degree 180 and one of degree 360. The
second example shows that, even if the width and the socle number are both equal
to 1, the Kronecker class may have more than one element, that is it may contain fields
outside of its Galois hull. Thus the Galois hull of X cannot always provide complete
information about the Kronecker class JT.

EXAMPLE 1.11. In the symmetric group A = S6 of degree 6, the subgroups

Ux = {1, (12)(34)},

U2 = {1, (12)(34), (13)(24), (14)(23)}, and

U3 = {1, (12)(34), (12)(56), (34)(56)},

are such that U* = U£ = U* is the union of the identity permutation and the set of
all permutations which are products of two cycles of length 2. Let M : Q be a Galois
extension of the rationals of degree 720 with Galois group A. Then the fixed fields
K\, K2, K3 of U\,U2, U3 respectively are all in the same Kronecker class Jf over Q
and Jf has Galois hull M. Moreover X has width 2, K2 and K3 being representatives
of the two classes of minimal fields in JT (each of degree 180 over Q), and X has
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socle number 3, Kx, K2, K^ being representatives of the classes of subfields of M
lying in J^.

EXAMPLE 1.12. In the alternating group A = A4, the subgroup V ={1, (12)(34)} is
an A-covering subgroup of the normal subgroup U={\, (12)(34), (13)(24), (14)(23)}
of A. There is a Galois extension M : k with Galois group A. Let K, L be the fixed
fields of U, V respectively. Then K and L are in the same Kronecker class JT despite
the fact that Jf has Galois hull M(Jf) = K, width 1 and socle number 1. In fact K
is the only minimal field in J^.

Jehne [13, pp. 294-297] has constructed Kronecker classes with arbitrarily large
width.

2. Infinite Kronecker classes versus quadratic extensions

In [13] Jehne proved the existence of infinite Kronecker classes.

THEOREM 2.1. [13, Theorem 3] Let X be the Kronecker class of K over k, where
K : k is a finite extension of algebraic number fields. If either

(a) K : k admits a nontrivial automorphism of odd order, or
(b) K : k admits a cyclic or quaternion subgroup of automorphisms of order 8,

then J f is infinite.

This very general result left open the question of whether extensions having auto-
morphism groups of exponent 2 or 4 could give rise to infinite Kronecker classes.
Much effort was expended on the case of quadratic extensions K : k.

Suppose that K : k is a quadratic extension and that L is Kronecker equivalent
to K over k, with L ^ K. Then K : k is a Galois extension and so L contains K.
Choose L to be minimal with respect to the property

K ~ t L, K + L.

Let M be the Galois hull of L : k, let A be the Galois group of M : k, and let G, U be
the fixed groups of K, L respectively. Then G is a normal subgroup of A of index 2
and U is a proper A-covering subgroup of G, where A is the group of automorphisms
of G induced by A. Wolfram Jehne and Norbert Klingen [13, 16, 17] were able to
show that the group G must be simple, and that it could not belong to several of
the infinite families of finite simple groups. Finally the result of Saxl, Theorem 1.2,
proved several years later, showed that no such proper subgroup U of G exists.

THEOREM 2.2. (Jehne, Klingen, Saxl) Let K : k be a quadratic extension of
algebraic number fields. Then the Kronecker class of K over k contains only the
field K.
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This was the first situation where a nontrivial extension of algebraic number fields
was proved to generate a finite Kronecker class. The general case of extensions of
algebraic number fields admitting a nontrivial Galois group of exponent dividing 4
remains open; it is not known when the corresponding Kronecker class is infinite.
Some results are available for extensions of small degree and will be discussed in the
next section.

3. Quartic Galois extensions

In an attempt to discover if there were other types of extensions which guaranteed
a finite Kronecker class, quartic Galois field extensions K : k were investigated.
Suppose that there is a second field L in the Kronecker class Jfk(K) of such an
extension. Let M be the Galois hull of (K, L) over k, let A be the Galois group of
M : k, and let G, U be the fixed groups of K, L respectively. Then G is a normal
subgroup of A of index 4, and G = UA = \Ja€A U" by the result of Jehne [13].
In particular U is a subgroup of G, or equivalently K is a subfield of L. Further,
any subgroup Ui such that U < U\ < G clearly satisfies G — Uf, and hence any
intermediate field L', K < L' < L, lies in Jfk(K). Thus we may assume that L is
an atomic extension of K, or equivalently that U is a maximal subgroup of G. It was
shown in [25] that there were essentially two group theoretic possibilities.

THEOREM 3.1. [25, Theorem 4.3] Let A be a finite group with a normal subgroup
G of index 4 such that G has an A-covering maximal subgroup U with trivial A-core
UA = Hae/t Ua = {!}• Then A = N.S where N = Z3 x Z3 is normal in A and S is
Z$ or Q% according as A/G is Z4 or Z2 *• Z2. Further G = N.Z2 and U = 53.

Thus if Ĵ Jt(AT) ^ {K}, that is if /T : k is not absolutely rigid in the sense of
Klingen [18], then K must be Kronecker equivalent over k to some non-Galois cubic
extension of itself. Norbert Klingen (see [18] or [25, Remark 4.2]) showed that
there exist quartic Galois extensions K : k of algebraic number fields such that K is
Kronecker equivalent to some cubic extension of itself both in the case where K : k is
a cyclic extension and also where K : k is an elementary abelian extension. Moreover
he obtained an explicit characterisation of absolutely rigid quartic Galois extensions.

THEOREM 3.2. (Klingen) Let K : k be a quartic Galois extension of algebraic
number fields. Then JXfk{K) = {K} if and only if one of the following holds.

(a) K : k is a cyclic extension and in some local extension Kp : kp, where p is a
finite or infinite place, —1 is not a norm, or

(b) K = k(yfd\, Vd2) with dx, d2 nonzero elements ofk, and the quadratic form
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is not k-isomorphic to x2 + y2 + z2.

An analogue to Theorem 3.1 for octic Galois extensions was proved in [27].

4. Bounded degree extensions

The examples of infinite Kronecker classes over an algebraic number field k con-
structed by Jehne in [13] consist entirely of extensions of k of bounded degree. These
examples, together with the results discussed in the previous sections, suggest that the
Kronecker class Jfk(K) of an extension K : k of degree n might have the property
that the degree of L : k, for fields L e Jfk{K), is bounded by some function of n.
The corresponding conjecture for groups was made by Peter Neumann and the author
in 1988.

CONJECTURE 4.1. (Neumann, Praeger) There is an integer function f such that,
if A is a finite group with subgroups U, V such that \A : U\ = n and \JaeA Ua =
\JaeAV,then\A:V\ <

CONJECTURE 4.1'. There is an integer function f such that, ifK : k is an extension
of degree n of algebraic number fields and L ~ t K, then \L : k\ < f(n).

Theorem 2.2 implies that we may take / (2) = 2. A proof of Conjecture 4.1' would
follow from a proof of Conjecture 4.1 on taking A to be the Galois group of some
Galois extension of k containing both K and L, and taking U, V to be the fixed groups
of K, L respectively.

The results about extensions of small degree and a theorem of Bob Guralnick
suggest that bounds on the degrees of extensions in a Kronecker class J f may be
provable under certain additional assumptions on the Galois group of M(Jf) : k.
The following theorem about the case where \K : k\ = n and the Galois group of
M(JO : k is An or Sn was proved by Guralnick [9] for n > 5, follows from [27,
Corollary to Theorem 3] for n = 3,4, and from Theorem 2.2 for n = 2. Guralnick's
proof relies heavily on group representation theory.

THEOREM 4.2. Let K : k be an extension of algebraic number fields of degree
n > 2 such that the Galois hull M^JV) : k of the Kronecker class ̂  of K over k has
Galois group An or Sn. Then either Jf consists entirely of the conjugates of K, or
n = 3or5 and the Galois group is An.

Further work [10] in this direction is proceeding for other families of potential
Galois groups of M(Jf) : k. A conjecture closely related to Conjecture 4.1 is the
following about covering subgroups.
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CONJECTURE 4.3. (Neumann, Praeger [19, 11.71]) There is an integer function g
such that, ifG is a finite group, A is a group of automorphisms ofG containing Inn G
as a subgroup of index n, and U is an A-covering subgroup of G, then \G : U\ < g(n).

Clearly Conjecture 4.3 is just a special case of Conjecture 4.1, namely the case
where the subgroup of index n is a normal subgroup of A and contains the second
subgroup. In fact these two conjectures are equivalent. To see this, suppose that
Conjecture 4.3 is true. Let A, U, V be as in Conjecture 4.1. If the A-core UA :—
f\e /t Ua of U is trivial then \A : V\ < \A\ <«! . Suppose that this not the case, and
set G = UA. Then | A : G\ < n\ and V D G is an A -covering subgroup of G, whence
\G : V n G\ < g(n\). Then \A : V\ < \A : V n G\ < n\ g{n\).

The conjecture for prime-power-covering subgroups equivalent to Conjecture 4.3
is also of interest.

CONJECTURE 4.3'. There is an integer function g such that, ifG is a finite group,
A is a group of automorphisms ofG containing Inn G as a subgroup of index n, and
U is an A-prime-power-covering subgroup ofG, then \G : U\ < gin).

These conjectures remain open. However we can prove Conjecture 4.3 in the case
where U is a maximal subgroup of G.

THEOREM 4.4. Conjecture 4.3 is true in the case where U is a maximal subgroup
ofG.

The proof of this theorem relies on the finite simple group classification, in that it
uses the following result.

THEOREM 4.5. There is an integer function h such that, ifT is a finite non-abelian
simple group containing at most n Aut T-conjugacy classes of elements, then \T\ <
h(n).

A proof of Theorem 4.5 expressed in a different form can be found in [28,
Lemma 4.4]. Laci Pyber shows that

n > 2>'\/log /l(n)

for some constant y. This implies that h(n) can be taken as a function of the form

h(n) = 2c(1°g")2lo8lo8n

for some constant c. To illustrate the basic ideas we sketch a proof below.

PROOF OF THEOREM 4.5. The proof of Theorem 4.5 is a matter of checking cases.
Since there are only a finite number of sporadic simple groups these need not be
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considered. The alternating group Ac contains involutions which are products of
2 ,4 , . . . cycles of length 2, and so, at least when c > 6, the number of 5c-conjugacy
classes of involutions contained in Ac is at least (c — 3)/4 so \AC\ = c\/2 < (An + 3)!.

For the classical simple groups T the number of Aut T -classes of unipotent ele-
ments increases with the rank of the group and hence the rank is bounded above by a
function of n. This leaves several families of simple groups of Lie type with bounded
Lie rank d over a finite field GF (q). Each of these groups contains a maximal torus H
which is self-centralising and such that |iVAut T(H) : H\ is at most kd logq for some
(small) constant k. Moreover all cyclic subgroups of G of order \H\ are conjugate to
H, see [7]. Now H contains <p(\H\) > |//1/log \H\ generators (where <p(\H\) is the
number of positive integers less than \H\ and relatively prime to \H\) and in all cases
\H\ > q/2, whence H contains at least q/k' \ogq generators for some constant k'. It
follows that the number of Aut T -classes which contain generators of H is at least
q/kk'd log2 q, and hence q is bounded by some function of n. Hence \T\ is bounded
by some function of n.

We show in the proof of Theorem 4.4 that the function g(n) may be chosen as
A(/i)(6")1/3. Using the function h(n) obtained by Pyber, given above, this gives a
function g(n) of the form

e(n) = 2c'nl/3(logn)2loglog"

for some constant d. It was Laci Pyber who pointed out how to improve the original
proof to give a sub-exponential bound here.

PROOF OF THEOREM 4.4. Let G be a finite group, A a group of automorphisms of
G containing Inn G as a subgroup of index n, and U a maximal subgroup of G which
is an A-covering subgroup of G. We must find an upper bound on \G : U\ in terms of
n. Consider the permutation action induced by G on the set £2 of all A-conjugates of
U. Let £2i,..., Qn* be the G-orbits in Q, where U is the stabilizer of a point of Q.\.
Then A permutes these orbits transitively, and consequently they are of equal length
|£2,| = \G : NG(U)\ and their number n' is a divisor of n = \A : Inn G\. Let K be the
kernel of this action of G. Suppose first that G = UK. Then U is normal in G and U
fixes £2] pointwise, so there are at most ri < n distinct images of U under elements
of A and all of them contain the identity element. Thus \G\ = \ \JaeA U"\ < n\U\
whence \G : U\ < n.

Suppose now that G ^ UK. Then since U is a maximal subgroup of G, K c U
and hence \Gn : Ua\ — \G : U\, where G", Un denote the permutation groups
induced on Q by G, U respectively. Thus we may assume that the action on Q is
faithful, that is, that K = {1}. Since A permutes the G-orbits regularly, it follows
that all the groups G"' are conjugate by elements of A. Since U is maximal in G, G
induces a primitive group Gn> on Qlf and hence G induces a primitive group Ga' on
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Qi for each 2. It follows from these remarks together with the O'Nan-Scott Theorem
(see [22]) that the socles of the G"1, and also the socle 5 of G is a direct power of the
same finite simple group T say. Also, since each Gn' is primitive, SQ' is transitive.

Suppose first that G"1 has an elementary abelian normal p-subgroup for some
prime p, so that T = Zp. Then (U D S)A = S. Also, as the socle S acts regularly on
each Qt, the intersection U H S is the kernel of the action of 5 on S^, and in particular
is normal in G. Thus there are at most ri < n distinct images of U D 5 under elements
of A,andso|S| = \(Ur\S)A\ < n\U n S\ =n\S\/\G: U\, whence \G : U\ < n.

Thus we may assume that T is a non-abelian simple group. Then, by [27, Pro-
position 3.1], 5 = Ni x . . . x Ns is the direct product of s > 5 minimal normal
subgroups Af, of G, and for some distinct i, j , the intersection U l~l 5 has the form
£> x (17//,-; ̂ /) where D is a diagonal subgroup of Nt x Nj. Now A7,- = 7"* for some
k > 1 independent of /, and so \G : U\ = \S : U D S| = |r|*. Thus we must bound
| T\k by a function of n.

Appealing again to [27, Proposition 3.1], we have n > st/2, where t is the number
of Aut ^-conjugacy classes of elements of 7v*i, and since s > 5 this means that t < n.
Clearly the number of Aut M-conjugacy classes of elements of Â  with at most one
non-identity entry is equal to the number of Aut T-conjugacy classes of elements of
T. Thus the number c of Aut T-conjugacy classes of elements of T is at most t,
which in turn is less than n. It then follows from Theorem 4.5 that \T\ < h(n).

Let if i, . . . , *#"c be the Aut T-classes of elements of T. Then each element x of
A7] determines an ordered c-tuple a(x) := (au ..., ac) of non-negative integers with
sum 5ZK,<C

 a' = k> s u c n mat a, of the entries of x lie in if,- for each /. Clearly, if
x, y e Ni are in the same Aut AVclass, then a{x) = a(y). Hence the number of
Aut A7]-classes of elements of Nt is at least the number of ordered c-tuples of non-
negative integers with sum k, namely (*^7)- Since c > 4, we have (*^7') > ^3/6,
a n d h e n c e k 3 / 6 < t < n . T h u s w e h a v e \ G : U \ = \ T \ k < h(nY6n)"3.

Although Conjecture 4.3 remains open in general, the basic ideas of the proof of
Theorem 4.4 can be used to show that the index of an .A-covering subgroup U of G
is bounded by some function g(n, c) of both n — \A : Inn G\ and the length c of an
A -chief series of G/UA. (Recall that an A-chief series of G is a maximal chain of
A-invariant subgroups, each a proper subgroup of the next.) The proof will show that
we can take g to be any function such that

where h is as in Theorem 4.5, and, for c > 1,

g(n,c) = h(n)"g(nh(ny,c-l).

This result demonstrates that the basic problem in verifying Conjecture 4.3 is proving
that the length of an A-chief series is bounded by a function of n.
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THEOREM 4.6. There is a function g(n,c) such that, if G is a finite group, A is a
group of automorphisms of G containing Inn G as a subgroup of index n, and U is
an A-covering subgroup ofG such that an A-chief series ofG/UA has length c, then
\G:U\<g(n,c).

PROOF. Let A, G, U be as in the statement. We may assume that UA — C\aeA Ua =
{1}, so that an A-chief series of G has length c. The proof is by induction on c. Suppose
first that c = 1. Then G = Tk for some simple group T and positive integer k, and
there is no proper nontrivial A-invariant subgroup of G. If T = Zp for some prime
p, then U is a normal subgroup of G and hence there are at most n distinct conjugates
of U by elements of A. Since G = UA,\G\ < n\U\ and \G : U\ < n < h(n)". So
suppose that T is a non-abelian simple group. Then the simple direct factors of G are
uniquely determined by G, and by Theorem 1.6, U is a product flt x . . . x fl,, where
each D, = T and £>, is a diagonal subgroup of Tki with ^,l<i<j &, = k. (The proof
of Theorem 1.6 shows that U projects onto each simple direct factor of G.) Since
UA = {1}, we have in particular that U ^ G. Thus at least one of the £, is greater
than 1. This means that each element of U has at least two entries from the same
Aut T-conjugacy class. In particular, since G = UA, the number of Aut T-conjugacy
classes in T is at most k (else we would have an element of G with all entries from
different Aut T-conjugacy classes in T and no A-conjugate of this element would lie
in U). Also since G has no proper nontrivial A-invariant subgroups, k < n. Then by
Theorem 4.5, \T\ < h(n), and hence \G :U\ < \G\ < h(n)". Thus the result holds if
c = 1 withg(«, 1) = h(n)".

Now suppose that c > 1 and that the result holds when the length of an A-chief
series of G is less than c. Let L be an A-invariant subgroup of G such that G := G/L
has no proper nontrivial A-invariant subgroups and the length of an A-chief series for
L is c — 1. Then U := UL/L contains at least one element from each A-class of
elements of G, where A is the group of automorphisms of G induced by A . Also
U n L contains at least one element from each A/.-class of elements of L, where AL

is the group of automorphisms of L induced by A. Let m := \AL : Inn L\. Then by
induction on c, \L : U D L\ = \UL/L\ < g(m, c — 1). Consider the results of the
previous paragraph.

If G = Z* for some prime p and positive integer k, we showed that p < \G :
U\ < n, and as A acts irreducibly on G we must have k < n — 1. Thus in this case
\G\ = \G:L\ <«"" ' so that m < \A : Inn G|.|G : L\ < n" and

\G:U\ = \ G : UL\.\UL :U\ = \ G : U\.\L : U n L\ < n . g ( n \ c - 1 ) .

Since n < h(n), this is less than h(n)"g(nh(n)", c — 1).
Now suppose that G = Tk for some non-abelian simple group T and positive

integer k. We showed that k < n and \T\ < h(n) and hence that \G : U\ < \G\ <
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h(n)n. It follows that m < nh{n)n and hence \G : U\ = \G : UL\.\UL : U\ <
h{n)ng(nh{n)n, c — 1). Theorem 4.6 now follows by induction on c.

We note that the recursive definition of g{n,c) given before the statement of
Theorem 4.6 can be "unpacked". Set k(n) := h{n)n, l(n) := n.h(n)n, and let
k o I denote the composition of the functions k and /, and for i > 0 let /(l) denote the
composition of/ with itself/ times, where /(0) denotes the identity function /(0)(n) = n.
Then it is straightforward to show that, for c > 1,

c-l

i=0

Exploring the techniques used in proving Proposition 3.1 of [27] (the crucial result
used in the proof of Theorem 4.4) a proof of Conjecture 4.3' in the case where U is a
maximal subgroup of G can be constructed provided that the following strengthening
of Theorem 4.5 is true.

There is an integer function h such that, ifT is a finite non-abelian simple group,
and for each prime p there are at most n Aut T-conjugacy classes of p-elements in
T,then\T\ <

This assertion is probably true, and it is currently being investigated by Laci Babai
and the author. Moreover a proof of this assertion would lead to a result analogous to
Theorem 4.6 for A-prime-power-covering subgroups.

5. Bounds on the depth of a Kronecker class

Jehne [13] studied the socle of a Kronecker class Jfk(K), that is the lattice of
subfields of M(Jf) : k which lie in Jfk(K). We know from Example 1.12 that
Jfk(K) may contain elements which are not subfields of the Galois hull M(Jf). To
what extent does the socle determine Jfk(K)1 Under what conditions (on K : k or
on the Galois groups) can we be certain that all elements of Xk(K) lie in the socle?
These are very difficult and important questions.

Some exploratory investigations of Kronecker classes Jfk(K) for small degree
extensions K : k showed that, when \K : k\ < 8, the socle number and width of
Xk{K) are equal and are at most 2 ([27, Theorem 1]). Exploring the existence of
elements of J^k(K) outside of the Galois hull proved to be much more difficult and
complete information about the corresponding Galois groups was only obtained in
general when \K : k\ < 4 ([27, Theorem 3]) and in the case of Galois extensions
K : k of degree at most 8 ([26] for degree 8, and [27, Theorem 3.3] for degrees 5,
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6, and 7). This very restricted data indicates that the Galois group of the Galois
hull M(JO : k is not very restricted, but for the existence of some L ~ t K with
L 2 A/(JO, there are strong restrictions on the Galois group of the Galois hull of
L:k.

The only general result shedding light on these questions is the result of Gural-
nick [9] mentioned previously which, together with the small degree results shows
that, when K : k has degree n and the Galois group of M(JO : k is as large as it can
be, namely Sn, or (if n ^ 3, 5) An, then all elements of Jffk{K) lie in the socle and
indeed are conjugate to K (Theorem 4.2 above).

6. Other types of equivalence of algebraic number fields

Several other kinds of equivalence of algebraic number fields, with corresponding
group theoretic conditions have been studied. Some are stronger than Kronecker
equivalence while others are weaker. Several of these will be mentioned here.

6A. Arithmetical Equivalence Two extensions K and L of an algebraic number
field k are said to be arithmetically equivalent if they have equal zeta functions:
£K(s) = £L(S). Gassmann [8] and Perlis [24] showed that arithmetically equivalent
fields have the same Galois closure over the rational numbers, and Perlis [24] proved
that, if M is a finite Galois extension of k containing K and L, A is the Galois group
of M : k and U, V are the fixed groups of K, L respectively, then K and L are
arithmetically equivalent if and only if IJC4 PI f/| = \xA D V\ for every conjugacy
class xA of A. Thus arithmetical equivalence is a stronger condition than Kronecker
equivalence. (For an extensive investigation and comparison of these two kinds
of equivalence, see the work of N. Klingen, for example [15, 18].) Moreover the
arithmetical equivalence of K and L has a strong conection with the permutation
characters for the permutation representations of A (by right multiplication) on the
sets of right cosets of U and V. Observe that, for a, x € A,

Uax = Ua if and only if axa~l e U if and only if xeU".

For a fixed element x e A, the number of elements a e A such that axa~l e U on the
one hand is equal to |C/t(jc)|.|jc'4 D U\, and on the other hand is equal to \U\.nv{x),
where nv(x) is the number of cosets Ua such that Uax = Ua, that is, nv is the
permutation character for the representation of A on the right cosets of U. Thus
two finite extensions K and L of the same degree of an algebraic number field k are
arithmetically equivalent if and only if, for the corresponding subgroups U and V, the
permutation characters nv, nv are equal.

Examples of groups A with nonconjugate subgroups U, V giving the same per-
mutation characters nv, nv have been known for a long time, and in 1979, H. Wielandt

https://doi.org/10.1017/S1446788700036028 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036028


32 Cheryl E. Praeger [16]

asked if it was possible to have Ttv = nv for U a maximal subgroup of A and V a
non-maximal subgroup, see [19, 6.6]. In 1989, A. Borovik [2] produced two different
nonconjugate embeddings of the alternating group A6 in £8 (Q, which, while not
answering Wielandt's question (for £8(C) is an infinite group), inspired Guralnick
and Saxl [11] to construct examples which gave an affirmative answer. Guralnick and
Saxl constructed several infinite families of simple groups A, each with two subgroups
U, V, one maximal in A and one not maximal, with equal permutation characters Ttv,
nv. Thus there are infintely many finite Galois extensions M : k of algebraic number
fields having intermediate fields K, L, of the same degree over k, which are arith-
metically equivalent, and are such that K : k is a minimal extension and L : k is
not.

R. Odoni asked if it might be the case that, for Galois extensions M : k with
Galois group a p-group, for some prime p, Kronecker equivalence of intermediate
extensions K : k and L : k implies arithmetical equivalence. Examples to show
that this is not true can be found in [27, Theorem 2(e)(iii) or (iv)]. The first of
these examples corresponds to the wreath product A = Z2 wr Z4 and two elementary
abelian subgroups U, V of order 8 in the base group of A. A. Caranti, N. Gavioli and
S. Mattarei [5] have produced examples similar to this one for all primes p.

6B. Norm Groups The norm group NK:k(K*) of a finite extension K : k of fields is
the group of nonzero norms from K to k. Here K* is the multiplicative group of K.
Let K : k, L : k be two finite extensions of an algebraic number field k, let M be a
finite Galois extension of k containing K and L, let A be the Galois group of M : k
and let U, V be the fixed groups of K, L respectively. L. Stern [30, Theorem 1.8]
showed that if NK:k(K*) = NL±(L*) then U and V have non-empty intersection with
the same sets of yl-conjugacy classes of elements of prime power order. So the group
theoretical translation of Kronecker equivalence is stronger than this necessary group
theoretic condition for equality of norm groups. However equality of the norm groups
depends on the arithmetic of the fields as well as this condition on the Galois groups.

L. Stern [30] and M. Lochter [23] have studied several kinds of equivalence of
algebraic number fields which are weaker than Kronecker equivalence. In particular
one of these, weak Kronecker equivalence, may be formulated in terms of norm
groups. The two number fields K and L above are weakly Kronecker equivalent if
and only if the indices

\NK:k(K*) : NK:k(K*) n NL:k(L*)\ and \NL:k(L*) : NK.k(K*) n NL..k(L*)\

are both finite, that is, if and only if the norm groups Nic.k(K*) and NL:k(L*) are almost
equal. This in turn is equivalent to the corresponding subgroups U and V meeting
exactly the same sets of A-conjugacy classes of elements of prime power order (proved
by Stern [30, Theorem 1.8], and later, but independently, by Lochter [23, Satz 4.2]).
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A finite extension K : k is said to be k-solitary if, for any finite extension L of
k, NK:k(K*) = NL-k{L*) implies that K and L are conjugate over k. Guralnick and
Stern [12] proved that, if a finite Galois extension K : k of algebraic number fields
is it-solitary, then K : k is of degree a power of 2 [12, Theorem 2.7]. Further, they
showed that all extensions K : k of degree 1 or 2 are ^-solitary, and they classified all
jt-solitary Galois extensions of degree at most 8.
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